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Abstract: The recent flooding events in the UAE have emphasized the need for a reassessment of
flood frequencies to mitigate risks. The exponential urbanization and climatic changes in the UAE
require a reform for developing and updating intensity–duration–frequency (IDF) curves. This
study introduces a methodology to develop and update IDF curves for the UAE at a high spatial
resolution using CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data. A bias
correction was applied to the CHIRPS data, resulting in an improved capture of extreme events
across the country. The Gumbel distribution was the most suitable theoretical distribution for the
UAE, exhibiting a strong fit to the observed data. The study also revealed that the CHIRPS-derived
IDF curves matched the shape of IDF curves generated using rain gauges. Due to orographic
rainfall in the northeastern region, the IDF intensities were at their highest there, while the aridity
of inland regions resulted in the lowest intensities. These findings enhance our understanding of
rainfall patterns in the UAE and support effective water resource management and infrastructure
planning. This study demonstrates the potential of the CHIRPS dataset for IDF curve development,
emphasizes the importance of performing bias corrections, and recommends tailoring adjustments to
the intended application.

Keywords: remote sensing; CHIRPS; precipitation; UAE; water resources

1. Introduction

Precipitation is one of the main and most significant components of the water cycle that
drives water from the atmosphere to the lithosphere and biosphere. These interactions have
a substantial influence on the climate dynamics of ecosystems [1]. The long- and short-term
variability in precipitation has a very vital impact on the environment; this is particularly
true for countries located in arid regions, such as the United Arab Emirates (UAE) [2,3].
Thus, capturing the variability in precipitation is crucial to forecasting the climate. The
main hurdle in estimating the variability in precipitation is its highly intermittent nature in
both temporal and spatial domains.

The scientific community has been developing various techniques for capturing the
temporospatial variability in precipitation using conventional and unconventional meth-
ods [4]. The advancement of satellites and sensors over the last four decades has led to the
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near-real-time derivation of high-resolution global precipitation products and the develop-
ment of sophisticated remote-sensing techniques [5]. These, combined with the exponential
improvement in computational power, make it possible to capture precipitation variability.

Remotely sensed precipitation products have been used in a wide range of scien-
tific fields, such as meteorology, hydrometeorology, climatology, and water resources
management [6]. Satellite-based products, in particular, offer significant advantages in
simulating hydrological processes within vast, ungauged watersheds, especially in regional
river basins where acquiring and utilizing precipitation observations pose challenges [7].
Numerous studies evaluating and validating remotely sensed products worldwide have
concluded that these products exhibit a high potential for capturing the spatial and tem-
poral distribution of precipitation across diverse topographic features [8–12]. The main
strength of remotely sensed precipitation products is the ability to capture the spatial
distribution of rainfall. Furthermore, studies have revealed that these products improve
as they evolve over time [11,13,14]. They also provide accessibility to remote areas, which
is a massive advantage over conventional methods. However, products that incorporate
ground-based measurements are more robust and accurate relative to those that only use
remotely sensed data [11,15,16]. One prevalent drawback of products is their lack of con-
sistency across different regions worldwide and varying climatic conditions. Geographic
characteristics, such as elevation, longitude, and latitude, are the primary factors contribut-
ing to this inconsistency [17]. Therefore, localized adjustments are recommended prior to
their application.

Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data are a quasi-
global rainfall estimate from in situ and satellite observations. CHIRPS was developed by
the United States Geological Survey (USGS) and Climate Hazards Center (CHC) scientists
with the main goal of being used for long-term hydrological studies and environmental
monitoring over remote areas with sparse ground-based observations. Over the years,
numerous validation studies have been conducted across the globe. Rivera and Mari-
anetti [18] evaluated the product for an extended period (30 years) over the Central Andes
of Argentina. Their results showed a good correlation with 57 rain gauge records. However,
their analysis also revealed systematic overestimation errors attributed to high-altitude
areas. Another study [19] conducted in Turkey found that CHIRPS has a high probability
of detection (more than 0.86) with a false alarm rate of 0.13 for a threshold of 5 mm/month.
The product performed better in flat regions than in mountainous areas. Additionally, the
product’s performance was significantly influenced by the type of rainfall regime and it
was better at capturing cyclonic precipitation. The authors concluded that CHIRPS is well
suited for hydro-climatological studies.

Wang and Petersen [15] evaluated the accuracy of CHIRPS precipitation estimates
over mainland China. The authors found that CHIRPS was generally accurate, but it
underestimated the precipitation in some mountainous regions. Hsu and Huang [20]
evaluated the performance of CHIRPS in depicting the precipitation variation over multiple
timescales in Taiwan. The authors stated that CHIRPS was better than the Integrated Multi-
satellitE Retrievals for Global Precipitation Mission (IMERG) in representing the magnitude
of the annual cycle of monthly precipitation, the spatial distribution of the seasonal mean
precipitation for all four seasons, and the quantitative precipitation estimation of the
interannual variation in area-averaged winter precipitation in Taiwan. CHIRPS was also
assessed for modeling hydrological processes. Luo and Wu [7] found that the product
was superior to rain gauges and the inverse distance weighted (IDW) interpolation of the
data for forcing the Soil and Water Assessment Tool (SWAT) model of the Lower Lancang-
Mekong River Basin. Another study conducted across India reinforced the suitability of
CHIRPS for long-term analysis applications with a high level of confidence [21]. The study
compared four multi-satellite precipitation products against rain gauges and found that
CHIRPS and TRMM were the best products across India. The main advantage of CHIRPS
over other satellite-based products is the over 40-year length of the record, which is long
enough to conduct climatological studies. Most other remote sensing products have a
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historic record of less than two decades, which may not provide enough data to accurately
estimate the parameters for the IDF curve, as such curves typically require long-term
rainfall data to develop reliable estimates [22].

An intensity–duration–frequency (IDF) curve is a statistical tool that estimates the
probability of extreme precipitation events. It is derived from long-term historical obser-
vations and serves as a crucial input for engineering design purposes [23]. In light of the
dynamic and evolving nature of the climate, particularly with respect to extreme events,
frequent updates to IDF curves are essential to ensure their accuracy and relevance [22].
Studies have consistently demonstrated an upward trend in the frequency and magnitude
of extreme precipitation events across various regions of the world [24–26]. Conventional
IDF curves rely on ground-based precipitation measurements. However, the sparse and
uneven distribution of these measurements often fails to capture the true spatial variability
in rainfall, leading to potential biases in the derived IDF curves [27]. Despite the robust
statistical framework underlying IDF development, inherent biases introduced by interpo-
lation and other spatial distribution techniques can introduce significant uncertainties [28].
These challenges are particularly prevalent in developing countries where historical data
are limited to a few decades and rain gauge networks are heavily concentrated in urban
areas, leaving rural areas underserved. Furthermore, the task of constructing IDF curves
from a network of rain gauges with diverse historical records, maintained by different
entities without standardized quality control and calibration procedures, employing het-
erogeneous measuring techniques, and exhibiting varying degrees of precision, poses a
considerable challenge [29].

In the last two decades, many scientists and researchers across the globe have assessed
the potential of these remotely sensed precipitation products for developing IDF curves.
CMORPH was used over the Eastern Mediterranean [30]; Global Satellite Mapping of
Precipitation (GSMaP) was applied in Singapore [31]; GPM products were evaluated over
the Alpine forelands of Austria and in a semi-arid region of the United States (Alcely Lua);
a radar network of the USA was evaluated over the state of Texas [22]; and PERSIANN—
Climate Data Record (PERSIANN-CDR) was evaluated over the contiguous United States
(CONUS) [28], to name a few of the studies. All these studies showed a high correlation
between the developed IDF curves and the IDFs developed using conventional methods.
The potential of using remotely sensed products in hydrometeorological studies was shown
across different terrains and over a wide range of latitudes. However, these products lack
the long-spanning historical data, except for CHIRPS, needed to capture climatological
cycles, which are essential for developing IDF curves.

The aim of the present study is to develop spatially distributed IDF curves over
the UAE by employing a historically rich dataset from CHIRPS. The main objective is to
produce IDF curves that will fill the gaps created by the sparsely distributed rain gauges.
Furthermore, this study will advance our knowledge of the application of CHIRPS data in
developing IDF curves, especially for extreme event analyses. This research also evaluates
the viability of CHIRPS data in an arid region with a very dry climate. The manuscript
is organized as follows: Section 2 describes the study area and the dataset used in the
study. The methodology, which includes all the necessary equations and assumptions, is
presented in Section 3. The results of the study are discussed in Section 4. Finally, the
summary and recommendations of the study are provided in Section 5.

2. Study Area and Dataset
2.1. Study Area

The UAE is situated between the UTM coordinates of 2,883,648 m Northing 40R and
2,503,242 m Northing 40Q and 559,185 Easting 39R and 437,054 Easting 40R in the southeast
of the Arabian Peninsula (Figure 1). The UAE covers an area of around 83,600 km2, with
geomorphologic features ranging from mountainous regions in the northeastern part to
sand dunes covering the majority of the western parts of the country [32]. The Al Hajar
Mountain Range, located near the border with Oman, forms the highest topography of the
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UAE, reaching a peak altitude of 1800 m, causing the area to be the wettest and coolest part
of the country [33]. The nation has a long stretch of coastline, which controls the climate
dynamics of the country. It borders the Arabian Gulf in the north and the Gulf of Oman in
the east. The country’s precipitation regime is influenced by these major water bodies, as
major sources of moisture. According to the Köppen climatic classification, the entire nation
has an arid, hot desert climate (BWh). As per the National Center of Meteorology (NCM),
the monthly average temperature reaches its peak in August at 40.3 ◦C. Mountainous areas
typically have colder winter temperatures that drop to near freezing. Humidity levels can
reach as high as 95% at the end of summer due to strong southeasterly breezes. The entire
area experiences dry weather all year. Low rainfall infiltration into wadi beds and flash
flooding are common in places that are downstream of mountainous regions. Water from
the high altitude, with its huge amount of energy, can cause dangerous flash floods in a
very short period of time.
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2.2. Datasets
2.2.1. Rain Gauge Data

The main goal of this study is to explore the potential of the CHIRPS dataset for
developing IDF curves. However, rain gauges were used to locally calibrate the systematic
bias of CHIRPS in the area. Data from a network of 54 rain gauges distributed across the
country were obtained from the NCM of the UAE. The time frame of the coverage of the
rain gauges is from 2003 to 2021, except for Abu Dhabi Airport, which covers 1983 to 2021.
The network of the rain gauges is managed and quality-controlled by the NCM. The rain
gauges have a temporal resolution of 15 min. The spatial distribution of the rain gauges is
shown in Figure 1. The network is new, with most rain gauges having a temporal coverage
of less than 20 years in addition to their sporadic distribution. Moreover, the distribution of
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the rain gauges is uneven, with most of them concentrated in urban centers. The spatial
distribution of the annual average rainfall shows that the wettest regions are located in the
northeastern part of the country, where the Al Hajar Mountains are located (Figure 2A).
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rain gauge stations and (B) estimated by CHIRPS.

2.2.2. CHIRPS Precipitation Product

CHIRPS was developed by a partnership of scientists from the USGS Earth Resources
Observation and Science (EROS) Center and the Climate Hazard Center (CHC) at the
University of California, Santa Barbara, to provide a complete, reliable, and up-to-date
dataset for a variety of early warning objectives, such as trend analyses and drought mon-
itoring. The dataset has a quasi-global spatial terrestrial coverage (50◦S–50◦N) with a
high spatial resolution (0.05◦) and daily temporal resolution. The CHIRPS dataset was
produced by integrating precipitation estimates based on infrared cold cloud duration
(CCD) observations that were calibrated using the TRMM Multi-Satellite Precipitation
Analysis (MSPA) and in situ station data [34–36]. The anchor stations that were used
for calibrating this product are from regional and national meteorological services that
are available in the public domain. The CHIRPS dataset was downloaded from the web-
site (https://www.chc.ucsb.edu/data/chirps, accessed on 1 August 2023) for the years
1981–2021. The high spatial resolution of the CHIRPS dataset, combined with its long
historical record compared to that of other remotely sensed products, makes it a suitable
candidate for analyzing and simulating hydrological processes even in relatively small and
localized catchments.

The spatial distribution of the annual average rainfall of the UAE was captured with
reasonable accuracy by CHIRPS, as shown in Figure 2B. Similar to the rain gauges, the
wettest regions were found to be in the northeastern parts of the country. The coastal areas
showed higher levels of precipitation relative to the records from the rain gauges. This is a

https://www.chc.ucsb.edu/data/chirps
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common issue with remotely sensed products, as they misinterpret the moisture near the
ground surface as rainfall, especially in humid areas like the UAE’s coastal areas [11,37–39].

3. Methodology
3.1. Bias Correction

As mentioned earlier, most satellite-based precipitation products require localized
adjustments to address potential biases before their application. This step is particularly
crucial when utilizing these products to evaluate extreme events such as IDF and droughts,
as they often exhibit underestimations or overestimations of such events [11,17,40]. To
address these biases, linear modeling was employed in conjunction with rain gauge ob-
servations. Given the focus on IDF, the analysis solely considered extreme rainfall events;
rainfall exceeding the 95th percentile of the annual precipitation distribution was filtered
for bias correction. This approach minimizes the potential bias introduced by the strong
correlation between the daily average rainfall and the correction factor [28]. First, daily
rainfall events exceeding the 95th percentile were extracted from each year’s rain gauge
records. Subsequently, the corresponding rainfall estimates for those days derived from
CHIRPS were matched. The adjustment factor (ζ) is defined by the ratio of ground-based
observations to satellite-based precipitation (CHIRPS) and was calculated for the entire
study area. A calibration and validation analysis were conducted to measure and correct
the bias and to evaluate the performance of the bias adjustment. The calibration phase
was carried out for the first nine years of the data, from 2003 to 2011, and a validation was
performed for the rest of the time frame, i.e., from 2012 to 2021.

ζ =
RG
RS

(1)

where ζ is the correction factor of each rain gauge, RG is the rainfall in situ record, and RS
is the estimate of CHIRPS precipitation corresponding to that record.

3.2. Performance Criteria

The evaluation of the bias correction factor was conducted using statistical perfor-
mance metrics: the Pearson’s correlation coefficient (CC), percentage bias (RBIAS), root
mean squared error (RMSE), Nash–Sutcliffe efficiency (NSE), and Kling–Gupta efficiency
(KGE). The Kling–Gupta model efficiency coefficient metric estimates the goodness-of-fit
of a model. This coefficient has three main components: correlation, bias, and variability.
The equations of all the metrics used in this study with their respective perfect values are
presented in Table 1. These metrics are widely used to assess the performance of models in
hydrological studies, especially those related to precipitation [11,41].

Table 1. List of the statistical performance metrics used for the evaluation of the correction factor.

Statistical Index Units Equation Perfect Value

Pearson’s correlation coefficient (CC) Ratio CC =
∑n

i=1 (Gi−G)(Si−S)√
∑n

i=1(Gi−G)
2
√

∑n
i=1(Si−S)

2
1

Percentage Bias (RBIAS) % PBIAS =
∑n

i=1(Si−Gi)

∑n
i=1 Gi

∗ 100 0

Root Mean Squared Error (RMSE) mm RMSE =

√
1
n ∗

n
∑

i=1
(Si − Gi)

2 0

Nash-Sutcliffe Efficiency (NSE) Ratio NSE = 1 − ∑n
i=1(Gi−Si)

2

∑n
i=1(Gi−G)

2
1

Kling-Gupta Efficiency (KGE) Ratio NSE = 1 −
√
(r − 1)2 +

(
σS
σG

− 1
)2

+
(

S
G
− 1
)2 1

where Gi is the gauge observation; Si is the satellite estimation; G is the mean of the gauge observation; S is the
mean of the satellite estimation; n is the number of observations; r is the linear correlation coefficient; σS is the
standard deviation of the satellite estimates; and σG is the standard deviation of the gauge observations.
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3.3. IDF Development

The main objective of this study is to assess the performance of CHIRPS in developing
IDF curves over an arid region with very limited ground-based observations and provide
an efficient alternative method. IDF is a graphical representation of the rainfall intensity
with its duration and annual frequency, which is developed using a theoretical distribution
that has a robust statistical background. The development of IDF curves involves finding
the best statistical distribution that explains the variability in the extreme precipitation
values for a given location. The first step is to apply the spatially distributed correction
factor to the CHIRPS dataset. The next step is to extract the annual maxima series (AMS) of
the rainfall event over a long period of time, which is enough to fit a theoretical extreme
distribution model. In this study, the AMS for six rainfall events (1-day to 6-day) for 41 years
(1981–2021) was used to fit a statistical distribution model. The spatially distributed IDF
analysis was conducted across the entire country to generate IDF curves for ungauged rural
areas. Additionally, IDF curves were developed for eight major cities in the UAE, offering
an alternative to the conventional point-based analysis. These cities include Al Ain, Abu
Dhabi, Ajman, Dubai, Fujairah, Ras Al Khaimah, Sharjah, and Umm Al Quwain.

This study assessed the suitability of commonly used theoretical distributions, recom-
mended by Ghebreyesus and Sharif [22], for analyzing extreme events in arid and semi-arid
regions. The aim was to identify the distribution that exhibits the best fit and adheres to
stringent “goodness-of-fit” criteria. We employed the GEV and Gumbel distributions from
the generalized extreme value (GEV) distribution family, and from the generalized Pareto
(GP) distribution family, the GP and exponential distributions were implemented. Most
extreme value distributions have three parameters that represent the location, scale, and
shape of the distribution. Gumbel is a special case of distribution in the GEV family in
which the shape parameter is zero, and the exponential distribution is a unique case of the
GP distribution family in which both the shape and scale parameters are assumed to be
zero. The estimation of the parameters was performed using the generalized maximum
likelihood estimation (GMLE) method, which has proven to be the best method for data
with small sample sizes, as in the case of developing IDFs [42,43]. The goodness of fit of
the four theoretical distributions was evaluated using the Kolmogorov–Smirnov test [44].
This widely used non-parametric test is popular across diverse disciplines due to its in-
dependence from the underlying distribution. Moreover, the test is robust and has less
sensitivity to outliers at each tail of the distribution. The methodology followed for this
study is summarized in Figure 3. The IDF curves were developed for common return
periods, which represent the probability of the recurrence of storm events.
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4. Results and Discussion
4.1. Bias Correction

The CHIRPS data bias was adjusted using observational data from 54 rain gauge
stations in order to improve its accuracy. The bias correction factor was determined by
comparing the CHIRPS estimates with the rain gauge observations. The effectiveness of the
correction factor is summarized in Table 2, which provides the details of its performance.
During the calibration phase, the bias correction factor displayed a remarkably high cor-
relation coefficient of 0.84. In the subsequent validation phase, the correlation coefficient
was still significant at 0.63. This indicates that the correction factor performed well in terms
of aligning the CHIRPS data with the observed values. The evaluation metrics presented
in the table, such as the KGE, NSE, and bias percentage, further support the excellent per-
formance of the correction factor. The presence of bias suggests that the CHIRPS product
tends to underestimate high-intensity precipitation over the UAE. This finding aligns with
previous studies that have assessed satellite-based precipitation products in the region.
It is worth noting that satellite-based precipitation products often struggle to accurately
capture heavy storms while tending to overestimate lighter storms, particularly in arid and
semi-arid regions (e.g., Alsumaiti, Hussein [11]; Ghebreyesus and Sharif [22]).

Table 2. Summary of the performance metrics for the calibration and validation phases.

Performance Metric Calibration Validation

Pearson Correlation Coefficient 0.84 0.63
Kling–Gupta Efficiency (KGE) 0.81 0.53
Nash–Sutcliffe Efficiency (NSE) 0.82 0.43
Percent Bias (%) 5.10 −13.20
Root Mean Square Error (mm) 1.68 10.80

Figure 4 presents the scatter plots of the rain gauge versus the satellite product
(CHIRPS) for both the calibrated and validated data. The scatter plots show that the
bias correction improved the CHIRPS product as the correlation increased.
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Overall, the CHIRPS product underestimated the extreme events across the country,
as shown in the spatial distribution of the bias correction. The average bias factor across the
country was 3.25, ranging from as low as 1.5 in the northeastern part of the country to as
high as 5.25 in the southern part of the country, as shown in Figure 5. However, the southern
and western parts of the country showed the highest underestimation. This is because
these regions are the driest parts of the country. The product performed better in capturing
the extreme events in the northeastern part of the country, where the annual average
rainfall is the highest. The CHIRPS dataset has been documented to have limitations in
capturing extreme events in arid and semi-arid areas, which are considered one of its main
weaknesses [45]. The reason for this could be the high intensity and short duration of
the rainfall in arid and semi-arid regions. This behavior is not unique to CHIRPS; most
satellite-based precipitation products have the same problem [11,46].
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4.2. Development of IDF Curves

The process of the IDF’s development involved a systematic approach, as outlined
in Section 3. The results of the analysis, illustrated below, signify the successful imple-
mentation of the IDF curve development process. The study findings provide valuable
insights into extreme rainfall characteristics, distribution models, and spatial patterns
within the UAE.

4.2.1. Fitting Statistical Distributions

The different storm event durations were fitted to four theoretical extreme value
distributions. The best distribution that represents the distribution of the AMS was selected
using performance criteria. The most widely used performance criteria to assess the
goodness of distribution are the Bayesian information criterion (BIC) and the Akaike
information criterion (AIC). The best distribution that fits the AMS was found to be the
Gumbel distribution in the majority of the country over all the storm duration events.
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Interestingly, as the duration of the storm event increases, the Gumbel distribution becomes
the best distribution across the country (Figure 6). For the 1-day storm event, Gumbel was
found to have the best distribution in 52% of the country. This steadily increased to 74% as
the storm event duration increased to a 4-day event, then decreased.
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Figure 6. The spatial distribution of the suitable theoretical extreme distributions (generalized
extreme, GEV; Gumbel; generalized Pareto, GP; exponential) for different storm event durations
(1-day to 6-day) across the country (UAE).
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The Gumbel distribution demonstrated suitability across coastal areas and the north-
eastern region of the country. In contrast, the annual maximum series (AMS) of the southern
regions exhibited a stronger correlation with the GEV distribution. Overall, the GP and
exponential distributions displayed the weakest correlations across the entire country for
all storm event durations. These findings align with previous studies conducted in the
country (Sherif, Chowdhury [47]; Almheiri, Rustum [48]). The GEV distribution family
proved to be a more suitable model for AMS in arid and semi-arid regions compared to the
GP distribution family.

Violin plots were utilized to visualize the distributions of the AIC and BIC across all
durations, as depicted in Figure 7. It is important to note that when employing the AIC
and BIC for model selection, the parameter value itself does not hold significant meaning;
however, the model with the lowest values indicates the best fit. In Figure 7, it is evident
that the GEV and Gumbel distributions exhibit the lowest mean and median values for
both the AIC and BIC. Upon comparing the means and medians of these distributions, the
Gumbel distribution consistently demonstrates the lowest AIC and BIC values across all
storm durations. On the other hand, the exponential distribution represents the weakest
fit. The observed increase in the AIC and BIC values with longer storm durations can be
attributed to the higher volume of precipitation during those periods.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 20 
 

 

Violin plots were utilized to visualize the distributions of the AIC and BIC across all 
durations, as depicted in Figure 7. It is important to note that when employing the AIC 
and BIC for model selection, the parameter value itself does not hold significant meaning; 
however, the model with the lowest values indicates the best fit. In Figure 7, it is evident 
that the GEV and Gumbel distributions exhibit the lowest mean and median values for 
both the AIC and BIC. Upon comparing the means and medians of these distributions, the 
Gumbel distribution consistently demonstrates the lowest AIC and BIC values across all 
storm durations. On the other hand, the exponential distribution represents the weakest 
fit. The observed increase in the AIC and BIC values with longer storm durations can be 
attributed to the higher volume of precipitation during those periods. 

 

Figure 7. The violin diagram showing the results of the performance criteria (Bayesian information 
criterion and Akaike information criterion) used to evaluate the goodness of fit of the four theoretical 
distributions (GEV, Gumbel, GP, and exponential) tested across the country (UAE). 

Given its dominance and superior goodness of fit across most of the country for all 
storm event durations, the Gumbel distribution was selected as the primary model for 
developing IDF curves. The statistical significance of the Gumbel distribution was rigor-
ously evaluated using the Kolmogorov–Smirnov test. The results revealed that the Gum-
bel distribution adequately fit the event distribution in over 96% of the country for all 
storm event durations. To further assess the statistical significance across different loca-
tions, the spatial distribution was examined, as depicted in Figure 8. It was observed that 
areas lacking statistical significance were primarily concentrated in the western region of 
the country. This observation aligns with expectations, as the western part is known to be 
the driest area within the country. 
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distributions (GEV, Gumbel, GP, and exponential) tested across the country (UAE).

Given its dominance and superior goodness of fit across most of the country for
all storm event durations, the Gumbel distribution was selected as the primary model
for developing IDF curves. The statistical significance of the Gumbel distribution was
rigorously evaluated using the Kolmogorov–Smirnov test. The results revealed that the
Gumbel distribution adequately fit the event distribution in over 96% of the country for all
storm event durations. To further assess the statistical significance across different locations,
the spatial distribution was examined, as depicted in Figure 8. It was observed that areas
lacking statistical significance were primarily concentrated in the western region of the
country. This observation aligns with expectations, as the western part is known to be the
driest area within the country.
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4.2.2. Developing the IDF Curves

The IDF curves of eight major cities in the UAE were developed using the methodology
described in Section 2. The IDF curves developed using 41 years of CHIRPS data for
different storm event durations with different return periods are shown in Figure 9. The
southwestern part of the country had the lowest IDF precipitation intensities, and the
highest were observed in the northern region. Al Ain, the only inland city analyzed,
was found to have the lowest IDF rainfall intensity. Ras Al Khaimah exhibits the highest
rainfall intensity for all storm event durations. This could be due to the Al Hajar mountain
chain causing orographic rainfall with winds coming from the Gulf of Oman. Sherif and
Chowdhury [47] found a similar pattern of IDF curve distribution across the country after
developing IDF curves using rain gauges. The coastal cities also experienced relatively
higher intensities than the inland areas. The main reason for this is that the northwesterly
winds bring moisture from the Arabian Gulf and lose the majority of their water content in
the coastal area before traveling southward [49].
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Figure 9. The IDF curves of the eight major cities (Alin, Abu Dhabi, Ajman, Dubai, Fujairah, Ras Al
Khaimah, Sharjah, and Umm Al Quwain) of the UAE for a storm event duration ranging from 1 days
to 7 days for different return period frequencies (both axes are on a logarithmic scale).

The spatial distribution of IDF values aligns seamlessly with the findings of the
nationwide IDF analysis. Figure 10 illustrates the spatial distribution of IDF curves for
the 1-day storm event across various return periods (10, 25, 50, and 100 years). The
spatial pattern reveals that the northeastern region of the UAE, encompassing the Al Hajar
Mountain range, consistently exhibits the highest rainfall intensity for all storm event
durations. The coastal areas along the Arabian Gulf also demonstrate relatively higher
rainfall intensities. Conversely, as anticipated, the southern inland regions consistently
exhibit the lowest rainfall intensities across all storm event durations. Similar spatial
distributions are observed for durations ranging from 2 to 6 days.
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5. Conclusions

The recent occurrence of flooding events in the Middle East has brought significant
attention to the issue of the assessment of urban flooding, particularly in the United Arab
Emirates (UAE). These events have highlighted the vulnerability of coastal regions of the
UAE to the impacts of extreme weather events, necessitating a comprehensive evaluation
of the risks associated with storms that cause coastal flooding. The exponential growth
of urban areas in the UAE has resulted in substantial changes to the landscape and land
use patterns. These transformations have led to modifications in surface characteristics,
such as increased impervious surfaces, altered drainage patterns, and modifications to
natural waterways. These changes, combined with recent climatic changes, necessitate a
substantial reform in the approach and frequency of developing and updating IDF curves.

This study introduces a new methodology for developing and updating intensity–
duration–frequency (IDF) curves, leveraging a satellite-based precipitation product. Specif-
ically, the CHIRPS dataset was chosen for its extensive historical records, spanning back
to 1981. The proposed procedure entails addressing the bias correction of CHIRPS as the
initial step, followed by fitting the AMS to a theoretical extreme distribution statistical
model. A notable advantage of this methodology is its compatibility with regular updates
of IDF curves using more recent datasets. This holds significant importance, particularly
in light of incorporating the impacts of rainfall enhancement efforts. A crucial step in the
study involved the application of a bias correction factor to the CHIRPS data, yielding
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notable improvements in capturing extreme events throughout the country. The correla-
tion between the original data was enhanced from 0.48 to 0.84, showcasing the efficacy
of the correction process. Additionally, when comparing the corrected data to validated
observations, a correlation of 0.63 was achieved, further validating the accuracy of the
methodology. To determine the most suitable theoretical distribution for the UAE, various
statistical models were evaluated using criteria such as the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC). Among the models considered, the
Gumbel distribution emerged as the most appropriate for the majority of the country and
across all storm event durations. This selection was driven by the Gumbel distribution con-
sistently exhibiting the lowest AIC and BIC values, indicating a superior fit to the observed
data. The results demonstrated that the fit of the Gumbel distribution was deemed suitable
for all storm events across over 96% of the country at the 5% significance level. This finding
supports the reliability and applicability of the Gumbel distribution in representing the
extreme rainfall characteristics in the UAE.

The similarity in shape between the CHIRPS-derived IDF curves and those obtained
from rain gauges underscores the reliability of CHIRPS as a data source. The northeastern
region, influenced by the Al Hajar mountain chain, experiences the highest IDF intensities
due to orographic rainfall. Conversely, the southern inland regions, characterized by
aridity, exhibit the lowest IDF intensities. These findings contribute to a comprehensive
understanding of rainfall patterns in the UAE and facilitate more effective planning and
management of water resources and infrastructure.

This study highlights the immense potential of the CHIRPS dataset for developing
IDF curves, owing to its rich historical data and high spatial resolution. The necessity of
performing a bias correction is emphasized, underscoring the importance of adjusting the
CHIRPS dataset to enhance its accuracy. The choice of adjustment technique should be
tailored to the intended purpose of the dataset’s application, ensuring its suitability and
reliability. By employing these considerations, this study establishes a robust foundation
for utilizing the CHIRPS dataset in IDF curve development. Furthermore, it is worth
considering the enhancement of the CHIRPS product through the application of machine
learning techniques and its integration with other remote sensing rainfall products, such as
the GPM-IMERG.

The selection of the most appropriate adjustment technique for the CHIRPS dataset
should be guided by the specific application in which the data will be used. The adjust-
ment process should carefully consider the unique characteristics and requirements of
the case at hand’s intended use. This tailored approach ensures that the CHIRPS dataset
is appropriately adjusted to meet the demands of IDF curve development, facilitating
precise and reliable estimates of extreme rainfall events. Given the dynamic nature of the
UAE’s urban landscape, climatic variability and changes, and the ongoing efforts in rainfall
enhancement, it is crucial to increase the frequency of IDF curve updates. The regular
monitoring of rainfall data, analyses of historical and real-time rainfall patterns, and the
incorporation of climate change projections are essential components of an effective and
adaptive IDF curve development process.

By implementing a comprehensive overhaul of IDF curve development and update
procedures, the UAE can effectively align its flood risk management strategies with the
evolving realities of climate change. Accurate and up-to-date IDF curves are indispensable
for informed infrastructure design, land use planning, and emergency preparedness. Em-
bracing this reform will empower the UAE to enhance its resilience to shifting precipitation
patterns and safeguard its communities and critical assets from the escalating impacts of
extreme weather events.
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