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Abstract: Due to their devastating ability to extract features, convolutional neural network (CNN)-
based approaches have achieved tremendous success in hyperspectral image (HSI) classification.
However, previous works have been dedicated to constructing deeper or wider deep learning
networks to obtain exceptional classification performance, but as the layers get deeper, the gradient
disappearance problem impedes the convergence stability of network models. Additionally, previous
works usually focused on utilizing fixed-scale convolutional kernels or multiple available, receptive
fields with varying scales to capture features, which leads to the underutilization of information
and is vulnerable to feature learning. To remedy the above issues, we propose an innovative
hybrid-scale feature enhancement network (HFENet) for HSI classification. Specifically, HFENet
contains two key modules: a hybrid-scale feature extraction block (HFEB) and a shuffle attention
enhancement block (SAEB). HFEB is designed to excavate spectral–spatial structure information of
distinct scales, types, and branches, which can augment the multiplicity of spectral–spatial features
while modeling the global long-range dependencies of spectral–spatial informative features. SAEB
is devised to adaptively recalibrate spectral-wise and spatial-wise feature responses to generate the
purified spectral–spatial information, which effectively filters redundant information and noisy pixels
and is conducive to enhancing classification performance. Compared with several sophisticated
baselines, a series of experiments conducted on three public hyperspectral datasets showed that the
accuracies of OA, AA, and Kappa all exceed 99%, demonstrating that the presented HFENet achieves
state-of-the-art performance.

Keywords: convolutional neural network; hybrid-scale feature extraction; hyperspectral image
classification; shuffle attention enhancement

1. Introduction

Hyperspectral imaging, a spectrum-image merging technology combining spectral
detection and imaging techniques, utilizes diverse sensors to distinguish the electromag-
netic waves reflected from objects and precisely describes the physical characteristics
of objects [1,2]. A hyperspectral image (HSI) possesses plentiful spectral and spatial in-
formation, which has been widely adopted in extensive application areas, such as pre-
cision agriculture [3], environmental monitoring [4], mineral exploration [5], and urban
planning [6]. HSI classification has become a research hotspot in pattern recognition and
image processing, which is devoted to assigning a unique category label to each spatial
pixel [7–10]. However, HSI classification is still a challenging issue, i.e., especially spatial
variability and the curse of dimensionality, thereby increasing the difficulty of classification.
The former is induced by factors such as light angle [11], and atmospheric interference [12],
which leads to the same object presenting different characteristics. The latter is caused by
the unbalance between high-dimensionality features and limited samples, which easily
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results in overfitting. Consequently, how to capture more representative and discriminative
features from the original data is a critical problem in HSI classification.

Initially, bountiful HSI classification techniques have been presented, which focus
on two stages, i.e., feature engineering and classifier training. Feature engineering aims
to reduce the spectral dimension of HSI data and capture informative features or bands.
Feature engineering generally contains two regular methods, i.e., feature selection and
feature extraction. Feature selection aims to retain important spectral bands for the fol-
lowing tasks and fade out unnecessary ones. Representative methods have a spectral
angle mapper (SAM) [13], Jeffries-Matusita distance [14], Bhattacharyya distance [15], etc.
Feature extraction can easily detect varying categories by converting HSI data from a
high-dimension space to a low-dimension space. Typical methods include principal com-
ponent analysis (PCA) [16], independent component analysis (ICA) [17], minimum noise
fraction (MNF) [18], etc. Features generated by feature engineering are fed to classifiers
for classification tasks. Common classifiers involve support vector machine (SVM) [19],
manifold ranking (MR) [20], random forests (RF) [21], etc. However, the classification meth-
ods mentioned above only utilize spectral information and do not fully consider spatial
information in the target area. Compared with methods-based spectral features, many
researchers have demonstrated that making full use of spatial and spectral information
helps to strengthen the classification results. In general, these methods exploit multi-kernel
learning (MKL) [22], morphological profiles (MP) [23], sparse representation (SR) [24],
etc., to extract spatial features. Nevertheless, both spectral-features-based and spectral–
spatial-features-based classification methods depend on hand-crafted features with poor
generalization ability and limited representation ability, which extremely degenerate the
classification performance.

Of late, due to the powerful representation of learning potentials, deep learning (DL)-
based methods have acquired tremendous advancements in HSI classification. For example,
Chen et al. applied a multilayer stacked autoencoder (SAE) to extract deep features for HSI
classification [25]. To obtain spatial–spectral features, Li et al. utilized a multilayer deep
belief network (DBN) and a single restricted Boltzmann machine (RBM) [26]. Hong et al.
designed a supervised mini graph convolutional network (GCN) for HSI classification [27].
To provide new insight into HSI classification, Hang et al. devised a multitask gener-
ative adversarial network (GAN) [28]. Hang et al. constructed a cascaded recurrent
neural network (RNN) to fully excavate spectral information to achieve high-accuracy HSI
classification [29]. Li et al. built a two-stream convolutional neural network (CNN) to
simultaneously capture spectral and spatial features [30]. To model the global relationships
of HSI, Zu et al. proposed a cascaded convolution-based transformer [31]. In the abovemen-
tioned network models, CNN is always a considerable and indispensable module [32–36].
Giving credit to the characteristics of weight-sharing and local connection, Hu et al. built
a 1D CNN model to explore spectral information [37]. Xu et al. designed a pixel-to-pixel,
end-to-end spectral–spatial fully convolutional network for HSI classification [38]. To
tackle the information leakage of the training, Zou et al. constructed a spectral–spatial
3D fully convolutional network, which can exploit the spectral–spatial joint features and
semantic information [39]. Zhang et al. presented a CNN based on varying region inputs
to effectively extract contextual interactional information [40]. A multiscale and cross-level
attention learning network was devised by Xu et al., which can use multiscale information
from local and global views [41]. Although the classification methods-based CNN has
demonstrated remarkable success, there are still some drawbacks. To be more specific, the
squared region of convolutional kernel size gravely limits the capacity of methods based on
CNN to acquire long-range dependencies. Additionally, the informative features captured
by CNN commonly involve redundant features and noise, adverse to the classification
performance. Consequently, it is an urgent problem to overcome the challenge of finding a
way to obtain significant features to enhance HSI classification.

Lately, many promising tricks have been integrated into CNNs, such as neural net-
work search strategy [42], multiple available receptive fields with varying scales [43],
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sample augmentation [44], residual learning [45], attention mechanism [46], and dense
connection [47]. From the perspective of imaging procedures, Chen et al. built a virtual
sample augmentation approach to create training data [48]. Cao et al. constructed a com-
pressed CNN to effectively enhance the classification performance of the student network
by using virtual samples to describe the teacher network’s classification boundary [49].
To sufficiently exploit information from varying scales of HSI, Xie et al. built a multi-
scale densely-connected convolutional network [50]. Wang et al. used a multiscale ghost
module to capture more distinguishable information using simple operations [51]. Zhu
et al. designed a spectral attention block and spatial attention to adaptively emphasize
necessary spectral bands and important spatial pixels [52]. Roy presented an improved
spectral–spatial ResNet to obtain the spectral–spatial joint information [53]. Zhang et al.
devised cascaded parallel improved residual blocks to capture spectral–spatial features [54].
To degrade the computation cost and obtain better classification accuracy, Dong et al.
combined the dense connection with attention modules [55].

In the article, we present a hybrid-scale feature enhancement network (HFENet) for
HSI classification. HFENet contains two important submodules: hybrid-scale feature
extraction block (HFEB) and shuffle attention enhancement block (SAEB). HFEB is devised
to extract spectral–spatial structure information of different types and scales, thereby
modeling the global long-range dependencies of spectral–spatial features. HFEB consists
of two parallel branches, and the nuclear component of each branch is a heterogenous
feature refine block (HFRB), where the upper branch has two HFRBs, the latter branch has
an HFEB, and the convolutional kernel size of each HFRB is different. HFRB is designed
to capture the local dependencies of spectral–spatial features. SAEB is constructed to
effectively dispel the redundant information and noisy pixels, further strengthening the
discrimination ability of spectral–spatial informative features for HSI classification. In this
context, the main contributions of the proposed work rely on the following:

(1) We construct a heterogenous feature refine block (HFRB) to capture the internal correla-
tions of different channels and the external interactions of all channels, which comple-
ment each other, thereby enhancing the local dependencies of spectral–spatial features.

(2) Different from existing multiscale feature extraction strategies, our designed hybrid-
scale feature extraction block (HFEB) exploits multiple HFRBs to obtain more discrim-
inative and representative spectral–spatial structure information of distinct scales,
types, and branches, which can not only augment the multiplicity of spectral–spatial
features but also model the global long-range dependencies of spectral–spatial features.

(3) To effectively fade out the redundant information and noisy pixels, we devise a shuf-
fle attention enhancement block (SAEB) to adaptively recalibrate spectral-wise and
spatial-wise feature responses to generate the purified spectral–spatial information,
which is conducive to enhancing the classification performance.

The rest of this work is formulated as follows. Section 2 describes the proposed
approach in detail. Section 3 provides the relevant experimental results and comparisons
with several state-of-the-art methods. Section 4 concludes this work.

2. Methods
2.1. Framework of HFENet Model

Figure 1 graphically illustrates the framework of our presented HFENet, which is
composed of an initial block, two HFEBs, a SAEB, and an output block. First, considering
the classical curse of dimensionality issue of HSI, we conduct the PCA algorithm on raw HSI
to reduce spectral band numbers and effectively alleviate the interference of high correlation
between spectral bands, where 40 spectral bands remain. Second, to effectively reduce the
training time and fully exploit the property of HSI containing both spectral and spatial data,
a 3D data cube x ∈ R7×7×40 consisting of the target pixel and its adjacent pixels is used
as the input data of our presented HFENet, where 7, 7, and 40 represent the dimensions
of height, width, and spectrum, respectively. Third, the 3D data cube is transmitted to
the initial block to obtain general spectral–spatial features. The initial block contains a
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3D convolutional layer with 128 filters of 1 × 1 × 40 size, a 3D convolutional layer with
128 filters of 3 × 3 × 1 size, 2 BN layers, and 2 PReLU activation functions. Then, the initial
spectral–spatial features are transmitted to two HFEBs to extract more discriminative and
representative global long-range dependencies of spectral–spatial features. Furthermore,
these features are transmitted to a SAEB to filter unnecessary information and dispel
interference of noises, thus achieving spectral–spatial feature purification. Finally, the
output block is utilized to generate the probabilities of 16 categories. The output block
involves a 2D GAP operation, two fully connected layers, two dropouts, and a softmax
layer. In addition, to avoid the overfitting problem, L2 regularization is also introduced
into the proposed HFENet. We will depict two primary submodules of our presented
HFENet: hybrid-scale feature extraction block (HFEB) and shuffle attention enhancement
block (SAEB).
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2.2. Heterogenous Feature Refine Block

In recent years, to meet higher-quality computer vision task requirements, numer-
ous researchers have ameliorated network performance by exploring features of different
channels or layers. For example, Gao et al. constructed a triple-branch attention block
to capture interactions across different spatial regions, spectral bands, and channels [56].
Wang et al. proposed an attention mechanism module to obtain the weight information of
channel dimension, spectral dimension, and spatial dimension, respectively [57]. To im-
prove SISR performance, Zhang et al. built a residual channel attention mechanism, which
can not only reinforce interdependencies of varying channels but also adaptively discard
plentiful low-frequency features [58]. Inspired by the above approaches, we construct an
innovative, heterogenous feature refine block (HFRB) to strengthen internal and external
interactions of different channels and layers while enriching the local dependencies of
spectral–spatial features. HFRB exploits a heterogeneous architecture in a parallel manner,
which contains a symmetric residual unit (SRU) and a complementary residual unit (CRU).
The architecture of our devised HFRB is provided in Figure 2. The input data of HFRB
can be referred to X ∈ RH×W×C, where H, W, and C are dimension of height, width, and
channel, respectively.

Symmetric Residual Unit: SRU adopts a pair of twin branches to boost internal
relations of different channels. More precisely, we split the input data X into two sub-
branches: X1 ∈ RH×W×(C/2) and X2 ∈ RH×W×(C/2). Each sub-branch involves two
Conv + BN + ReLU layers and a Conv + BN layer, where 2D convolutional operation with
C/2 filters of n × n size is utilized to excavate spectral–spatial features of varying channels,
BN is utilized to strengthen the network performance and ReLU is utilized to obtained
features map into a non-linearity. In addition, to enhance information propagation form
shallow to deep layers and avoid loss, we apply the skip transmission to each sub-branch.
The formulas of upper sub-branch can be explained as follows:

U11 = F1(X1) (1)
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U12 = F1(U11) (2)

U13 = F2(U12) (3)

U = U13 + X1 (4)

where X1 and U are the input data and output data of upper sub-branch. F1(·) represents
the composite function containing Conv+ BN +ReLU layer, F2(·) represents the composite
function containing Conv + BN layer, and + is element-wise addition operation.
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The formulas of bottom sub-branch are the same as those of upper sub-branch, which
can be explained as follows:

B21 = F1(X2) (5)

B22 = F1(B11) (6)

B23 = F2(B12) (7)

B = B13 + X2 (8)

where X2 and B are the input data and output data of bottom sub-branch. Finally, we
exploit a plain concatenate operation to aggerate the output features of two sub-branches
and use ReLU to strengthen the nonlinear ability of network. The formulas can be explained
as follows:

O1 = σ([U, B]) (9)

where O1 stands for the output data of SRU, [] refers to the concatenate operation, σ and is
ReLU activation function.

Complementary Residual Unit: CRU is devised to enhance the robustness of spectral–
spatial features by learning external correlations of all the channels, which complements
SRU. CRU contains two Conv + BN + ReLU layers and a Conv + BN layer, where 2D
convolutional operation with C filters of n × n size is utilized to extract spectral–spatial
features of entire channels, different from those of SRU. Uniformly, the skip transmission
is also introduced to CRU to avert the loss of information. Finally, the ReLU activation
function is exploited to boost the nonlinear ability of model. The formulas of CRU can be
explained as follows:

C11 = F1(X) (10)

C12 = F1(C11) (11)
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C13 = F2(C12) (12)

C14 = σ(C13) (13)

O2 = C14 + X (14)

SRU and CRU can obtain internal and external corrections of split channels and all
channels, which complement each other. For that, we employ the element-wise addition
operation to SRU and CRU to generate richer deep and wide local dependencies of spectral–
spatial features. The formulas of HFRB can be explained as follows:

O = O1 + O2 (15)

where O represents the output data of HFRB, and + is element-wise addition operation.

2.3. Hybrid-Scale Feature Extraction Block

With the increased demand for HSI classification tasks, many scholars have focused on
utilizing multiple receptive fields to explore luxuriant spectral–spatial information, thereby
achieving remarkable performance. For example, Zhang et al. designed a multi-scale dense
network, which can not only fully use the varying scale information of network structure
but also aggregate the scale information of the entire network for HSI classification [59].
Xie et al. built a multiscale densely-connected convolutional network to effectively capture
spectral–spatial features of multiple scales [50]. To tackle larger intraclass variability,
Safari et al. constructed a multiscale deep learning by combining diverse CNNs for HSI
classification [43]. Compared with the fixed-scale extraction manner, utilizing multiple
different receptive fields contributes to enhancing HSI classification performance. Inspired
by the above approaches, we devise an innovative hybrid-scale feature extraction block
(HFEB) exploiting spectral–spatial structure information of distinct types and scales to
increase the multiplicity of spectral–spatial features while modeling global long-range
dependencies of spectral–spatial features. The structure of our proposed HFEB is provided
in Figure 3.
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Different from prior works based on convolution operations with multiple different
receptive fields, our presented HFEB utilizes promising functional HFRBs to obtain spectral–
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spatial information of distinct types and scales. To be more specific, HFEB is composed
of two parallel branches: the upper branch contains two HFEBs with 2D convolutional
operations with 3 × 3 size and 5 × 5 size, respectively; the lower branch contains one HFEB
with 2D convolutional operations with 7 × 7 size. The structure of HFRB is provided in
Figure 2. Second, we utilize the element-wise addition operation to aggregate the output
data of two branches, thereby obtaining the global long-range dependencies of spectral–
spatial features. Furthermore, to avert the loss of information, the skip transmission is also
applied to HFEB. The formulas of HFEB can be explained as follows:

y1 = HFRB3×3(X) (16)

y2 = HFRB5×5(y1) (17)

y3 = HFRB7×7(X) (18)

y = X + y2 + y3 (19)

where X and y are the input data and output data of HFEB. HFEB(·) refers to the entire
treatment process of HFRB, and the subscripts refer to the convolutional kernel size of
HFRB. y1, y2, and y3 represent the output data of each HFRB, respectively.

2.4. Shuffle Attention Enhancement Block

The attention mechanism mimicking the perception system of humans is one of the
most distinguished ideas in the DL domain, which is utilized to focus on the information
regions more relevant to computer-vision tasks and filter irrelevant ones. For example,
Dong et al. constructed an attention module composed of spatial and spectral axes to
emphasize the salient spatial–spectral information [60]. Guo et al. devised a spectral–spatial
connected attention mechanism, which integrates spatial attention module and spectral
attention module to enhance the distinguishing capacity of spatial pixels and spectral
bands [55]. Zhu et al. built a spectral attention module to obtain useful spectral bands and
a spatial attention module for the adaptive selection of spatial pixels [52]. Inspired by the
above approaches, we design a shuffle attention enhancement block (SAEB) to adaptively
recalibrate spectral-wise and spatial-wise feature responses, which effectively eliminates
redundant information and noisy pixels, thereby heightening the discriminative ability of
spectral–spatial features. The structure of our proposed SAEB is provided in Figure 4. As
seen in Figure 4, the SAEB is composed of four prominent parts: feature grouping, spectral
enhancement branch, spatial enhancement branch, and feature aggregating.
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Feature Grouping: X ∈ RH×W×C refers to the input data of SAEB, where H, W, and
C are dimension of height, width, and channel, respectively. The input data X are divided
into n subsets, and each subset is also divided into two parts along the spectral dimension:
x1 ∈ RH×W×(C/2n) and x2 ∈ RH×W×(C/2n). x1 and x2 are fed into the spectral enhancement
branch and spatial enhancement branch, respectively.

Spectral Enhancement Branch: This is built to reassign the weights to spectral bands,
emphasizing the meaningful bands and fading out the irrelevant ones. Concretely, first,
a 2D global average pooling is used to convert x1 ∈ RH×W×(C/2n) to x1

′ ∈ R1×1×(C/2n).
Second, two fully connected layers, a ReLU activation function and a sigmoid activation
function, are adopted to generate the weights of spectral bands Wspectral . Finally, Wspectral is
multiplied by x1 to obtain the local spectral-wise feature responses Xspectral . The formulas
of spectral enhancement branch can be explained as follows:

Wspectral = δ(FC2(σ(FC1(GAP(x1))))) (20)

Xspectral = x1 ⊗ Wspectral (21)

where σ and δ are ReLU and sigmoid activation functions. ⊗ is the multiplication operation.
Spatial Enhancement Branch: This is constructed to reassign the weights to spatial

pixels, strengthening pixels that are conducive for classification in the pixel-centered neigh-
borhood or those from the same class as the center pixel and suppressing unimportant ones.
Specifically, first, an average pooling operation and a max pooling operation are adopted
to convert x2 ∈ RH×W×(C/2n) to x21

′ ∈ RH×W×1 and x22
′ ∈ RH×W×1, respectively. Second,

the average pooling feature and max pooling feature are aggerated by concatenation op-
eration. Third, the aggerated features are transmitted to a 2D convolutional layer with
3 × 3 size to generate the weights of spatial pixels Wspatial . The Wspatial is sent to a BN layer
to strengthen the network classification performance. Finally, Wspatial is multiplied by x2
to obtain the local spatial-wise feature responses Xspatial . In addition, ReLU is utilized to
turn feature map into a non-linearity. The formulas of spatial enhancement branch can be
explained as follows:

Wspatial = Conv([AP(x2), MP(x2)]) (22)

Xspatial = σ(BN(Wspatial)⊗ x2) (23)

where AP(·) and MP(·) are the average pooling operation and max pooling operation,
respectively. Conv(·) is the 2D convolutional operation, and BN(·) is the BN layer. σ is the
ReLU activation function. [] and ⊗ denote the concatenation operation and multiplication
operation, respectively.

Feature Aggregating: The concatenation operation is utilized to integrate the local
spectral-wise feature responses Xspectral and the local spatial-wise feature responses Xspatial
into a new subset, thus obtaining the local spectral–spatial feature responses. To encourage
the cross-information flow of local spectral–spatial feature responses between different
subsets, we also introduce the shuffle unit into our proposed SAEB. Finally, we aggregate all
local spectral–spatial feature responses to obtain global spectral–spatial feature responses.

3. Experimental Results and Discussion
3.1. Hyperspectral Datasets and Setup

To estimate the classification performance of our developed HFENet, we adopted
three publicly available datasets, i.e., Pavia University (UP), Indian Pines (IP), and Houston
2013 datasets.

The UP dataset was captured by the ROSIS-3 sensor over the city of Pavia, Italy. The
image possesses 610 × 340 pixels with a geometric resolution of 1.3 m. It is composed of
9 categories and 115 spectral bands ranging from about 0.43 to 0.86 um. The corrected
image contains 103 spectral bands after removing 12 noisy bands.

The IP dataset was collected by the AVIRIS sensor over northwestern Indiana, USA.
The image involves 145 × 145 pixels with a geometric resolution of 20 m. It constitutes
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16 categories and 224 spectral bands ranging from about 0.4 to 2.5 um. The corrected image
has 200 spectral bands; after removing 20 bands, it cannot be reflected by water.

The Houston 2013 dataset was obtained by the ITRES CASI-1500 instrument over
the University of Houston campus, USA. The image contains 349 × 1905 pixels with a
geometric resolution of 2.5 m. It has 15 categories and 144 spectral bands ranging from
about 0.38 to 1.05 um.

Tables 1–3 provide the number of samples of each category for training and testing.
The validation experiments were performed in a TensorFlow 2.3, Keras 2.4.3, CUDA 10.1,
and Python 3.6 environment utilizing an Intel(R) Core(TM) i7-9700F CPU made by the Intel
corporation and an NVIDIA GeForce RTX 2060 SUPER 6 GB GPU made by the NVIDIA
corporation, procuring from Chengdu, China. The epoch and batch size influence the
classification performance of our proposed: if the epoch and batch size are too small, the
training process of the model will be unstable and easily disturbed by noisy data; if the
epoch and batch size are too large, the training time of model will be too long, and the
learning ability of model will be limited. Therefore, setting the suitable epoch and batch size
is vital for our proposed HFENet. For the UP, IP, and Houston2013 datasets, the training
epochs were set to 100, 200, and 200; the batch size was set to 16, 16, and 16, respectively.
The Adam’s Optimizer was chosen as the optimizer, and the learning rate was defined as
0.0005. The average accuracy (AA), overall accuracy (OA), and Kappa coefficient (Kappa)
were used as criteria metrics to evaluate the classification performance.

Table 1. Data description of UP dataset.

No. Color Class Train Test

1 Asphalt 1326 5305
2 Meadows 3729 14,920
3 Gravel 419 1680
4 Trees 612 2452
5 Metal sheets 269 1076
6 Bare Soil 1005 4024
7 Bitumen 266 1064
8 Bricks 736 2946
9 Shadows 189 758

Total 8551 34,225

Table 2. Data description of IP dataset.

No. Color Class Train Test

1 Alfalfa 10 36
2 Corn–notill 286 1142
3 Corn–mintill 166 664
4 Corn 48 189
5 Grass–pasture 97 386
6 Grass–trees 146 584
7 Grass–pasture–mowed 6 22
8 Hay–windrowed 96 382
9 Oats 4 16
10 Soybean–notill 195 777
11 Soybean–mintill 491 1964
12 Soybean–clean 119 474
13 Wheat 41 164
14 Woods 253 1012
15 Buildings–grass–tree 78 308
16 Stone–steel–towers 19 74

Total 2055 8194
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Table 3. Data description of the Houston 2013 dataset.

No. Color Class Train Test

1 Healthy grass 251 1000
2 Stressed grass 251 1003
3 Synthetic grass 140 557
4 Trees 249 995
5 Soil 249 993
6 Water 65 260
7 Residential 254 1014
8 Commercial 249 995
9 Road 251 1001
10 Highway 246 981
11 Railway 247 988
12 Parking Lot 1 247 986
13 Parking Lot 2 94 375
14 Tennis Court 86 342
15 Running Track 132 528

Total 3011 12,018

3.2. Classification Comparison with State-of-the-Art Models

Our proposed HFENet model is compared with eleven outstanding classification
approaches to comprehensively demonstrate the superiority of the HFENet model. Eleven
classification methods are broadly divided into two groups: one containing SVM 1, RF 1,
KNN 1, and GuassianNB 1 belongs to traditional ML; the other involving HybridSN 2 [61],
RSSAN 3 [52], MSRN [62], MAFN 4 [63], DCRN 5 [64], DMCN [65], and MSDAN [57]
belongs to DL. Specifically, HybridSN is composed of 2D CNN and a spectral–spatial 3D
CNN to achieve maximum possible accuracy. RSSAN exploits a spectral–spatial attention
learning module to filter unimportant information and strengthen beneficial infiormation
while using a spectral–spatial feature learning module to refine the learned features. MSRN
utilizes the depthwise separable convolution with a mixed depthwise convolution layer
to replace the convolutional layer to construct residual blocks, which can emphasize the
feature representation ability. MAFN constructs a spatial feature extraction module, a
spectral feature extraction module, and a spectral–spatial feature extraction module to
obtain more representative features. DCRN designs two parallel branches and a spatial–
spectral fusion structure to extract joint features. DMCN involves coordinate attention, a
grouped residual 2D CNN, and a dense 3D CNN to mine fusion information. MSDAN
applies three different scale modules with dense connections to achieve feature reuse while
embedding spectral–spatial–channel attention to improve classification performance. For
fairness, all experiments stochastically pick 20% of labeled data as the training size for three
datasets. Obtained classification results are shown in Tables 4–6.

Table 4. Quantitative comparison on the UP dataset.

No. SVM 1 RF 1 KNN 1 GaussianNB 1 HybridSN 2 RSSAN 3 MSRN MAFN 4 DCRN 5 DMCN MSDAN HFENet

1 76.52 93.17 91.34 96.01 99.53 99.79 99.83 100.00 99.46 97.86 99.89 99.94
2 85.94 89.70 88.74 80.20 99.99 99.91 99.99 100.00 99.95 99.94 99.76 99.98
3 83.78 85.32 71.81 28.09 99.58 99.13 100.00 100.00 97.99 93.11 73.50 99.82
4 95.94 94.83 96.61 50.01 100.00 99.88 96.61 92.81 84.55 86.88 99.71 100.00
5 99.81 99.27 99.33 80.49 99.72 99.91 98.63 100.00 86.46 65.72 100.00 100.00
6 95.86 91.48 82.30 37.77 100.00 99.33 99.62 98.72 99.88 86.54 99.63 100.00
7 0.00 86.90 74.87 40.61 98.88 99.53 99.91 100.00 96.89 59.21 100.00 99.91
8 67.39 83.01 80.68 69.98 99.86 97.33 93.49 97.18 96.08 98.95 99.32 100.00
9 99.87 99.87 100.00 100.00 99.45 99.21 95.61 97.04 96.84 92.60 99.06 99.74

OA (%) 83.89 90.38 87.63 67.46 99.83 99.53 98.94 98.98 97.55 92.53 98.00 99.96
AA (%) 70.90 87.71 85.14 73.03 99.35 99.23 98.21 99.19 94.83 90.08 97.13 99.94

Kappa ×
100 77.82 87.05 83.34 58.48 99.78 99.38 98.59 98.66 96.76 90.17 97.35 99.95

1 http://scikit-learn.org, 2 https://github.com/gokriznastic/HybridSN, 3 https://github.com/mmhzhu/RSSAN,
4 https://github.com/Li-ZK/MAFN-2021, 5 https://github.com/Li-ZK/DCRN-2021. The bold font highlights
which mechanic works best.

http://scikit-learn.org
https://github.com/gokriznastic/HybridSN
https://github.com/mmhzhu/RSSAN
https://github.com/Li-ZK/MAFN-2021
https://github.com/Li-ZK/DCRN-2021
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Table 5. Quantitative comparison on the IP dataset.

No. SVM RF KNN GaussianNB HybridSN RSSAN MSRN MAFN DCRN DMCN MSDAN HFENet

1 0.00 86.67 36.36 31.07 97.06 97.30 90.32 92.31 100.00 100.00 100.00 100.00
2 61.51 82.02 50.38 45.54 98.86 98.00 97.45 96.20 77.30 97.46 98.95 99.21
3 84.04 78.66 61.95 35.92 97.04 99.54 98.74 100.00 86.25 93.50 99.54 100.00
4 46.43 72.87 53.26 15.31 98.86 99.46 99.39 96.89 95.94 96.81 98.85 98.42
5 88.82 90.16 84.71 3.57 98.47 98.22 92.54 100.00 96.00 98.69 98.70 99.23
6 76.72 82.61 78.08 67.87 100.00 99.83 99.65 99.49 97.27 100.00 99.49 100.00
7 0.00 83.33 68.42 100.00 100.00 100.00 100.00 95.65 100.00 100.00 86.96 100.00
8 83.49 87.16 88.55 83.78 96.46 99.48 80.08 100.00 100.00 98.70 99.74 100.00
9 0.00 100.00 40.00 11.02 76.19 100.00 0.00 100.00 62.50 100.00 100.00 100.00

10 70.89 83.61 69.40 27.07 99.74 99.48 88.93 100.00 84.39 99.87 98.46 99.48
11 58.51 75.16 69.49 60.60 98.77 99.19 97.57 99.90 92.64 99.69 99.74 99.49
12 59.38 66.74 62.13 23.95 98.34 98.13 91.52 97.90 92.46 92.74 91.30 98.34
13 82.23 92.53 86.70 84.38 100.00 99.39 94.58 100.00 90.30 96.91 97.02 100.00
14 87.39 89.78 91.76 75.08 99.90 99.80 100.00 99.90 100.00 99.40 99.90 99.80
15 86.30 72.00 64.127 53.17 94.12 98.72 100.00 99.68 97.60 92.92 95.00 100.00
16 98.36 100.00 100.00 98.44 98.67 97.33 94.37 94.87 100.00 91.14 98.53 98.67

OA (%) 70.21 89.91 70.95 50.88 98.58 99.07 95.56 99.07 90.36 97.86 98.61 99.51
AA (%) 53.06 66.77 62.39 52.65 96.87 96.53 86.25 98.60 82.22 93.47 94.85 99.70

Kappa ×
100 65.07 78.01 66.63 44.07 98.39 98.94 94.94 98.94 88.97 97.57 98.41 99.44

The bold font highlights which mechanic works best.

Table 6. Quantitative comparison on the Houston 2013 dataset.

No. SVM RF KNN GaussianNB HybridSN RSSAN MSRN MAFN DCRN DMCN MSDAN HFENet

1 81.98 98.49 97.74 93.97 95.88 98.52 99.80 99.70 98.88 99.78 99.00 99.40
2 98.85 98.40 98.44 98.31 98.57 99.80 100.00 99.11 97.84 94.80 99.90 99.50
3 96.68 99.81 98.37 91.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 98.53 98.00 99.40 98.81 99.69 99.60 99.50 99.80 95.51 98.12 99.50 99.90
5 88.51 95.07 92.42 71.57 100.00 100.00 100.00 99.80 99.80 99.90 100.00 100.00
6 100.00 99.17 100.00 35.89 100.00 100.00 100.00 100.00 97.65 85.81 100.00 100.00
7 68.66 88.87 89.39 54.52 96.41 97.37 99.70 99.10 94.51 97.92 98.82 99.51
8 84.53 92.23 88.06 79.41 97.64 98.70 100.00 97.85 98.90 96.47 98.03 99.70
9 59.65 80.72 79.22 43.03 96.23 96.52 97.46 99.19 96.44 99.68 99.19 100.00

10 58.38 85.59 84.59 0.00 99.09 97.48 99.90 97.98 100.00 93.25 99.90 99.29
11 59.17 80.72 83.40 35.92 100.00 97.23 100.00 98.40 100.00 98.31 99.20 99.60
12 63.07 76.86 79.79 24.31 99.49 97.47 99.39 96.54 99.39 98.00 99.29 99.90
13 100.00 87.74 93.62 17.54 100.00 99.70 86.78 98.88 100.00 100.00 98.93 99.72
14 78.57 96.50 98.56 68.72 100.00 99.13 100.00 100.00 100.00 100.00 98.84 100.00
15 99.08 99.62 99.43 99.79 99.81 100.00 98.32 97.24 95.83 100.00 100.00 100.00

OA (%) 77.90 90.23 90.50 61.21 98.55 98.53 99.11 98.80 98.19 97.60 99.33 99.73
AA (%) 77.15 89.17 88.87 63.67 98.39 98.38 99.08 98.58 97.95 97.31 99.23 99.62

Kappa ×
100 76.07 89.86 89.72 58.1595 98.43 98.41 99.04 98.70 98.04 97.41 99.28 99.70

The bold font highlights which mechanic works best.

By comparing the devised HFENet model with diversiform approaches, we can draw
the following conclusions:

(1) According to Tables 4–6, it is obvious that ML-based methods obtain inferior classifi-
cation results compared with DL-based methods. For example, for the UP dataset,
GaussianNB has the worst OA, AA, and Kappa values, which are 33.37%, 26.32%,
and 41.30% lower than those of HybridSN, respectively. For the IP dataset, SVM has
the second worst OA, AA, and Kappa values, which are 25.35%, 33.19%, and 29.87%
lower than those of MSRN, respectively. This is because ML-based methods only
utilize the spectral information and ignore fertile spatial information. Meanwhile,
they devilishly rely on hand-crafted features with poor generalization ability and
limited representation ability, which damage the classification accuracies. Due to the
hierarchical structure and power feature extraction ability, DL-based methods can
adaptively capture features and obtain good classification values.

(2) Table 4 provides the classification results for the UP dataset. This scenario contains
many smaller areas of the species and possesses rich spatial information; most of the
methods yield good classification results. Tables 5 and 6 provide the classification
results for the IP and Houston2013 datasets. In the early stages of growth, the crop
areas of the former have been imaged and induce strong mixing phenomena; the latter
has highly similar spectral characteristics between categories, which increases the
classification difficulty. Nevertheless, our proposed HFENet still achieves impressive
results on the three datasets. For example, for the Houston2013 dataset, HFENet
obtains 99.73% OA, 99.62% AA, and 99.70% Kappa, which are 2.13%, 2.31%, and
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2.29% higher than those of DMCN, respectively. For the UP dataset, HFENet obtains
99.96% OA, 99.94% AA, and 99.95% Kappa, which are 1.96%, 2.81%, and 2.60% higher
than those of MSDAN, respectively. For the IP dataset, HFENet obtains 99.51% OA,
99.70% AA, and 99.44% Kappa, which are 9.15%, 17.48%, and 10.47% higher than
those of DCRN, respectively. These sufficiently prove the superiority and stability of
our proposed HFENet.

(3) From the point of view of the attention mechanism, RSSAN devises a spectral–spatial
attention learning module to refine the learned features. MAFN uses a spatial attention
module and a band attention module to relieve the influence of noisy pixels and
redundant bands. Our constructed SAEB adaptively recalibrates spectral-wise and
spatial-wise feature responses to generate the purified spectral–spatial information.
In Tables 4–6, we can clearly see that our presented method obtains superb values for
three datasets. For example, for the UP dataset, HFENet obtains 99.96% OA, 99.94%
AA, and 99.95% Kappa, which are 0.43%, 0.71%, and 0.36% higher than those of
RSSAN, 0.98%, 0.75%, and 1.39% higher than those of MAFN, respectively. For the IP
dataset, HFENet obtains 99.51% OA, 99.70% AA, and 99.44% Kappa, which are 0.44%,
3.17%, and 0.5% higher than those of RSSAN, 0.44%, 1.1%, and 0.5% higher than those
of MAFN, respectively. This is because SAEB can effectively dispel the interference of
redundant bands and noises from local and global views.

(4) From the point of view of the multiscale strategy, MSRN devises a multiscale residual
block with mixed depthwise convolution to achieve multiscale feature learning. MS-
DAN designs three different scales modules to enhance feature reuse. Our proposed
HFEB can exploit spectral–spatial structure information of distinct types and scales,
which is composed of two parallel branches: the upper branch contains two HFEBs
with 2D convolutional operations with 3 × 3 size and 5 × 5 size, respectively; the
lower branch contains one HFEB with 2D convolutional operations with 7 × 7 size. In
Tables 4–6, the classification results indicate that HFENet is advantageous in extracting
multiscale features. For example, for the UP dataset, HFENet obtains 99.96% OA,
99.94% AA, and 99.95% Kappa, which are 1.02%, 1.73%, and 1.36% higher than those
of MSRN, and 1.96%, 2.81%, and 2.6% higher than those of MSDAN, respectively. This
is because our proposed HFEB exploits multiple HFRBs to obtain more discriminative
and representative spectral–spatial structure information instead of simple concate-
nation convolutional layers with different sizes. HybridSN, RSSAN, MAFN, DCRN,
and DMCN utilize the fixed-scale convolutional kernels to extract spectral–spatial
features. Although these methods obtain good classification performance, they lack
an exploration of the diversity of spectral–spatial features. Compared with the afore-
mentioned methods, our proposed HFENet uses multiple HFRBs with diverse sizes to
augment the multiplicity of spectral–spatial features and model the global long-range
dependencies of spectral–spatial features. For example, for the UP dataset, HFENet
obtains 99.96% OA, 99.94% AA, and 99.95% Kappa, which are 2.41%, 5.11%, and 3.19%
higher than those of DCRN, respectively. For the IP dataset, HFENet obtains 99.51%
OA, 99.70% AA, and 99.44% Kappa, which are 1.65%, 6.23%, and 1.87% higher than
those of DMCN, respectively.

(5) Figures 5–7 provide the ground-truth map and the visual classification result map
of each comparison method for the three datasets. By comparison, the visual classi-
fication result map of our proposed HFENet is closest to the ground truth and the
cleanest. Four ML-based methods are inclined to produce salt and pepper noises
on the visual classification result maps for three datasets. The visual classification
result maps of seven DL-based methods are relatively smooth but may result in the
misclassification of pixels at edges. Particularly, our proposed HFENet can effectively
avoid the oversmoothing of edges and achieve more precise classification with fine
details and more realistic features.
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3.3. Parameter Analysis
3.3.1. Varying Proportions of Training Samples

The classification performance of our proposed method is extremely affected by
the proportions of training samples. We randomly pick labeled samples in the grid of
{1%, 3%, 5%, 7%, 10%, 20%, 30%} as the training size, which aims to analyze the classifica-
tion performance under the varying proportions of training samples. The classification
results of three experimental datasets are provided in Figure 8. In Figure 8, for the three
datasets, it can be obviously observed that as the training size increases, the OA, AA, and
Kappa values gradually increase for the three datasets. When the training size is 20%,
the values of criteria metrics are the most impressive. As the training size outweighs
20%, the values of criteria metrics gradually decline. This is because although a large
number of training samples contribute to the training process of HFENet, it may introduce
more background information and noisy pixels, which weaken the effect of label pixels
and are adverse to the classification performance. In addition, we can also find that the
proportions of training samples have a great impact on the IP and Houston2013 datasets.
This is because, in the early stages of growth, the crop areas of the IP dataset have been
imaged and induced strong mixing phenomena, which increase the classification difficulty.
The Houston 2013 dataset has highly similar spectral characteristics between categories,
where only a small number of categories are labeled, and most of the samples are unlabeled.
The two datasets involve a relatively large number of labeled data for training to fulfill
decent classification accuracy. In comparison, the UP dataset contains a mass of labeled
samples and utilizes a small number of labeled samples as the training set to achieve good
classification accuracies. To make the proposed method generalized and obtain excellent
classification results, we set the appropriate proportion of training samples to 20% for three
datasets.
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3.3.2. Different Spatial Sizes of Input Image Patches

The too-small spatial size of the input image patch, due to the insufficient receptive field,
results in important information loss. The too-large spatial size of the input image patch
involves many noisy pixels and is persecuted for the interclass field. Therefore, we set the spa-
tial size of the input image patch in the grid of {5× 5, 7× 7, 9× 9, 11× 11, 13× 13, 15× 15}
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to analyze the classification performance under the different spatial sizes. The classification
results of three experimental datasets are shown in Figure 9. In Figure 9, in the UP dataset,
it can be readily found that the values of criteria metrics attained are unexceptionable when
the spatial size is 15× 15. The OA, AA, and Kappa values are optimal when the spatial size
is 7× 7 for the IP and Houston2013 datasets. The above results show that when the spatial
size is optimal, the input image patch contains less background information and noisy pixels,
and the label pixel can play an important role in the classification task. Hence, to achieve
splendid classification results, we set the definitive spatial size of the input image patch for
three datasets to 15× 15, 7× 7, and 7× 7, respectively.
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3.3.3. Diverse Numbers of Principal Components

HSI contains abundant spectral information from hundreds to thousands of narrow
bands, but these bands have a high correlation with each other and easily trigger the Hughe
phenomenon, which prejudices the classification performance. Therefore, before extracting
general spectral–spatial information, the PCA was performed on the raw HSI. We set the
principal component numbers in the grid of {5, 10, 20, 30, 40} to analyze the classification
performance under the diverse number of principal components. The classification results
of three experimental datasets are shown in Figure 10. In Figure 10, for the UP dataset, the
accuracies of OA, AA, and Kappa rise as the number of principal components increases; it
can be clearly seen that when the principal component number is 40, our proposed HFENet
achieves impressive results. For the IP dataset, except the number of principal compo-
nents is 10, the accuracies of OA, AA, and Kappa increase monotonically as the number of
principal components increases. This is because, compared with other conditions, when
the number of principal components is 10, these spectral bands have a high correlation
with each other and are adverse to the classification task. For the Houston2013 dataset, the
accuracies of OA, AA, and Kappa fluctuate significantly. When the principal component
number is 30, our proposed HFENet obtains competitive accuracies. These phenomena
indicate that the number of principal components has a great impact on the classification
performance for the Houston2013 dataset. Hence, to obtain the best classification perfor-
mance, we set the most suitable number of principal components for the three datasets to
40, 40, and 30, respectively.
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HFEB is built to capture the spectral–spatial structure information of distinct types,
scales, and branches. When the number of HFEBs is too small, obtained spectral–spatial
information is inadequate; when the number of HFEBs is too large, the number of pa-
rameters and model complexity exacerbate. Both of these situations do not contribute
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to the classification task. Hence, setting a pertinent number of HFEBs is crucial for our
developed method. The number of HFEBs is set in the grid of {2, 3, 4, 5, 6} to analyze the
classification performance under the varying numbers of HFEBs. The classification results
of three experimental datasets are shown in Figure 11. In Figure 11, for the UP and IP
datasets, it can be obviously observed that when the number of HFEBs is 2, our proposed
HFENet can sufficiently exploit spectral–spatial structure information of distinct types and
scales and obtains excellent classification performance. For the Houston2013 dataset, when
the number of HFEBs is 4, the values of criteria metrics are perfect. Hence, we set the most
appropriate HFEB numbers for three datasets to 2, 2, and 4, respectively.
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3.3.4. Different Numbers of Groups for SAEB

SAEB can adaptively recalibrate spatial-wise and spectral-wise responses to generate
the purified spectral–spatial information. The number of groups has a significant effect on
the classification results of the proposed method. When the number of groups is too small,
redundant information and interference pixels are inadequately filtered; when the number
of groups is too large, the number of parameters and model complexity exacerbate. Both
of these situations are not conducive to the classification task. Therefore, the number of
groups is set in the grid of {2, 4, 8, 16, 32} to analyze the classification performance under
the varying numbers of groups. The classification accuracy of three experimental datasets
is provided in Figure 12. In Figure 12, it can be readily found that for three datasets,
our proposed HFENet achieves the outstanding values of criteria metrics, as the number
of groups for SAEB is 8. Hence, we set the definitive numbers of groups for SAEB for
three datasets to 8, 8, and 8, respectively.
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Figure 12. Different numbers of groups for SAEB: 3, 3, and 6. Diverse channel ratios of spectral
enhancement branch.

The spectral enhancement branch can emphasize the meaningful bands and fade out
the irrelevant ones, which can model the interdependencies between features and enhance
the expressive ability of the model. The channel ratio r decides the number of neurons in
the first fully connected layer, which is utilized to reduce computation. We set the channel
ratios in the grid of {1, 2, 4, 8, 16, 32} to analyze the classification performance under the
diverse channel ratios. The classification results of three experimental datasets are shown
in Figure 13. In Figure 13, it can be clearly seen that, for the UP dataset, when the r is 4, the
classification performance is the worst; when the r is 2, the accuracies of AA, OA, and Kappa
are best. For the IP dataset, when the r is 1 or 8, the classification ability does not manifest
well; when the r is 2, the classification accuracies are excellent. For the Houston2013 dataset,
when the r is 2 or 16, the classification perform well; the classification accuracies of other
conditions are inferior. In addition, we can also find that the accuracies of OA, AA, and
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Kappa do not increase monotonically as r increases but fluctuate significantly for the IP and
Houston2013 datasets. A possible reason for this is that the spectral enhancement branch
overfits the feature spectral-wise correlations. Compared with the above two datasets, the
accuracies of OA, AA, and Kappa slightly degrade as r increases. This is because that
spectral enhancement branch underfits the feature spectral-wise correlations. Therefore, to
obtain the outstanding classification results, the most suitable channel ratios are 2, 2, and
16 for three datasets, respectively.
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3.3.5. Varying L2 Regularization Parameters

L2 regularization effectively avoids the overfitting problem and was applied to
our proposed method. We set the spatial size of the input image patch in the grid of
{0, 0.0005, 0.002, 0.01, 0.02, 0.03, 0.1, 1} to analyze the classification performance under the
varying L2 regularization parameters. The classification results of the three experimen-
tal datasets are shown in Figure 14. In Figure 14, it can be obviously observed that
the most proper L2 regularization parameters are 0.002, 0.002, and 0.03 for the three
datasets, respectively.
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3.4. Ablation Study
3.4.1. Efficiency Analysis of HFRB

HFRB was constructed to strengthen internal and external interactions of different
channels and layers while enriching the local dependencies of spectral–spatial features.
HFRB is composed of SRU and CRU. The former is utilized to boost the internal relations
of different channels; the latter is designed to enhance the robustness of spectral–spatial
features by learning the external correlations of all the channels. To sufficiently verify
the efficiency of HFRB, comparative experiments were performed under three conditions,
i.e., case 1 (only using SRU), case 2 (only using CRU), and case 3 (namely, our presented
method, using SRU and CRU). Figure 15 provides the classification results of the three
experimental datasets.
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According to Figure 15, it can be obviously observed that for the three datasets, case 3
obtains competitive values of the criteria metric. Regarding the UP dataset, case 2 achieves
the worst values of the criteria metric, which are 9.19%, 22.26%, and 12.57% lower than
those of case 3. For the Houston2013 dataset, the classification performance manifests a
similar behavior with respect to the results obtained for the UP dataset. Regarding the IP
dataset, case 1 has terrible values in terms of the criteria metric, which are 0.8%, 2.3%, and
0.91% lower than those of case 3. These results sufficiently demonstrate that SRU and CRU
complement each other. Only when the SRU and CRU are utilized together can they fully
strengthen internal and external interactions of different channels and layers and give play
to the effect of 1 + 1 > 2.

3.4.2. Efficiency Analysis of HFEB

HFEB utilizes multiple promising functional HFRBs to capture spectral–spatial struc-
ture information of distinct types and scales, where each HFRB exploits 2D convolutional
operations with different sizes. To sufficiently verify the efficiency of HFEB, comparative
experiments are performed under three conditions, i.e., case 1 (only using HFEB with
2D convolutional operations with 3 × 3 size), case 2 (using HFEBs with 2D convolutional
operations with 3 × 3 and 5 × 5 sizes), and case 3 (namely, our presented method, using
HFEBs with 2D convolutional operations with 3 × 3, 5 × 5, and 7 × 7 sizes). Figure 16
provides the classification results of the three experimental datasets.
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As shown in Figure 16, it can be readily found that values of the criteria metric of case
1 are the lowest for three datasets. Regarding the UP dataset, case 1 obtains 99.03% OA,
98.21% AA, and 98.71% Kappa, which are 0.96%, 1.73%, and 1.24% lower than those of
case 2, respectively. Regarding the IP dataset, case 1 obtains 97.10% OA, 92.40% AA, and
96.69% Kappa, which are, respectively, 2.41%, 7.3%, and 2.75% lower than those of case 2.
Regarding the Houston2013 dataset, case 1 achieves 49.21% OA, 39.69% AA, and 44.63%
Kappa, which are, respectively, 50.52%, 59.93%, and 55.07% lower than those of case 2.
These numerical values effectively expound that utilizing HFEBs with 2D convolutional
operations with 5 × 5 size is important. By comparison, the values of the criteria metric of
case 3 are clearly better than the other two conditions. For example, for the houston2013
dataset, case 3 has 99.73% OA, 99.62% AA, and 99.70% Kappa, which are 36.03%, 47.93%,
and 39.26% higher than those of case 2, respectively. These confirm that our constructed
HFEB is successful and plays an important role.

3.4.3. Efficiency Analysis of HFENet Model

To analyze and demonstrate the impact of each component, comparative experiments
were performed under three conditions, i.e., network 1 (only using HFEB), network 2
(only using SAEB), and network 3 (namely, our presented method, using HFEB and SAEB).
Figure 17 provides the classification results of the three experimental datasets.
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As shown in Figure 17, for the UP dataset, it can be clearly seen that the classification
performance of network 2 is the worst. For the IP and UP datasets, the classification
performance manifests a similar behavior; the values of the criteria metric of network 1
are the most terrible. This is because, compared with network 2, network 1 needs more
parameters for the training process. The UP dataset has a relatively large number of labeled
samples; although network 1 suffers from noisy pixels and redundant bands, it can extract
spectral–spatial information from different types and scales and obtain good classification.
The other two datasets contain a relatively small number of labeled samples; compared
with network 1, the model architecture of network 2 is relatively not complicated and
obtains good classification. Network 1 may lead to the overfitting problem. Among the
three conditions, network 3 makes a big impression and obtains excellent classification
results. For example, for the UP dataset, network 3 obtains 99.96% OA, 99.94% AA, and
99.95% Kappa, which are 1.73%, 3%, and 2.29% higher than those of network 1, respectively.
For the IP and Houston2013 datasets, the obtained results exhibit very similar behavior
with respect to the results obtained for the UP dataset. These results sufficiently prove that
our designed SAEB is valid and effectively fades out the redundant information and noisy
pixels, further generating the purified spectral–spatial information. Moreover, compared
with network 2, network 3 achieves values of the criteria metric 4.29%, 15.97%, and 5.71%
higher than those of network 2 for the UP dataset. The obtained results for the other
two datasets have very similar behavior with respect to the results obtained for the UP
dataset. These results abundantly verify that our devised HFEB is effective and can extract
more discriminative and representative spectral–spatial structure information of distinct
types, scales, and branches while modeling the global long-range dependencies of spectral–
spatial features. To sum up, the constructed HFEB and SAEB of the proposed methods
considerably contribute to the classification performance up to a point.

4. Conclusions

To remedy gradient disappearance and fully exploit spectral–spatial information, this
article presents an innovative hybrid-scale feature enhancement network (HFENet) for HSI
classification. Different from the classification methods focusing on utilizing the fixed-scale
convolutional kernels or multiple available, receptive fields with varying scales, HFENet
uses a hybrid-scale feature extraction block (HFEB) to model the global long-range spectral–
spatial dependencies of different scales, types, and branches, enriching the diversity of
informative features. In addition, to generate the purified spectral–spatial information,
HFENet adopts a shuffle attention enhancement block (SAEB) to adaptively recalibrate
spectral-wise and spatial-wise responses, effectively filtering redundant information and
noisy pixels and is conducive to enhancing the classification performance. From an experi-
mental point of view, our proposed HFENet possesses effectiveness and superiority and
exhibits state-of-the-art performance compared with several advanced methods. In the
future, we will be devoted to utilizing a neural search strategy to adaptively design the
model architecture and apply the unsupervised, semi-supervised, or training mechanisms
to our proposed method. Meanwhile, we will try to apply the proposed classification
method to some computer vision tasks, such as target recognition, medical diagnosis, and
urban planning.
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