
Citation: Li, H.; Liu, J.; Xiao, M.;

Bao, X. Investigating the Spatial,

Proximity, and Multiscale Effects of

Influencing Factors in the Snowmelt

Process in the Manas River Basin

Using a Novel Zonal Spatial Panel

Model. Remote Sens. 2024, 16, 26.

https://doi.org/10.3390/rs16010026

Academic Editor: Alexander

Marshak

Received: 23 October 2023

Revised: 2 December 2023

Accepted: 15 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Investigating the Spatial, Proximity, and Multiscale Effects of
Influencing Factors in the Snowmelt Process in the Manas River
Basin Using a Novel Zonal Spatial Panel Model
Haixing Li 1,2,*, Jinrong Liu 1, Mengge Xiao 1 and Xiaolong Bao 1

1 College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China;
liujinrong@njtech.edu.cn (J.L.); xxx22@njtech.edu.cn (M.X.); little_long@outlook.com (X.B.)

2 Key Laboratory of Emergency Satellite Engineering and Application, Ministry of Emergency Management,
Beijing 100124, China

* Correspondence: lihaixing@njtech.edu.cn; Tel.: +86-152-5186-0335

Abstract: It is essential to investigate the influences of environmental elements on snow cover to
understand the mechanism of the snowmelt process. These elements, as influencing factors, have
spatial heterogeneity, which results in significant differences and uncertainties in the extent and
range of their effects at different scales. However, little research has been conducted on the spatial
interaction and mechanisms of these factors at multiple scales. This study selected the Manas River
basin in the Tianshan Mountains as the study area. The study period is 2015–2020. The snow
cover status index is calculated based on available Landsat8-OLS/TIRS data; influencing factors
are collected from multiple datasets. Their relationships are explored using a novel zonal spatial
panel model, fully considering the spatial, proximity, and scale effects. The findings are as follows:
(1) There is a robust spatial interaction and proximity effect between snowmelt and various factors,
and such effects display distinct spatial heterogeneity. The elevation (ELE), slope (SLP), land surface
temperature (LST), and normalized digital vegetation index (NDVI) showed significant overall
dominant effects on the snow melting process. The influencing factors with apparent proximity
effects are LST, ELE, SLP, NDVI, and air temperature (TEMP), and their influence ranges are different.
(2) The relative importance and significance rank of dominant influencing factors vary under different
partition schemes and scales. As the scale decreases, the significance of terrain- and vegetation-related
factors increases, whereas the significance of temperature- and elevation-related factors decreases,
and the number of dominant factors also decreases. (3) The influencing factors represent distinct
characteristics among each zone at the optimally partitioned scale we defined. The overall influencing
pattern demonstrates a characteristic of being globally dictated by elevation and temperature, with
local terrain factors, vegetation, and wind speed modifying this pattern. Our study provides practical
data support and a theoretical basis for deepening our understanding of the influence mechanism of
the snow melting process.

Keywords: spatial and proximity effects; multiscale; influencing factors of snow melting; zonal
spatial panel model; multisource remote sensing data

1. Introduction

Snow cover, a critical component of the cryosphere and hydrological cycle, is important
for providing valuable surface water resources, both globally and regionally [1–4]. Envi-
ronmental factors, including elevation, temperature, radiation, humidity, wind speed, and
others, have variable impacts on snow melting across diverse spatiotemporal scales [5–7].
It is crucial to explore these impact factors to understand the snowmelt mechanism [8].
Additionally, this helps to gauge the influence of climate change on snowmelt events,
predict the probability of future snowmelt events, and assess their potential impacts on
water resources and natural hazards.
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Numerous studies have shown that the spatial variability of snowmelt influencing
factors occurs across a range of scales, from the scale of a bond between snow crystals
(10−4 m) to the scale of a basin and mountain range (105 m) [9]. These factors are typi-
cally classified into macroscale factors, such as climate change and differences in latitude,
mesoscale factors, such as relief (elevation, slope, and aspect), meteorology (temperature,
radiation, vegetation, and precipitation), and microscale factors, such as contamination and
gravity [10,11].

The proximity effect of influencing factors in the process of snow melting has been
confirmed by many studies. At the microscopic level, the proximity effect can be understood
as path interference caused by the reflectivity of different surface coverings, and snow
is particularly susceptible to the influence of neighboring surface coverings due to its
high reflectivity [12]. Common neighboring objects in snow regions, such as water, sparse
vegetation, dry and moist soil, coal, and carbon, were discovered to affect the reflectance of
snowpack [13]. On a larger spatial scale, the proximity effect of influence factors is reflected
in the changes in snow cover status or its changing rate due to topography, vegetation, and
water systems in the vicinity [14]. For example, at the edges of different forests, significant
changes in snow depth have been observed due to the shading effect of forests, resulting in
differences in snow depth between southern and northern forests and snow edge areas [15].
Studies have shown that the proximity effect of forests accelerates the rate of melting
of nearby snow. The duration of snow cover in forests and nearby areas is 40% shorter
than that in areas distant from the forests [16]. As the temperature rises, the proximity
effect becomes more pronounced. However, the occurrence of precipitation can reduce
the proximity effect of snow on forests [17]. Under specific terrain conditions, wind can
change the area of snowfall deposition, increase snow sublimation, or alter the crystal state
of snow accumulation, thereby affecting snow melting [18]. This can also be regarded as
the near-neighbor effect of terrain and wind speed factors on snow accumulation [19].

As a result, the heterogeneous nature and neighbor effect characteristic of these influ-
encing factors result in diversity in the extent, range, and pattern of the dominant factors for
snow melting across different scales, so that the leading influencing factors of snow cover
change show significant differences in different regions and scales. For example, it was
determined that snowpacks are very sensitive to temperature increases, but the extent of
temperature dominance varied among mountain ranges [20]. Elevation is often considered
the primary factor impacting snow cover as it alters temperature, humidity, and wind
speed, which in turn influences snow distribution and stability. However, frequent rain
can lead to unstable snow cover, making precipitation a key factor influencing local snow
accumulation and melting in certain regions [21]. Wind-driven snow redistribution (snow
drift) further increases the uncertainty of the distribution in the snowpack at different
scales [22]. Whether snow cover stability is related to the variability of local surface charac-
teristics (such as topography, vegetation, or ground characteristics), to local variability in
precipitation patterns or wind redistribution (which can influence accumulation as well as
melting), or to the surrounding regional climate continues to be debated [23,24].

Current research efforts predominantly focus on probing the mechanistic underpin-
nings of specific factors impacting snow cover variations at a fixed spatial scale rather
than considering multiple factors across multiple scales. Linkage of the preceding winter
midlatitude Eurasian atmospheric circulation with the spring northern East Asian snow
cover was investigated [25]. Notable correlations were found to exist between the North
Atlantic Sea surface temperature and late autumn snow cover anomalies over the central
Tibetan Plateau [26]. In the high mountain areas of Asia, it was found that the air tem-
perature during the period of snow accumulation is the primary factor influencing the
interannual variation of the snow onset date, whereas air temperature during the period
of snowmelt is the primary factor influencing the interannual variation of the snow end
date [27]. The relationships between snow depth and factors such as average temperature,
incoming shortwave radiation, precipitation, and light-absorbing particles (LAP) in snow
were analyzed using linear relationships. It was found that, compared to the effects of
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temperature, radiation, and precipitation, the influence of LAP on snow depth requires a
certain concentration level to achieve a comparable impact [28].

Moreover, existing studies often use the ordinary least squares (OLS) model to analyze
the factors influencing snow cover variation [29–31]. This global analysis model can explore
the overall trend of factors but cannot accurately capture the spatial information of each
influence factor. There are limited in-depth studies on the spatial heterogeneity of impact
factors. Although some studies have attempted to explain the spatial heterogeneity of
snow cover distribution by conducting experiments in different regions, they have only
demonstrated the overall differences of factors between regions rather than accurately
exploring the spatial effects of impact factors [32]. Some studies have utilized multiple
linear regression or spatial autoregressive models to analyze the correlation between various
impact factors and snow cover [33–36]. Although the spatial autoregressive model considers
spatial effects, it fails to thoroughly examine the role played by spatially heterogeneous
associations between independent and dependent variables.

The spatial panel model [37] can use contemporaneous values of the dependent
variable or disturbance terms at adjacent locations as explanatory variables to assess the
spatial correlation [38] and capture unobservable heterogeneity between study agents and
over time because this heterogeneity cannot be detected either with time series studies or
with cross-sections [39]. Compared to existing research that mainly utilizes linear regression
to analyze the correlation between multiple influencing factors and snow cover parameters,
there is a lack of consideration for spatial autocorrelation, and no research has incorporated
neighborhood effects into the measurement of influencing factors. Spatial panel models
can help us understand how multiple influencing factors act on snow melting processes
within spatial autocorrelation and neighboring regions and allow for the quantification of
the degree and scope of their impact. By utilizing spatial panel modeling at multiple scales,
we can determine the patterns of these effects across different scales.

Different types of panel models have been employed to assess the significance of key
influencing factors in local areas, as well as the proximity effect of various influencing
factors. For instance, the factors contributing to haze formation were characterized by
using the classical spatial panel model [40]. The spatial autoregressive threshold panel
model was applied to study the influencing factors of air pollutants such as PM2.5 particles
in China [41]. The impact of weather factors on wheat yields was estimated by using the
panel model approach [42]. The spatial lag panel model was used to explore soil erosion
responses to ecological restoration programs and landscape drivers [43]. These existing
spatial panel models only consider spatial effects at a fixed proximity distance or a fixed
scale. Furthermore, to the best of our knowledge, no approach has been established to
discriminate and identify the characteristics of the above effects in snow melting research.

The main objective of this paper is to investigate the characteristics of the influencing
factors in the snowmelt process, considering the multiscale effect together with their
spatial autocorrelation and proximity effects. We established an approach using a newly
designed zonal spatial panel model and a multiscale partitioning scheme to elucidate such
complicated effects. Using the approach, we aimed to determine which factors exhibit
significant spatial autocorrelation and neighboring effects on the process of snowmelt
and how these effects impact snowmelt. At continuously varying scales, how do the
significance levels of each factor change and what are the patterns? Additionally, taking
the study area as an example, is there statistically optimal partitioning to facilitate the
delineation of influencing factors for the snowmelt process in each region? These results
provide practical data support and a theoretical basis for deepening our understanding
of the influence mechanism of the snow melting process. Our results contribute to our
understanding of the driving mechanisms behind snow melting and provide direction for
improved watershed management.



Remote Sens. 2024, 16, 26 4 of 27

2. Study Area and Data Integration
2.1. Study Area

The Manas River Basin (MRB) watershed is a subbasin of the northern Tianshan
mountains in the Xinjiang Uygur autonomous regions (Figure 1). The Manas River Basin
and its surrounding areas were selected as the research area, as shown in the rectangular
area in Figure 1b. The areal extent lies between 84◦50′E to 86◦20′E longitude and 43◦05′N
to 44◦30′N latitude, covering an area of about 5156 km2. The terrain is low in the north
and high in the south, and the elevation range is from 576 to 5064 m. Dominated by
a typical temperate continental arid and semiarid climate, this area is characterized by
extreme summer and winter temperatures [44]. The snow cover is mainly distributed in
the northwestern and northern MRB. The snow cover percentage increases with elevation,
from 95% in winter to 15% in summer. The snow began to accumulate in early November,
and the depth reached its peak in mid-February of the following year (the snow depth
in the middle of the mountains was more than 20 cm, and the snow depth in the high
mountains was more than 50 cm). After that, the snow depth decreased rapidly, and the
snow cover disappeared in early May. The vegetation cover is high, and the subalpine
meadow zone and the mountain forest zone are distributed vertically [44]. The primary
water sources for the MRB originate from snow meltwater and precipitation within the
central Tianshan Mountains. The absolute maximum and minimum temperatures are 40 ◦C
and −38 ◦C, respectively, with an annual average temperature of 6.2–7.8 ◦C. The yearly
accumulated temperature over 10 ◦C is 2400–3500 ◦C.
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Figure 1. Study area (b) located around Manas River Basin (MRB) in the Xinjiang Uygur Autonomous
Region in China (a).

2.2. Data Sources

Multisource remote sensing datasets were collected to extract the snow cover status
and influencing factors, which were then used as independent and dependent variables in
the spatial panel models.
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As shown in Table 1, descriptions of the detailed information and data sources of
the dataset are listed. For the snow cover information, we collected the cloud-free optical
reflectance data of Landsat 8-OLS/TIRS from February to May in the years 2015–2020.
The influencing factors dataset comprised the following: (i) meteorological variables, in-
cluding land surface temperature (LST), air temperature (TEMP), solar radiation (SRAD),
vegetation data (NDVI), wind speed (WSP), and precipitation (PRCP). LST was inversed
from Landsat 8-TIRS data and atmospheric water vapor data from MOD02HKM. The
vegetation variable was calculated with the normalized difference vegetation index from
Landsat 8 data. The other meteorological variables were extracted from the China meteoro-
logical forcing dataset (CMFD); (ii) terrain parameters, such as elevation (ELE), slope (SLP),
aspect (ASP), and terrain roughness (ROUG), were calculated and resampled using digital
elevation model data of GDEM version 2 with a 30 m resolution. Among them, the terrain
roughness characterizes the variability or irregularity in elevation within a spatial unit;
(iii) hydrological parameters, including the vector distribution map of lakes and rivers,
were obtained from the distribution dataset of 1:250,000 lakes and rivers in Xinjiang, which
was extracted from Landsat-TM data. This hydrological parameter of the river network
was calculated to extract the distance from the river (RDIS).

Table 1. The data source of snow cover metrics and influence factors.

Data Type Data Name Description Abbreviations Spatio-Temporal
Resolution

Data Source Periods

Reflectance
data L-1

Landsat8
OLI/TIRS

Shady eliminated
snow index

SESI 30 m/16 days https://earthexplorer.
usgs.gov/

Accessed on 15
dates as 10 and 26
February 2015, 3
and 19 March
2015, 12 and 24
April 2015, 23
March 2017, 24
April 2017, 10
May 2017, 10 and
13 March 2018, 14
April 2019, 13 and
15 March 2020,
and 2 May 2020.

Meteorological
variables

MOD02HKM Land surface
temperature

LST 500 m/Daily https://modsi.gsfc.
nasa.gov/

China
meteorological
forcing dataset

Ai temperature TEMP

5 km/Daily
https://data.tpdc.ac.
cn/zh-hans/data/8028
b944-daaa-4511-8769-
965612652c49

Wind speed WSP
Solar radiation SRAD
Precipitation PRCP

Terrain
parameters GDEM v2

Elevation ELE

30 m/-

https:
//www.gscloud.cn/
sources/accessdata/42
1?pid=302

Slope SLP
Aspect ASP
Roughness ROUG

Hydrological
parameters

Distribution data
of lakes and
rivers in Xinjiang

Distance from the
river RDIS 1:250,000 Vector

data/Annual

http://www.ncdc.ac.
cn/portal/metadata/
d9c87a38-cdec-43f6-9c8
c-f6ce82a8bce4

2.3. Integration of the Influencing Factors

Figure 2 is an integrated map of the eleven multisource influencing factors using a
specific date as an example. Table 1 lists the selected influencing factors along with their
abbreviations and descriptions. Considering the different sources and spatial resolutions
of CMFD, we applied the downscaling model and resampling techniques to produce a
consistent dataset with the Landsat instruments for further applications.

Specifically, given the scarcity of meteorological station data in the study area, we
employed a random forest downscaling algorithm to scale down the 5 km CMFD data to
500 m using data from meteorological stations, the 500 m resolution DEM, NDVI, latitude,
and surface temperature obtained from Xinjiang, China. Subsequently, the aforementioned
meteorological variables and parameters were resampled to 30 m. Furthermore, compared
with the daily precipitation rate, the cumulative effect of multiday precipitation on the snow
melting process is more prominent. The cumulative precipitation is calculated by adding
the daily precipitation between two consecutive periods. In this study, we used multiday
cumulative PRCP instead of daily PRCP to comprehensively and accurately measure the
effect of rainfall on snow cover change.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://modsi.gsfc.nasa.gov/
https://modsi.gsfc.nasa.gov/
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49
https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49
https://www.gscloud.cn/sources/accessdata/421?pid=302
https://www.gscloud.cn/sources/accessdata/421?pid=302
https://www.gscloud.cn/sources/accessdata/421?pid=302
https://www.gscloud.cn/sources/accessdata/421?pid=302
http://www.ncdc.ac.cn/portal/metadata/d9c87a38-cdec-43f6-9c8c-f6ce82a8bce4
http://www.ncdc.ac.cn/portal/metadata/d9c87a38-cdec-43f6-9c8c-f6ce82a8bce4
http://www.ncdc.ac.cn/portal/metadata/d9c87a38-cdec-43f6-9c8c-f6ce82a8bce4
http://www.ncdc.ac.cn/portal/metadata/d9c87a38-cdec-43f6-9c8c-f6ce82a8bce4
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Figure 2. Map indicating the distribution of multisource influencing factors: (a) elevation (ELE);
(b) aspect (ASP); (c) slope (SLP); (d) terrain roughness (ROUG); (e) land surface temperature (LST);
(f) air temperature (TEMP); (g) precipitation (PRCP); (h) solar radiation (SRAD); (i) distance from
river (RDIS); (j) wind speed (WSP); (k) normalized difference vegetation index (NDVI).

3. Methodologies
3.1. Overall Methodology

For data preparation, we first applied an algorithm called the shady eliminated snow
index (SESI), which we established in our previous work [45]. This algorithm can effectively
reflect changes in both the area covered by snow and the status of snow cover, distinguish-
ing between new snow and old snow. Based on this algorithm, we used cloud-free Landsat
8-OLS/TIRS optical remote sensing data to extract multiple periods of snow cover status
indices, which were then used as dependent variables in the “snow-factor” spatial panel
model. We also included multiple influencing factors as independent variables in the
spatial panel model.

An approach was established as follows. First, to distinguish the spatial pattern of
snow influence factors, three spatial panel models were applied to analyze the correlation
between multiple impact factors and SESIs. The fitting results under different panel
models and neighboring spaces were compared to determine the influence pattern of the
factors. Subsequently, the panel model with the optimal goodness of fit was selected, and
impact factor assessments were conducted continuously on the continuum scale. Variation
characteristics of key influencing factors were analyzed across different scales. Finally, we
constructed an optimal spatial scale definition method and quantitatively measured the
key influencing factors within the subbasin.
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3.2. Snow Cover Index Calculations

The variation in the snow cover status is manifested not only through changes in its
range but also through changes in its condition on the surface of the snowpack. These
latter changes are particularly significant during the early stages of the melting period.
Therefore, to comprehensively extract the snow cover status, we employed the concept
of snow aging from our previous study [45]. Previous research has shown that the aging
process of snow is typically observed through an increase in grain size under microscopic
examination. The snow grain size index (SGI) has been widely used to differentiate between
snow and non-snow pixels and indicates the extent of grain size increase using green and
shortwave infrared bands [46]. The principle behind using the SGI to assess the age of
snow is that within the wavelength range from 350 to 1050 nm, as the grain size increases,
the reflectance typically demonstrates a decreasing trend. By normalizing the reflectance
in the green and shortwave infrared bands, we can establish a distribution of SGI values
that reflect changes in the size of snow grains. The index introduced in this study is a
shadow-eliminated snow index (SESI) that can minimize misidentification of snow cover
status caused by variations in incident angle and mountainous terrain. By incorporating
the shadow-adjusted index and SGI, we can use optical remote sensing data to represent
different states of snow, such as new snow, melting snow, and old snow that has melted
away. The higher the index value, the newer the snow state, i.e., the state where the melting
has not yet begun. Conversely, the lower the index value, the older the snow state, i.e., the
snow is in the tail end of melting.

To calculate the SESI, the specific steps were as follows: The optical remote sens-
ing image was preprocessed sequentially through sensor calibration, orthorectification,
atmospheric FLAASH, and terrain correction of SCS + C. The optimization effect of pre-
processing on the reflectivity of shadow areas is evaluated by analyzing the correlation
between the pixel value of the remote sensing image and the cosine value of the sun’s
effective incidence angle. The calculation formula for the SESI is as follows:

SESI = SGI + c × Rmax − R
R

(1)

SGI is the value that normalizes the reflectance in the green and shortwave infrared
bands [46], R represents the reflectance of the red band, Rmax represents the maximum
reflectance of the red band, and c is the shadow regulator. The optimum matching algorithm
is used to determine the value of shadow adjusting factor c. First, select the terrain effect
prominent area, the initial value of a given c equals 0 and 0.001 as a step for circulation,
until the shadow area and highlight areas of snow index value equal or similar (the general
difference is less than 0.01) end loop adjustment factor c value.

3.3. Spatial Panel Regression (SPR) Modelling and Evaluation

The spatial panel regression model is a classic model in the field of spatial economics
that can reflect the interactive effects and spatial spillover effects between geographical
units [47,48]. The spatial panels refer to georeferenced point data over time or to spatial
units such as counties and regions. The definition of spillover effects is that changes in one
region will have an impact on other regions, and the dependence structure between different
geographical units is related to location and distance to some extent [49]. We believe that
the spillover effect in spatial interaction is very consistent with the characteristics of the
snow melting process, i.e., there is an interaction between the snow state of one region and
that of neighboring regions. Therefore, it is of great significance to test whether there is a
statistically significant spatial spillover effect between snow state and influencing factors
and quantify the scale and spatial scope of these spillover effects.

The spatial lag model (SLM), spatial error model (SEM), and spatial Durbin model
(SDM) are representative models in the spatial panel regression model category. Among
them, the SLM model considers the spatial spillover effect of the dependent variable (i.e.,
the influencing factors). The SEM discovers the effects of the omitted variables on the
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observation of the dependent variables, which contains a spatial error term. The SDM takes
into account the spatial correlation between snow cover and adjacent areas, the spatial
linear correlation between snow cover and influencing factors, and the correlation between
snow cover and influencing factors in adjacent areas [50]. All of these relationships also
consider spatial lag and error effects.

Considering the spatial autocorrelation and proximity effect of the snow melting pro-
cess, the influence mechanism was estimated using these three candidate panel models [51].
Among them, the optimal spatial panel model was selected based on the fitting effect within
these candidate models for further analysis of the multiscale effects.

Specifically, the SLM hypothesizes that the adjacent snow cover status may partially
influence the snow cover of a specific location using the following formula:

Yit = ρ ∑N
i=1 WijYjt + βXit + µi + εit (2)

where Yit is the SESI in region i at time t (i = 1, 2, . . ., N; t = 1, 2, . . ., t) and Wij is the spatial
weighting matrix. Regarding the geographical effects of snow melting, the inverse distance
matrix and queen neighborhood matrix (Figure A1) were adopted as the spatial weighting
matrix (please refer to Appendix A for details). ρ represents the spatial autoregressive
coefficient, Xit is the independent variable in region i at time t, β denotes a vector of
coefficients of Xit, and εit indicates the error vector.

The SEM considers the interaction effects of snow cover from both local and adjacent
regions caused by omitted variables using the following formulas:

Yit = βXit + µi + φit (3)

φit = λ ∑N
j=1 Wij φit + εit (4)

where φit is the spatially autocorrelated error term, and λ indicates the spatial autocorrela-
tion coefficient of the error term.

The SDM [13] considers the spatially lagged effects of both the influencing factors and
the SESI using the following formula:

Yit = ρ ∑N
i=1 WijYjt + βXit + γ ∑N

j=1 WijXjt + µi + εit (5)

where γ is the spatially autocorrelated coefficient of the independent variable, and the
other variables are the same as those in the formulae mentioned above.

In this study, the dependent variable SESI has a significant spatiotemporal aggre-
gation feature, which violates the assumptions of parameter estimation of the panel
data model. The maximum likelihood estimation method is used to estimate the model
parameters [52–54]. The classical Hausman test is used to determine whether the spatial
panel data model is a fixed-effects model or a random-effects model.

The statistical testing criteria, such as the sum of squared errors, R-squared, the
maximum likelihood value, Akaike’s information criterion (AIC), and the Schwarz criterion
(S.C.), are jointly used to evaluate these panel autoregression models. The general forms of
AIC and S.C. are as follows:

AIC = −2L/T + 2K/T (6)

S.C. = −2L/T + Klog(T)/T (7)

where K is the number of variables to be estimated, L is the likelihood function value, and
T represents the number of observations.

The results of the coefficients and the statistical criteria of the spatial panel regression
model are used to analyze the differences in the impact of various factors in varied adjacent
intervals and to explore the influencing mechanism. The assessment was conducted by
analyzing a data panel covering multiple factors and extracting the SESIs over five years.
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3.4. Multiscale Partitioning Scheme and Zonal Spatial Panel Model

We selected two partition schemes to divide the study area into zones of different
scales. The first partition scheme involves dividing the study area into multiscale sub-
catchments using the hydrological analysis tools in ArcGIS. The partition zones were
extracted by filling depressions in a digital elevation model (DEM) surface raster, creating
a raster of routing, simulating runoff, and calculating river network density. By referring to
the small watershed division and coding specification [55], we selected threshold values of
90,000, 70,000, 50,000, 40,000, and 30,000, respectively, for river network density calculation.
These threshold values correspond to the number of sub-catchments of 10, 18, 25, 36, and
50, respectively. The study area is divided on a watershed scale, considering that snow
cover is an important component of the world’s water towers, and the supply and demand
of water resources are interconnected on a watershed scale, with the watershed being
the foundation of the water tower unit [56]. Another partition scheme divides the entire
study area into grid squares, each representing a subarea. Using the fishnet creation tool
in ArcGIS software, square arrays of 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7 were created
based on the image of the study area. Figure 3a–j demonstrate the distribution of multiscale
catchments and gridded partitions.
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Figure 3. The watershed-based (a–e) and gridding-based (f–j) partition schemes in different scales.

Further considering the multiscale effects, a separate panel model (the optimal one
selected in the previous section) is applied pixel by pixel on every zone of a single scale.
All panel model simulation results of each pixel in the sub-watershed were averaged to
represent the characteristics of the impact factors in the subarea. We refer to the set of all
models in this scale as the zonal spatial panel model. The overall fitting effect of a zonal
spatial panel model is the average of all its sub-models. The significance of each influencing
factor is calculated in the same manner. The characteristics of the influencing factors at
different scales can be extracted from the zonal model for the corresponding scale, which is
used to analyze the influence mechanism under continuous multiscales.

3.5. Determination and Evaluation of Optimal Partition Zone

Affected by multiple influencing factors, the snow melting process exhibits distinct
characteristics within scale ranges. It is crucial to investigate the existence of an optimal
partition zone and explain the snow melting process in this subregion through several
key influencing factors. This so-called optimal partition zone refers to the same or similar
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values of SESI or the relationships of influencing factors in a specific area or the same or
similar spatial phenomena.

An alternative empirical evaluation method proposed by Gao [57] was used to deter-
mine and evaluate the optimal partition zone across scales. The core idea of this empirical
evaluation method is to construct a prediction rate curve to examine the comprehensive
performance of the models. Samples with prediction errors falling below a specific thresh-
old are defined as “well-predicted” samples. The prediction error (P.E.) is the difference
between the estimated and observed values. We can evaluate models using the ratio of the
well-predicted samples (RWPS) to the P.E., which is referred to as the “prediction rate”.
Then, plot the addictive rate of n samples against the sorted P.E. The prediction rate curve
of the model is obtained by joining those points. The RWPS can be indicated by the vertical
axis, with P.E. being the horizontal axis. The area between the prediction rate curve and
the vertical axis represents the aggregation of prediction errors. In general, a model can be
considered good if this area is small. Here, we take a P.E. of less than 20% as the criterion to
determine the optimal zoning scale.

4. Results
4.1. Results of Extracted SESI during the Snow Melting Period

Using the available Landsat 8-OLS data from 2015 to 2020 (Feb–May) within the MNS,
fifteen periods of SESI were extracted, which depicted the typical spatial distribution of
snow melting status. Figure 4a compares the coefficients for reflectance and cosine of
the local incidence angle before and after preprocessing. After correction, the correlation
coefficients became more stable and were closer to zero, with no more extreme values, and
the difference between the upper and lower quartiles significantly decreased. Figure 4b
shows the spatial distribution of the extracted SESI on 14 April 2019. The stepwise results,
including the TOA reflectance, reflectance after atmospheric correction, reflectance after
SCS + C terrain correction, and extracted SESI, are displayed as partially enlarged false-color
images in Figure 4c–f, respectively. The multiphase SESI was extracted using the above
method. The spatial distribution map of snow SESI (Figure A2) during the ablation period
and the corresponding spatiotemporal variation analysis are described in Appendix B
(please refer to Appendix B for details).

4.2. Mechanism of Spatial and Proximity Effect of Snow Influence Factors

Based on the Hausman tests, the p-values were significant at the 1% level; therefore,
we chose the fixed-effect model to analyze the influencing factors of snow melting. As
shown in Figure 5a, the regression coefficient of the 11 factors of the SLM, SEM, and SDM
models with the queen and IDW proximity matrices were graphed. The R2, AIC, S.C.,
and logarithmic likelihood values of the SLM, SEM, and SDM models were graphed in
Figure 5b.

As shown in Figure 5a, through the positive and negative nature of the correlation
coefficients, it is possible to determine whether the influencing factors promote or slow
down snow melting. In the three panel models, the following commonalities were found:
An increase in LST, TEMP, and RDIS results in intensified snow melting. The rise in ELE,
NDVI, and ROUG causes a deceleration of snow aging. The correlation coefficients of the
other influencing factors were all positive values close to zero, indicating that an increase
in their values had an overall promoting effect on snowmelt, but the effect was weak.
Relatively, the absolute values of the correlation coefficients of each influence factor in the
SDM model were the highest among the three models.
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Figure 4. An example of the extracted SESI including (a) comparisons of coefficients of reflectance and
cosine of local incidence angle before and after preprocessing, (b) distribution of SESI on 14 April 2019,
(c) enlarged false-color images of Landsat bands 7, 2, and 1 of the TOA reflectance, (d) atmospheric
correction result, (e) the SCS + C correction result, and (f) zoomed-out SESI.
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of three panel models under different adjacent intervals. Note: ***, **, *, • indicate the significance
level of 0.1%, 1%, 5%, and 10% respectively. Please refer to Table 1 for the specific impact factors
corresponding to the abbreviations of each impact factor.
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The significance and magnitude of the factors differ across the panel models. In the
SLM model, only one factor (ELE) achieved a significance level of 0.1%, three factors (LST,
NDVI, TEMP) had a significance level of 1%, and two factors (ASP, PRCP) failed to reach
a significance level of 10%. In the SEM model, two factors (ELE and TEMP) achieved
a significance level of 0.1%, whereas five factors (LST, ROUG, NDVI, and SLP) had a
significance level of 1%. Under the SDM model, three factors (ELE, NDVI, and TEMP) had
a confidence level exceeding 0.1%. LST and ROUG were significant at the 1% level. Overall,
ELE, LST, NDVI, and TEMP were highly significant across all three models. Comparatively,
the SDM model had the highest number of significant factors and the highest level of
significance. This indicates that the spatial lag effect between the influencing factors and
snow melting is significant.

Based on the SDM model, the ROUG, TEMP, ASP, and RDIS factors exhibit slightly
stronger significance than those in the SLM and SEM models. This suggests that these
factors have a stronger spatial proximity effect on snowmelt. On a watershed scale, the
order of factors with strong spatial proximity effects is LST, ELE, SLP, NDVI, and TEMP.
However, the WSP, SRAD, and PRCP factors based on the SDM model do not exhibit
greater significance than those in the SLM and SEM models. This indicates that these
factors may not have a significant spatial proximity effect on snowmelt on a global scale. By
comparing the modeling effects of impact factors based on the SDM model under the IDW
and queen adjacency matrices, we can generally distinguish the extent of spatial proximity
effects of different impact factors. The results reveal that the correlation coefficients of LST,
ELE, ROUG, NDVI, and SLP based on the IDW adjacency matrix are slightly higher than
those found on the queen adjacency matrix. This suggests that the spatial proximity effects
of the aforementioned five impact factors are more significant beyond the pixel scale rather
than only within neighboring pixels.

As shown in Figure 5b–e, on a global scale, the significance levels of the three mod-
els vary. The overall characteristics are as follows: among the three panel models, the
R2(coefficient of determination) and logarithmic likelihood values of the SDM model are
the highest, followed by the SEM and SLM models. The Akaike information criterion (AIC)
and Schwarz criterion (S.C.) values are lowest for the SDM model, followed by the SEM
and SLM models. In addition, there is a slight difference between the significance of three
panel models under the two adjacency matrix models. Of the three models, the S.C. and
logarithmic likelihood values of panel models with IDW adjacency matrix are all slightly
lower than those with the queen adjacency matrix.

In summary, during the process of snow melting, specific factors can either accelerate
or retard the rate of melting. The complexity of the melting process is attributed to the
variable number and significance of local key factors, as well as the diverse range and
degree of influence of neighboring factors. The melting of snow is influenced by a multitude
of factors within the region, snow conditions in neighboring areas, and the combined effect
of neighboring influencing factors.

4.3. Characteristics of Influence Factors under Multiple Scales

The significance level of the influencing factors varies across scales. The simulated
SDM model has the highest R2, lowest AIC, he highest S.C., and highest log-likelihood
values of all three models. The SDM model has a more powerful explanatory ability and
better fits the snow melting process studied here. Therefore, it is selected as the optimal
panel model for building zonal panel models to judge the prominent influencing factors
under the two partitioning schemes at different scales.

Figure 6 presents the overall regression results and the significance of the influencing
factors under watershed partitions. The significance and correlation coefficients of the
influencing factors vary across different scales of watersheds, but their variation ranges
are still on the same order of magnitude. Influencing factors such as LST, ELE, NDVI, SLP,
TEMP, and ROUG were more significant at different size scales of watersheds, whereas
RDIS and PRCP are not significant at all scales of watersheds. As the watershed-based scale
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decreases from large to small, the correlation coefficient and significance of specific factors
show a trend of first increasing and then decreasing, such as LST, ELE, ASP, and WSP. It is
worth noting that the significance of the factors changes significantly at scales exceeding
a certain threshold. For example, in watersheds larger than the threshold of 50,000, the
correlations of factors such as LST, ELE, WSP, TEMP, and RDIS are significantly higher.
In watersheds smaller than the threshold of 70,000, the significance of NDVI increases
significantly. The positive and negative values of the correlation coefficients for certain
impact factors vary with scale, such as the ASP, WSP, and PRCP correlation coefficients at a
watershed scale of less than 70,000, which tend to be closer to the negative value of zero.
This indicates that the above factors are more significant at a watershed scale greater than
the threshold value of 70,000, whereas at a watershed scale less than the threshold value of
70,000, the change in the significance of the positive and negative values may be due to
estimation errors.
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Figure 7 presents the overall regression results and the significance of the influencing
factors under gridding partitions. The significance and magnitude of changes in various
influencing factors within different gridding scales are similar to those based on water-
shed division. As the gridding-based scale decreases from large to small, the correlation
coefficient and significance of specific factors show a decreasing trend, such as LST, ELE,
and NDVI, whereas factors such as RDIS, ROUG, SLP, and SRAD show a trend of first in-
creasing and then decreasing. It is worth noting that the significance of the factors changes
remarkably at scales exceeding a certain gridding threshold. For example, in scales larger
than the gridding threshold of 5 × 5, the correlation of factors such as LST, RDIS, ELE, and
WSP are significantly higher. At grid scales larger than 4 × 4, the significance of LST is
more prominent, whereas at smaller grid scales, its importance decreases significantly. At a
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grid scale of 3 × 3, the significance of elevation becomes more significant. ASP and WSP,
on the other hand, have a significant increase in importance at grid scales smaller than the
gridding threshold of 6 × 6.
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The above results indicate that partitioning schemes can significantly affect the signif-
icance of influencing factors at each partition level. For the grid-based partition scheme,
the number of variables passing the significance test increased slightly initially and then
decreased as the grid became small. For the watershed-based partition scheme, the number
of variables passing the significance test decreases gradually as the watershed thresh-
old increases. There are some commonalities between the results obtained under the
two partitioning schemes. The number of highly significant influencing factors decreases
with decreasing scale, whereas the significance of ELE and LST decreases as the scale
becomes finer. Meanwhile, the significance of NDVI, ROUG, and SLP increases as the scale
decreases. It can be inferred that, at larger scales, factors such as LST, WSP, TEMP, and
ELE have stronger spatial heterogeneity than those at smaller scales, which may result in
their prominent significance at larger scales. At specific larger scales, the significance of
LST, ELE, and TEMP significantly increased. Because these factors are the most prominent
in terms of significance, they should be particularly emphasized when simulating snow
conditions at larger scales. The NDVI, ROUG, and SLP may have stronger spatial hetero-
geneity at specific smaller scales, resulting in their prominent significance and importance
at smaller scales.

4.4. Spatial Heterogeneity of Each Influencing Factor Based on Optimal Partition Scale

Figure 8a,b display the prediction rate curves of the models of the two partition
schemes at different scales. Figure 5a shows significant differences in the growing RWPS
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trend under the five watershed partition scales. When the watershed thresholds were
from 30,000 to 50,000, the P.E. and RWPS showed a positive linear correlation. Under the
premise of controlling P.E. to less than 20%, the best RWPS can be achieved in the watershed
partition scheme when the threshold for watershed partition is 50,000. Figure 5b shows the
multiscale model prediction rate curves with the gridding partition scheme. It was found
that under the 4 × 4 gridding scale, the RWPS increased significantly to about 85%. This
RWPS value is significantly higher than that under other gridding partition schemes.
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Figure 8. Model prediction rate curves at different thresholds in the watershed (a) and the gridded
(b) partition schemes.

By comparing the model prediction rate curves under the two partitioning schemes,
we found that the 4 × 4 gridding partition scheme has the best model prediction effect,
accounting for about 85% of the RWPS. This result is significantly better than the other
thresholds of the two partition schemes. Therefore, we set the optimal zoning scale as 4 × 4
with a gridding partition scheme to simulate the snow melting process in the study area.

Figure 9 presents the significance at different levels and regression coefficients of
each influence factor obtained from the zonal spatial panel model on 24 April 2019. The
influencing factors such as ELE, LST, TEMP, SLP, NDVI, ROUG, RDIS, and SRAD in zones
4, 6, 7, 8, 9, 10, and 15 all passed the significance tests at various levels. Among them, the
significance level of the influencing factors in zones 6, 8, 9, 10, and 15 are the same and
all passed the 0.1% significance test. Other factors passed the significance test except for
PRCP, WSP, and RDIS. Only one impact factor did not pass the significance test in zones 0,
1, 11, and 14. WSP did not pass the significance test in zones 1, 3, and 11, and RDIS did
not pass the significance test in zone 14. ELE, NDVI, LST, ROUG, and SLP all passed the
significance test in all zones. The impact of ELE had the most significant positive impact
on the change in SESI. The effect of NDVI on SESI is negative. Such an effect in zone 4
is weaker than that in the rest of the zones. The SRAD had the lowest degree of impact
and failed the significance test in zones 0, 2, 3, 5, 12, and 13. Generally, the significance of
influencing factors on SESI is ranked as follows: ELE, NDVI, LST, ROUG, SLP, RDIS, WSP,
and SRAD.
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Figure 9. Regression results of influencing factors based on the zonal SDM panel model. Note: ***, **,
*, • indicate the significance level of 0.1%, 1%, 5%, and 10% respectively.

The correlation coefficients of ELE in all zones were relatively high, with an average
value greater than 0.05, showing a significant negative correlation characteristic. There
is a regional difference between the north and south in the correlation coefficient of LST.
The overall correlation of SLP was also significant, with a high correlation of 0.06 in
the midmountain zone. The rest of the regions have a low correlation of about 0.02. In
general, the correlation of TEMP is inapparent. However, in areas located in the middle
mountain belt region on the northern slope of the MRB, the correlation coefficient of
TEMP is relatively significant, approximately 0.017. NDVI showed a negative correlation
with snow melting across the basin. The correlation coefficient distribution was relatively
even across subbasins, with a value of approximately −0.015. ROUG exhibits opposite
correlation characteristics in different subbasins, with relatively weak negative correlations
between zones 12, 13, and 6, 7 and snowmelt, no correlation in subbasins 14 and 15, and
weak positive correlations of 0.004 with snowmelt in the remaining regions. SRAD has
a weak positive correlation within zones 7–10 but is insignificant in other zones. The
correlation coefficients between WSP and ASP in different regions have both positive
and negative differences, but overall, the correlation is weak. However, the correlation
coefficient of PRCP is very weak in the entire subbasin.

Figure 10a,b show a comparison of the observed and simulated results of the SESI
based on the zonal SDM panel model on 24 April 2019. The R2 exceeded 0.7 in 14 zones,
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with an average R2 of 0.79. The disparity in significance among zones within the study area
was prominent. The R2 values of zones 0, 1, 12, 13, 14, and 15 were above 0.8, and those
of zones 13, 14, and 15 were above 0.9, indicating that the zonal panel model increased
the degree of data fitting. The zonal fitting effect was assessed using the mean absolute
percentage error (MAPE). MAPE quantifies the proportion of the prediction error relative
to the observed value of SESI. As the MAPE value decreases, it indicates a better fitting
effect. The average MAPE for all 16 zones was 23.1%. Zones 12, 13, 14, and 15 showed the
most minor fitting errors (around 15%). The accuracy assessment of the simulation was
also estimated using the model prediction curve. The findings indicate that in zones 5 and
9, the percentage of samples with less than 20% P.E. was less than 80%. In other zones,
RWPS with a P.E. of less than 20% could reach 100%, accounting for more than 81% of the
study area.
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5. Discussions
5.1. The Spatial and Proximity Interaction in the Snow Melting Process

The spatial and adjacent interactions between snow cover and environmental factors
have been confirmed in many studies [13,58]. For example, investigations have been
conducted to measure changes in snow reflectance due to the presence of other surrounding
objects. Factors such as water bodies, sparse vegetation, dry and moist soil, coal, and
carbon are considered crucial in determining the effect of an adjacent feature on the spectral
reflectance of snow cover [13]. Increased snow cover would cause a shift toward negative
adjacent interactions in tundra plant communities [59,60]. The above research demonstrates
the significant impact of neighboring objects on snow reflectivity on a microscopic scale and
verifies the impact of a specific neighboring object on the snow melting rate on a large scale.

To assess the spatial and proximity effect between the snow cover and influencing
factors, three types of spatial panel models, the SLM, SEM, and SDM, were used to conduct
the panel regression. The significance of ELE, LST, NDVI, and TEMP is particularly
noteworthy in all three spatial panel models. Therefore, it can be inferred that during
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the process of snow melting, the spatial spillover effects of these influencing factors are
significant, and the snow conditions in neighboring areas also have a significant impact on
the local snow status. The optimal performance of the SDM model indicates the coexistence
of both effects. The strong correlation between these factors and heat distribution, a key
driver of snow recession, may explain their significance. For example, elevation has vertical
temperature gradients, whereas LST and TEMP represent heat distribution [8]. Additionally,
NDVI in high-altitude mountainous areas exhibits significant vertical patterns [17,18].
Therefore, factors closely related to heat distribution have higher significance among
multiple influencing factors.

Furthermore, LST, ELE, SLP, NDVI, and TEMP exhibit a significant neighboring effect.
The cause of the neighboring effect on snow has not been fully studied. We speculate that
this may be due to the presence of forests in high-altitude mountainous areas, where solar
radiation increases the temperature of tree canopies and leads to changes in the climate
near the forest belt [15]. Alternatively, it may be caused by local special terrain resulting
from terrain slope, which alters the distribution of radiation in the local area [61], affects
the local climate environment, and creates effects such as cold-air pooling effects [62]
and temperature inversions [63,64], thereby exerting a greater influence on the snow in
neighboring areas.

5.2. The Differences in Dominant Factors Affecting Snow Melting at Varied Scales

Many studies have analyzed the response or correlation of snow cover to specific influ-
encing factors at different scales [25–27,65], but few studies have analyzed the significant
changes and trends of multiple influencing factors at continuous scales. Our research not
only considers the changing trends in the significance and correlation of various influencing
factors under multiscale continuous changes but also considers the impact of different
zoning schemes on the significance of influencing factors.

We attempted to explore why there are differences in the degree of influencing factors
under the two partition schemes. When designing the partition scheme, we simultaneously
considered two partitioning methods: one based on a grid and the other based on hydro-
logical catchments. We took into account that the supply and demand of water resources
are interconnected at the catchment scale, and catchments are the basic units of water
towers [57]. Therefore, we also considered a partitioning scheme based on river basins.
However, from the perspective of multiscale fitting, the grid partitioning result of 4 × 4
grid size has a better fitting effect. One possible reason is that the river basins divided based
on terrain data are different from those divided based on climate, even though the latter
is usually based on mountain ridges. In addition, the threshold division of each scale in
the hydrological analysis may not accurately capture the homogeneous areas with similar
melting mechanisms.

Nevertheless, the variation of impact factors with scale under the two zoning schemes
also showed similar generalities. The number of highly significant influencing factors
decreases with smaller scales, whereas the significance of ELE and LST decreases at finer
scales. Meanwhile, the heterogeneity of influencing factors at different scales can change
their importance. Factors with stronger spatial heterogeneity at large scales may exhibit
more significant importance at large scales, and vice versa. The causes of this heterogeneity
can be attributed to two aspects. On the one hand, the heterogeneity of the factors them-
selves varies at different scales [66]. On the other hand, the spatial resolution of downscaled
remote sensing data still has limitations [67]. For example, local terrain variations can
cause differences in temperature, wind speed, and radiation at small scales [68–70], but
these differences are difficult to reflect in existing meteorological driving data. The missing
meteorological stations also make it difficult for downscaling algorithms to improve local
accuracy [71]. Therefore, the role of meteorological factors on a small scale still needs
further exploration.
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5.3. Heterogeneity of Local Influencing Factors

The local heterogeneity of influencing factors has been widely studied, with a general
acceptance that geographical latitude, altitude, and air temperature primarily regulate
snow accumulation and ablation processes [72–74]. In each sub-region within our study
area, both ELE and LST exhibited significant effects, but the influence of latitude was
not taken into account. Other research indicates that TEMP and PRCP play a principal
role in controlling the spring snow cover fraction (SCF). Such influence is particularly
strong within a specific elevational range [75]. For example, in the Keriya River Basin,
the influence of TEMP on SCF is concentrated within an elevation range of 5175–6425 m,
whereas PRCP serves as the main controlling factor at elevations of 2475–5175 m and above
6425 m [76]. Wu et al. identified two distinct threshold elevations in the MRB. Below a
threshold elevation of 3900 ± 400 m, snow cover exhibits an inverse correlation with TEMP
and a positive correlation with PRCP, and vice versa above this threshold elevation [77].
Additionally, above the threshold elevation of 1400 ± 100 m, TEMP becomes the main
factor [78]. Under the premise of comprehensively considering the spatial effects of multiple
influencing factors, we found that the significant impact of TEMP is more prominent in
the high-altitude areas of the northern slope of MNS, whereas its significance is noticeably
weaker in the low-altitude areas of both the southern and northern slopes of the MRB. Our
results further confirm the influence of complex climate factors, with temperature being an
essential factor that affects snow cover change.

Topographic factors such as ELE, ASP, SLP, and ROUG are related to one another
and act in unison to exert an overall topographic effect [72]. Regarding the relationship
between ASP and snow cover, the north-facing slopes had remarkably large snow cover
ratio and snow cover duration values compared with those of the south-facing slopes,
corroborating previous studies that emphasized that snow accumulates most on north-
facing slopes [72,73]. However, such a relationship exhibits distinct seasonal differences in
that the spatial variability of the snow cover ratio with aspect is most significant during
winter. This may explain why the significance of ASP was not so prominent in spring in
our study.

We also found that the significance of SLP and ROUG was significant in each subregion.
In zones 9, 10, and 11 on the northern windward slope, the importance of WSP was
significantly higher than that on the southern leeward slope. This is not difficult to explain,
as the north slope of Tianshan Mountain is affected by water vapor from both the Atlantic
and Arctic oceans compared to the south slope. It can be inferred that heat input in the
upper layer of snow is the main cause of snow melting, whereas terrain redistributes heat
input and wind speed alters the distribution of energy. The specific terrain also changes the
wind speed, which then alters the location and state of snow accumulation. Many existing
research conclusions support the above statements. For example, terrain properties such
as slope and aspect have been found to affect the incoming solar radiation on the surface
by modifying the intensity and duration of sun exposure at a given location [77–79]. Due
to temperature gradients [79], snow on sunward aspects is less persistent than that on
shaded slopes. Windward slopes accumulate more snow than leeward slopes as moisture
converges in that direction [75]. Steeper slopes tend to have less snow than flatter slopes
due to gravity [77]. It should be noted that this study examines which factors have a more
significant response to the process of snow melting rather than the causal relationship
between the factors. Therefore, there are significant spatial and temporal heterogeneities in
the significance of various factors at a local scale.

5.4. Comparison with Existing Methods

Current research on the analysis of influencing factors in the process of snow accumu-
lation or ablation mainly relies on long-term time series of snow parameters and influencing
factors. Researchers often conduct linear or nonlinear correlation analyses between in-
dependent and dependent variables to quantitatively assess the dominant influencing
factors of snow’s spatial and temporal processes [31–36]. However, such studies often only
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consider factors such as topographic or hydrothermal elements [11,14,29]. To gain a deeper
understanding of the dominant factors driving snow accumulation and ablation, some
researchers have conducted long-term observations at field measurement sites, where they
select relatively homogeneous snow areas and control variables to explain the changes in
snow accumulation and ablation [6,13,17]. These field measurements can more accurately
capture the influencing factors at the upper and lower edges of the snow cover, as well as
internal changes within the snow layer. However, the regional representativeness of these
findings is often limited, making it challenging to characterize the influence mechanisms of
snow cover at larger scales. Some studies consider the spatial heterogeneity of snow cover,
but they often use pixels as the basic analysis unit to analyze the causes of the uneven
spatial and temporal distribution of snow cover in different regions (such as detecting
differences in the impact factors of different altitude zones) [32,77–79]. Such studies also
do not consider the spatial effects of snow cover impact factors.

Although these approaches provide insights into how snow cover properties relate to
each of these influencing variables, sequential regression-type relationships only explain a
small percentage of the variability, and no unique relationship can be defined for different
environments due to differences in the dominant processes in different locations. The
unique advantage of the spatial panel data model is that it can analyze multiple spatial
effects between independent and dependent variables. For example, in this study, the
neighborhood effect, spatial correlation, and multiscale effect can all be included in the
measurement of influencing factors. Comparatively speaking, our method relies less on
time series data. The panel data used for each period are relatively independent. In addition,
although there are many snowmelt runoff models based on physical processes, most of
these simulations are based on independent pixels to simulate and predict snowmelt, and
few of them take the spatial effects of influencing factors into consideration. We believe
that the above spatial effects cannot be ignored in the spatial–temporal process of snow
cover. The exploration in this article is an important supplement to the spatial–temporal
mechanism of snow cover.

5.5. Limitations and Perspectives

It is essential to acknowledge discrepancies in the dataset composition. In this study,
the significance of PRCP was not prominent. This is likely due to the difficulty in accurately
capturing precipitation events based on the downscaled precipitation data from the CMFD
dataset, resulting in insufficient accuracy of the precipitation dataset and making it difficult
to reflect its correlation with snow cover changes in local space-time. Solar radiation, wind
speed, and other factors may also be unable to accurately capture their significance due
to their low temporal and spatial accuracy. The influencing factors of the lower edge
of the snow layer, such as frozen soil, soil temperature, and humidity, have not been
considered in this article, but their importance cannot be ignored. In addition, temperature
and solar radiation may have a time lag effect on snow melting, as the temperature may
have increased for several days before melting begins. Thus, the heat accumulation effect
of temperature and radiation should also be considered.

In this study, we compared the goodness-of-fit of various panel data models based on
different adjacency matrices, enabling preliminary discrimination between the proximity
effects of various influencing factors. It was found that LST, ELE, SLP, NDVI, and TEMP
are factors with significant proximity effects that are expressed within different ranges.
However, the specific roles of each influencing factor in the process of snow melting
under different adjacency matrices were not distinguished. It is evident that quantitatively
measuring the range and extent of the proximity effect of various influencing factors will
be a meaningful task in the next step. Additionally, it is necessary to take into account the
time lag effect resulting from snow cover and the influence of other factors. We suggest
using a variable distance adjacency matrix for the influencing factors in the panel model
and adding a time-lag variable to improve our understanding of this system.
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6. Conclusions

In this study, we established a connection between snow cover characteristics and
influencing factors using a zonal panel model. The results showed that multiple unequally
distributed influencing factors are related to one another and act in unison to exert an
overall effect on the snow melting process. A framework of the zonal spatial panel model
is proposed to determine the influencing mechanism of snowmelt with respect to spatial,
proximity, and heterogeneity effects. The main findings of this study are as follows:

First, there is a prominent spatial interaction and proximity effect between snow cover
and the influencing factors. The spatial dependency and magnitude and extent of the
proximal effects of influence factors display spatial heterogeneity. ELE, SLP, LST, and NDVI
have significant correlation coefficients and significance levels that manifest as the overall
dominant influencing factors for snow melting. The impact factors with distinct proximity
effects on a watershed scale are ranked as follows: LST, ELE, SLP, NDVI, and TEMP.

Second, different partition schemes and scales can significantly impact the relative
importance and significance rank of the dominant influencing factors within the region.
The count of highly significant influencing factors decreases with decreasing scale, whereas
the significance of ELE and LST decreases as the scale becomes finer. Conversely, the
significance of ROUG, RDIS, and SLP increases as the scale decreases. At a specific scale,
the significance of influence factors such as ELE, NDVI, and LST will change significantly.
For example, at a certain larger scale, the importance of LST, ELE, and TEMP will increase
significantly, whereas at a certain smaller scale, the significance of NDVI, ROUG, and SLP
will increase significantly. The spatial heterogeneity of various influencing factors might be
the main reason for the differences in significant factors at multiple scales.

Third, the significance of the impact factors varies significantly within each subregion.
Topographic factors such as ELE, SLP, and ROUG have significant correlations throughout
the basin. The significance of LST, TEMP, and WSP exhibits a north–south difference in the
MNS. The significance of NDVI is relatively even across the region, whereas the overall
significance of SRAD, ASP, PRCP, and RDIS is weak.

This research demonstrates that the spatial, proximity, and multiscale effects between
snow cover and numerous influencing factors should be fully considered in elucidating the
influencing mechanism of snow cover. When simulating the spatial and temporal variation
process of snow cover at different spatial scales, a number of influencing factors should be
prioritized and screened. Methodologically, establishing a zonal spatial panel analysis is
possible and can effectively capture the spatial interactive impacts of multiple factors on
snowmelt. Given the growing number of upcoming satellite sensors with new capabilities
in frequencies, image modes, and revisit times, the panel technique may be a robust and
convenient approach for investigating the effects of influencing factors.
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Appendix A

This appendix introduced the new approach with the spatial panel model, as well as
detailed information on three spatial panel models.

The spatial panel regression model is a classic model in the field of spatial economics,
which can reflect the interactive effects and spatial spillover effects between geographical
units [52,54]. The spatial panels refer to georeferenced point data over time, or they
refer to spatial units such as counties, and regions. The definition of spillover effects is
that changes in one region will have an impact on other regions, and the dependence
structure between different geographical units is related to location and distance to some
extent [52,54]. Compared with ordinary OLS regression, the spatial panel regression model
further considers the effect of spatial interaction factors, which can effectively reduce the
effect of endogenous factors and determine whether there is a positive or negative spillover
effect of some factors [53]. In this article, three representative spatial panel data models are
selected, namely The Spatial Lag model (SLM), The Spatial Errors Model (SEM), and the
Spatial Durbin model (SDM).

The SLM model considers the spatial spillover effect of the dependent variable. Hence,
its formula includes the spatial lag term of the dependent variable, which can be expressed
as follows:

Yit = ρ ∑N
i=1 WijYjt + βXit + µi + εit (A1)

where ρ ∑N
i=1 WijYjt is the spatial lag of the dependent variable and ∑N

i=1 WijYjt is the
contiguity. Neighbors based on contiguity are constructed by assuming that neighbors of a
given area are other areas that share a common boundary. The inverse distance matrix and
Queen neighborhood matrix were adopted as the spatial weighting matrix, respectively.
The contiguity ρ is the spatial autoregression coefficient. If ρ has statistical significance,
it demonstrates the existence of a significant spatial dependence among the dependent
variables. The value of ρ reflects the degree of the spatial dependence.

Different from the inverse distance matrix, the Queen neighborhood matrix is used to
define the region of interest and its fixed neighborhood region, which is widely used in
spatial neighborhood analysis and research [80,81]. As shown in Appendix A, Figure A1
has been added to illustrate the queen’s neighboring matrix. As shown in Figure A1, the
area of interest is represented in black, while its neighbors are represented in gray.

The SEM discovers the effects of the omitted variables on the observation of the deter-
mined (dependent) variable, which contains a spatial error term. A spatial autocorrelation
among residuals is thus practical and the SEM can be formulated as follows:

Yit = βXit + µi + φit (A2)

φit = λ ∑N
j=1 Wij φit + εit (A3)

where λ ∑N
j=1 Wij φit is the spatial error term, is the autoregressive factor, and εit is a random

error term that is usually assumed to be independent and identically distributed. We can
confirm the existence of hidden independent variables with spatial autocorrelation if λ is
statistically significant, which results in the trend of a noticeable spatial autocorrelation in
the residuals.

The SDM contains the spatial lag operators of both dependent variables and indepen-
dent variables, and can analyze the spatial spillover effects of both variables in a region.
The SDM can be formulated as follows:

Yit = ρ ∑N
i=1 WijYjt + βXit + γ ∑N

j=1 WijXjt + µi + εit (A4)

where γ is the spatially autocorrelated coefficient of the independent variable, and the
other variables are the same as in the formulae mentioned above.
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Figure A1. Queen Neighbors based on contiguity. The area of interest is represented in black and its
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Appendix B

This appendix introduced the spatial distribution of extracted SESIs within the
study area.
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The Figure A2 shows the spatial distribution of SESI on typical days during the snow
melt period. In February, the status of snow cover in the study area was relatively stable,
with overall high SESI values. It was not until 26 February that the SESI values began to
gradually decrease. In the downstream plain areas, the SESI values began to gradually
decay. By 19 March, the high SESI values were mainly distributed in the upstream high-
altitude areas, while significant snowmelt had already occurred in the downstream plain
areas, resulting in significantly lower SESI values. This was because the influence of
environmental factors such as climate gradually increased, and the snow in the upstream
high-altitude areas at this time was mostly permanent snow above the snowline, which
was less affected by the environment. Therefore, its SESI value was significantly higher
than that in the downstream plain areas. Compared to 19 March, on 8 April, the snow had
melted completely in the northern downstream areas, while in the southern downstream
areas, which were in the rapid melting period, the SESI values had slightly rebounded.
This was due to a new snowfall that occurred between these two typical days of snowmelt.
In the northern downstream areas, due to their proximity to city areas, human activity
may accelerate snowmelt. Therefore, the new snowfall did not accumulate, while in the
southern areas, due to sparse human activity, the new snowfall accumulated, leading to a
temporary increase in SESI values. On 12 April and 24 April, the overall snow cover status
in the study area remained stable with high values. This was because the snow had nearly
completely melted, and what remained was mostly permanent snow above the snowline.
On 21 May, the snow cover range expanded significantly with a noticeable increase in
SESI values.
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