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Abstract: Citrus is an important commercial crop in many areas. The management and planning of
citrus growing can be supported by timely and efficient monitoring of citrus-growing regions. Their
complex planting structure and the weather are likely to cause problems for extracting citrus-growing
regions from remote sensing images. To accurately extract citrus-growing regions, deep learning
is employed, because it has a strong feature representation ability and can obtain rich semantic
information. A novel model for extracting citrus-growing regions by UNet that incorporates an image
pyramid structure is proposed on the basis of the Sentinel-2 satellite imagery. A pyramid-structured
encoder, a decoder, and multiscale skip connections are the three main components of the model.
Additionally, atrous spatial pyramid pooling is used to prevent information loss and improve the
ability to learn spatial features. The experimental results show that the proposed model has the best
performance, with the precision, the intersection over union, the recall, and the F1-score reaching
88.96%, 73.22%, 80.55%, and 84.54%, respectively. The extracted citrus-growing regions have regular
boundaries and complete parcels. Furthermore, the proposed model has greater overall accuracy,
kappa, producer accuracy, and user accuracy than the object-oriented random forest algorithm that is
widely applied in various fields. Overall, the proposed method shows a better generalization ability,
higher robustness, greater accuracy, and less fragmented extraction results. This research can support
the rapid and accurate mapping of large-scale citrus-growing regions.

Keywords: Sentinel-2 satellite remote sensing; deep learning; extracting citrus-growing regions;
UNet; image pyramid; atrous spatial pyramid pooling

1. Introduction

Citrus is an important commercial crop that plays a crucial role in boosting the local
economy [1]. Rapid monitoring of the distribution and changes in citrus-growing regions
is significant for the management and development of citrus production. However, a
traditional field survey requires considerable time and workforce. Effective and periodic
monitoring of the vast citrus-growing regions is a challenge. The technology of satellite
remote sensing provides support for rapidly collecting detailed surface information on a
large scale, which can be employed to monitor and analyze the growth of citrus and predict
citrus production.

Considering the ability of remote sensing to classify different land covers, current
research relies on spectral information obtained from satellite or drone imagery to identify
some crops [2]. Some research detected citrus and other crop trees from UAV images
using a CNN algorithm, with the aim of obtaining localized and refined results [3]. But
for large-scale mapping, satellite imagery is more accessible than drones. Wei et al. [4]
identified maize, rice, and soybean using random forest (RF) algorithms and Sentinel-2
time series data. Several studies have utilized the time series SAVI and OSAVI to improve
crop mapping [5]. Constructing crop-sensitive time series vegetation indices can amplify
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differences to facilitate the identification tasks [6]. However, the identification process is
usually difficult because of the complexity of agricultural farming patterns and the limited
amount of remote sensing data, due to overcast weather [7–9]. The effective use of spatial
features is a promising idea for crop classification in such challenging areas.

Object-oriented methods have been widely applied to classify different land covers.
Given that cropland appears in images as regular geometric shapes with specific textures,
object-oriented methods analyze “objects in space” rather than “pixels in space”, which
can learn the spatial information of croplands and suppress salt-and-pepper noise to some
extent [10,11]. Luo et al. [12] verified the feasibility of the object-oriented RF algorithm
on Google Earth Engine using temporal Sentinel-1 images. However, the object-oriented
approach essentially does not consider the contextual semantic information contained in
images and ignores the high-level features among objects. The object units obtained via the
object-oriented approach are often inconsistent with the morphology that people expect for
the actual target features.

Deep learning methods have the capability of acquiring the contextual information of
each pixel to enhance performance and reduce noise, with great robustness in complex and
various situations. Du et al. [13] employed Cropland Data Layer and Landsat time series
images to train UNet for extracting Arkansas rice and confirmed that UNet outperformed
RF in most cases. Gadiraju et al. [14] presented a deep learning scheme with multimodal
inputs, such as spectral, spatial, and climatic information, to distinguish crop types, thereby
reducing the prediction error by 60%. Bian et al. [15] designed CACPU-Net for crop
mapping based on a Sentinel-2 autumn remote sensing image, adding an attention module
and a difficulty-focused module to focus on the extraction of difficult regions for optimizing
the final results.

Currently, buildings, water bodies, and some field crops remain the main targets
for deep learning-based remote sensing semantic segmentation, while little research has
been conducted on orchards. Orchards are often distributed in hilly areas with foggy and
cloudy climates, which pose difficulties for providing time series data for deep learning
models [16]. The deep learning semantic segmentation networks enable the extraction of
fruit trees, such as banana and kiwifruit, from UAV images [17,18]. For large-scale areas, it
is undoubtedly costly to collect UAV images. Some studies have achieved the mapping of
poplar, willow, and palm trees using Sentinel-2 satellite images. However, it is challenging
to extract citrus orchards due to their complex planting structures with other neighboring
crops [19,20]. How to extract citrus orchards by making the best use of the structure and
spectral information of planting regions under the influence of complex planting structures
and the limited amount of remote sensing data affected by cloudy and rainy weather is the
focus of this study.

For accurately mapping the distribution of citrus-growing regions, a method of deep
learning is proposed for acquiring citrus orchards using Sentinel-2 remote sensing im-
ages. The UNet model is improved by combining the idea of an image pyramid based
on the selected spectral bands and indices. In addition, the multiscale spatial informa-
tion of citrus-growing regions is derived by atrous spatial pyramid pooling (ASPP). The
proposed method is implemented on images of different areas and times and compared
with other models. The evaluation results demonstrate that the model improves the ex-
traction accuracy and the generalization ability and has the potential for citrus-growing
region extraction.

The major contents of the rest of the paper are as follows: firstly, the study area and
datasets are introduced in Section 2; next, the involved methodology and principles are
described in Section 3; then, the experiments and the experimental results are shown in
Section 4; and finally, the discussion and conclusion are given in Sections 5 and 6.
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2. Study Area and Datasets
2.1. Study Area

The main area for collecting training samples is located in Xinping County, Yuxi City,
Yunnan Province, China. The areas for acquiring test samples are situated in Binchuan
and Longling counties in Yunnan Province, China. Xinping is located in the southwestern
part of central Yunnan Province, belonging to the temperate climate zone. The terrain is
mainly mountainous, with the altitude ranging from 422 m to 3165.9 m. Influenced by the
altitude, three types of climates are formed in the area: the high-temperature zone in the
river valley, the warm-temperature zone in the mid-mountains, and the low-temperature
zone in the high mountains. Xinping has an annual precipitation of 869 mm, and the rainy
season is concentrated from April to October, with a total of 2838.7 h of sunshine. Longling
County is situated along the valley of the Nu River, and Binchuan County is located in the
valley of the south bank of the Jinsha River. The study area has good conditions, such as
sufficient light, abundant precipitation, an obvious three-dimensional climate, and typical
mountainous agricultural characteristics, for citrus cultivation.

The agricultural cropping structure in the study area is complex, with the extensive
cultivation of corn, rice, potatoes, soybeans, wheat, and other crops, in addition to citrus.
Figure 1a–c show overview maps of the study area. Figure 1d,e show Google Earth images
covering the citrus-growing regions and other croplands in the Xinping and Longling
counties, and their locations are marked with yellow dots in Figure 1a,b.
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Figure 1. Geographical map of the study and test areas. (a) Xinping County. (b) Part of Longling
County. (c) Part of Binchuan County. (d) Citrus-growing regions from different citrus orchards in
Xinping and Longling counties, which are green to dark green with a uniform texture. The gaps
between the citrus trees are large or small, regularly arranged in blocks, and separated by paths.
(e) Other croplands from Xinping County, which are tawny or light green in color and are generally
regular rectangular plots with a uniform texture and few gaps. Some crops have a similar texture to
citrus trees and are well dispersed.

2.2. Study Data
2.2.1. Satellite Imagery

The Sentinel-2 satellite imagery is obtained from the website of the European Space
Agency. The growth period of citrus is from February to October. The weather from April to
October in the study area is influenced by the rainy season, and the images acquired during
this period are heavily cloud obscured, which affects the extraction of citrus-growing
regions. Therefore, the following data are selected under the consideration of images with
little or no cloud cover: (1) Phase 3 on 30 March 2020 (Xinping); (2) Phase 2 on 13 March
2021 (Longling area); (3) Phase 1 on 15 March 2020 (Binchuan area). Sentinel-2 images
have 13 spectral bands with three different spatial resolutions (10, 20, and 60 m), including
three red-edge bands. These red-edge bands are very useful to monitor crop health and
identify vegetation cover [21]. To obtain the true reflectance of the surface, this study uses
the Sen2Cor plug-in to process the Level 1C images into Level 2A images and resample
all bands to 10 m. Because the study area is characterized by large topographic relief,
radiometric inconsistencies occur when imaging shaded and sunny slopes. The Teillet
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model in the topographic correction extension module of ENVI 5.3 is adopted to perform
topographic corrections.

2.2.2. Dataset Construction

The labeling data in this study are obtained from the field survey of citrus-growing
regions and visual interpretation results from Google Maps. Figure 1a–c illustrate the image
and data division. Images are clipped into patches of 256 × 256 size with 50% overlap to
minimize any boundary discontinuities. Given that a considerable background in the study
area is likely to hinder the model in learning positive categories, most negative samples
are eliminated, leaving the number of positive and negative samples at approximately 1:1.
Then, the data are augmented through geometric transformations to obtain a collection of
1372 image blocks. These image blocks are randomly assigned to the training and validation
sets at a ratio of 8:2.

3. Methods
3.1. Calculating Spectral Indices

Difficulties and errors in identifying citrus orchards often occur in areas covered by
vegetation, and the construction of vegetation indices can utilize spectral differences to
expand the distinction between vegetation types. On the basis of the growth characteristics
of citrus and existing research [22,23], nine spectral indices and five red-edge indices are
calculated using nine bands (B2–B8, B11 and B12) of Sentinel-2. The spectral indices include
RVI, DVI, EVI, NDVI, GNDVI, GCVI, SAVI, OSAVI, and MSAVI. The vegetation red-edge
channel is unique to Sentinel-2 imagery and facilitates the differentiation of vegetation
species. The introduction of the red-edge index can take full advantage of the red-edge
bands for distinguishing various crops effectively [24]. To assess the performance of the
red-edge data for extracting citrus orchards, NDre and NDVIre are derived using three
red-edge bands.

3.2. Selecting Spectral Indices

The introduction of excessive indices can lead to model redundancy and affect the
results. In this study, the 14 citrus-related vegetation indices mentioned in Section 3.1 are
considered, and the highest-scoring vegetation indices are selected to be input into the
subsequent neural network. The Relief F algorithm [25] is a filtered feature preselection
algorithm, meaning that feature selection is performed before training the learner and the
feature selection process is independent of the learner. This algorithm makes it easy to
obtain the optimal citrus feature space before model training. Relief F is an extension of
the Relief algorithm, which works well for multiclassification issues [26]. The algorithm
has high robustness and is appropriate for handling noisy and partial data [27]. The main
types in this study area are forest, farmland, grassland, citrus orchards, and bare land. A
test sample R is randomly selected from the sample set, and k nearest neighbors of sample
R are searched. From the remaining four groups of samples of the different types, k nearest
neighbor samples of the different types are taken. The weight of each feature is determined
by comparing the distances between sample features of the same and different types. A
feature F whose weight increases when the distance of different category samples is larger
than the distance of the same category samples, indicating that the feature is meaningful
for classification, is considered. After T iterations, the average weight of each feature is
obtained as the final weight [28]. The weights are calculated as follows:

ω(Fi) = ω(Fi)−
1

T · k ∑ h∈H | Ri − hi | +
1

T · k ∑ m∈M| Ri − mi | , (1)

where ω(Fi) denotes the weight assigned to the ith feature, and k is the amount of nearest
samples. ∑ h∈H | Ri − hi | is the distance sum of sample R and the selected k nearest samples
of the same types in terms of the ith feature. ∑ m∈M| Ri − mi | denotes the distance sum of
sample R and the k nearest samples of different types in terms of the ith feature.
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Additionally, the correlation between these 14 vegetation indices is evaluated using the
Pearson correlation coefficient [29]. The correlation coefficients are calculated as follows:

rpearson =
Σ(xi − X)(yi − Y)√

Σ(xi − X)2 · Σ(yi − Y)2
, (2)

where rpearson means the Pearson correlation coefficient, and i represents the number of
the sample point. x and y represent two different features, X denotes the mean of x, and Y
denotes the mean of y.

3.3. Improving the UNet Model by Incorporating the Image Pyramid

For complex planting structures, semantic segmentation networks are more capable of
considering neighboring pixels and aggregating contextual information than other methods,
such as the object-oriented method. How to utilize the limited data is critical when only a
few images are available.

The UNet model has relatively high accuracy with a small sample size, and it has skip
connections that combine deep and shallow features [30]. During feature extraction, simple
image attributes, such as color, borders, and other elements, are captured by the shallow
structure. Deep structures with a large valid receptive field (VRF) and added convolutional
operations are able to capture deep semantic information within the image. This study
makes improvement on the basis of the UNet model using the pretrained three-layer
Residual Networks 50 (ResNet50) on the ImageNet dataset as the encoder. The proposed
architecture is depicted in Figure 2.
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In the trunk part, the image blocks with the selected features are used as inputs to the
network. The 256 × 256 VRF happens to completely cover the citrus-growing area, allowing
the model to learn planting structure information from the global perspective, such as the
small amount of wild forest vegetation and scattered houses inhabited by irrigators that are
usually distributed around citrus orchards. ASPP is added after the three-layer ResNet50
to capture contextual information on multiple scales.

The ASPP module is derived from the DeepLab model. A pyramid structure is con-
structed by pooling and using a number of parallel atrous convolutions with varying dilation
rates [31,32]. This module can enlarge the VRF and obtain multiscale information [33].

Inspired by the image pyramid and the multiscale training architecture of Ding
et al. [34], two segmentation branches are designed in the second part of the model to
obtain detailed information from the cropped image blocks for supplementation. This
module is only suitable for learning the texture and spectral information of small image
blocks. ASPP is not added to lower the training cost. First, the image blocks are segmented
into 128 × 128 and 64 × 64 sizes and fed into two encoders separately. Then, to integrate
the features, this study designs a feature fusion module after the encoders, as depicted in
Figure 3. The general idea of the feature fusion module is to supplement the loss of detail
in the trunk parts with information from the branches. To facilitate data transmission, these
branch feature graphs are recovered to their original 256 × 256 size, and then combined
via pixel addition for information enhancement. To avoid an excessive data volume, the
outputs of the trunk and branches are downscaled using Conv1 × 1. Finally, the informa-
tion of the branch and the trunk is integrated via channels concatenation. In addition, the
segmentation branch uses the skip connections and restores the image size at the decoder
to fuse the multiscale information. The proposed architecture is able to learn features from
multiple levels for accurate semantic segmentation.
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3.4. Model Setting and Compiling
3.4.1. Loss Function

Adding weights to the cross-entropy loss is expected to deal with the data imbalance
of different categories. In consideration of the imbalance of the dataset, the weighted
cross-entropy loss is employed to assign higher weights to citrus-growing regions with
fewer appearances. The loss expression is the following:

L = −∑N
n=1 wnynlog(pn), (3)

where pn is the vector containing the predicted probabilities of category n, yn is a one-hot
vector with elements having only 1 and 0, and N is the number of categories.

The frequency of occurrence of class pixels is inversely proportional to the weights of
each category. As suggested in [35], the class weights are assigned as follows:

wn =
1

ln(1.02 + βn)
, (4)

where wn is the weight of category n, and βn is the frequency of occurrence of category n.

3.4.2. Building the Model

In this study, the models are performed using Python 3.7.13 and PyTorch 1.11.0 on a
computer with Intel(R) Core(TM) I7-12700H CPU @ 4.70 GHz, 16.0 GB RAM, and NVIDIA
GeForce RTX 3060 GPU, with 6.0 GB memory. Because the Adam optimizer performs well
with remote sensing data [36], it is used in this study for model training [37]. Based on the
tuning results in Figure 4 and GPU memory, the batch size is 4, and the initial learning rate
is 1 × 10−4. According to loss convergence, the number of training epochs is set to 80. In
addition, this study tests various learning rate schedulers before setting a schedule and
searches for the optimal regulation frequency between 10 and 30 epochs. Lastly, a scheduler
that reduces the learning rate to one-tenth of the current every 25 epochs is set up.
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3.5. Evaluation Metrics

As mentioned in the above section, the training images are split into training and
validation data in this study. The test data derived from three different areas are used to
precisely assess the different models in practice. The evaluation metrics of precision, recall,
F1-score, and intersection over union (IoU) are employed, as shown in Formulas (5)–(8).
These assessment metrics are widely utilized in semantic segmentation tasks. The F1-score,
which accurately displays the model’s performance on unbalanced datasets, is the harmonic
mean of precision and recall [38].

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 − Score =
2 × TP

2 × TP + FN + FP
, (7)

IoU =
TP

TP + FN + FP
, (8)

where TP denotes the amount of pixels correctly classified as citrus-growing regions, FP is
the amount of background pixels wrongly judged as citrus-growing regions, and FN is the
amount of citrus pixels misclassified as the background.

4. Results
4.1. Selecting Spectral Features

On the basis of the Relief F algorithm, a total of 1200 sample points are randomly
selected from the Sentinel-2 image for spectral index selection. The area of each sample
is consistent with the area of one pixel of the image, which is 10 m × 10 m. The samples
include the five categories of forest, farmland, bareland, grassland, and citrus orchard,
derived from ground truth data and a visual interpretation of Google Maps, with exactly
240 points in each type. The results of the importance evaluation are shown in Figure 5.
From the 14 vegetation indices, the 3 indices with the highest importance are selected,
namely, RVI, Ndre2, and NDVI. The local images can be seen in Figure 6. Figure 7 shows the
results of the correlation analysis for all features, with the three most important vegetation
indices having relatively low correlations between themselves. The final selected features
and the corresponding formulas are shown in Table 1.

Table 1. Selected features and corresponding formulas.

Feature Calculation Formula

Bands B2, B3, B4, B5, B6, B7, B8, B11, B12
Ratio vegetation index (RVI) RVI = B8/B4

Normalized difference red edge index 2 (NDre2) NDre2 = (B7 − B5)/(B7 + B5)
Normalized difference vegetation index (NDVI) NDVI = (B8 − B4)/(B8 + B4)



Remote Sens. 2024, 16, 36 10 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Weights of features. 

 

Figure 5. Weights of features.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 21 
 

 

 

 
(a) Xinping 

Figure 6. Cont.



Remote Sens. 2024, 16, 36 11 of 21
Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
 (b) RGB (c) NDVI (d) RVI (e) Ndre2 

Figure 6. Local visualization of selected vegetation indices. The locations of the image blocks are 
shown by the black boxed lines 

 
Figure 7. Pearson’s correlation of features. 

Table 1. Selected features and corresponding formulas. 

Figure 6. Local visualization of selected vegetation indices. The locations of the image blocks are
shown by the black boxed lines.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

(a) Xinping 

 
 (b) RGB (c) NDVI (d) RVI (e) Ndre2 

Figure 6. Local visualization of selected vegetation indices. The locations of the image blocks are 
shown by the black boxed lines 

 
Figure 7. Pearson’s correlation of features. Figure 7. Pearson’s correlation of features.



Remote Sens. 2024, 16, 36 12 of 21

4.2. Comparison of Models

To assess the effectiveness and accuracy of the method used in this research, several
classical semantic segmentation models are employed for comparison, namely, UNet [39],
PSPNet [40], DeepLabv3 [32], DeepLabv3+ [41], and MANet [42]. The model is trained with
the parameters mentioned in Section 3.4, using Resnet50 as the backbone of the semantic
segmentation model. Table 2 shows the results of the citrus-growing regions extracted by
different models.

Table 2. Comparison of different model results.

Precision IoU F1-Score Recall

PSPNet 90.31% 59.43% 74.56% 63.48%
MANet 86.52% 64.69% 78.75% 72.25%

Deeplabv3 89.81% 65.29% 79.01% 70.52%
Deeplabv3+ 89.97% 62.73% 77.10% 67.45%

UNet 85.74% 68.43% 81.26% 77.22%
Ours 88.96% 73.22% 84.54% 80.55%

Note: Bold numbers indicate the highest values in each column.

The proposed method has the highest performance with an IoU of 73.22%, an F1-score
of 84.54%, and a recall of 80.55%. Compared with UNet, the proposed model enhances the
precision by 3.22%, the IoU by 4.79%, the F1-score by 3.28%, and the recall by 3.33%. In
terms of IoU and recall, the proposed model outweighs the other five models by more than
3%. Although PSPNet receives the highest precision, the others have the lowest. Regarding
the F1-score, PSPNet, MANet, DeepLabv3, and DeepLabv3+ do not reach 80%.

To visualize and analyze the extraction results of citrus-growing regions, the results of
four image blocks from the test set are compared with the true-color images, false-color
images, and ground-truth labels. The locations of the image blocks and a comparison of the
extraction results of each model are shown in Figure 8, where the white area represents the
citrus-growing regions, and the black color is the background. Figure 8 indicates that all
models basically extract the citrus-growing regions with different degrees of commission
and omission errors. Among all the models, the proposed method yields predictions that
are closest to the real labels, improving the degree of the fragmentation of the boundary
recognized by the UNet model, with a smaller error. By contrast, PSPNet and DeepLab
V3 have the worst results in recognizing the boundaries of the citrus-growing regions;
they cannot accurately identify the irregular boundaries, with some details lost. DeepLab
V3+ improves the results on the boundary compared with the previous two models but
has more serious commission and omission errors. The performance of MANet on the
boundaries is similar to that of DeepLab V3+ with the same problem of commission and
omission errors. Overall, the proposed method can identify the boundary most accurately
and can fully utilize the spatial information to reduce the generation of commission and
omission errors to improve the extraction accuracy.
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4.3. Ablation Experiments

In order to comprehensively evaluate the performance of the model, this study designs
ablation experiments regarding the structure of model, the introduction of different modules
and loss functions. Similarly, the results of the experiments are evaluated through the
metrics of the test set.

4.3.1. Effectiveness for the Image Pyramid Structure and ASPP

In this study, ablation experiments are conducted using UNet as a benchmark to vali-
date the effectiveness of the image pyramid structure and the ASPP module in enhancing
the extraction of citrus-growing regions. Table 3 exhibits the results of the experiments,
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from which the pyramid structure and ASPP module improve the extraction accuracy.
Overall, the addition of the image pyramid structure improves the precision by 4.35%, the
F1-score by 1.06% and the IoU by 1.53%, but the recall is not as good as that of the UNet. The
IoU, the F1-score, and the recall of citrus-growing region extraction are improved by adding
the ASPP module to the UNet and the pyramid UNet. The extraction of citrus-growing
regions is also optimized via the addition of the image pyramid structure and the ASPP
module to the model.

Table 3. Results of ablation experiments.

Precision IoU F1-Score Recall

UNet 85.74% 68.43% 81.26% 77.22%
UNet_ASPP 90.09% 72.92% 84.34% 79.28%

Pyramid UNet 91.74% 69.96% 82.32% 74.66%
Pyramid UNet_ASPP (ours) 88.93% 73.22% 84.54% 80.55%

Note: Bold numbers indicate the highest values in each column.

4.3.2. Comparison of Different Modules

The comparative results of basic receptive field block (BasicRFB) [43], simple spatial
pyramid pooling fusion (SimSPPF) [44] and ASPP are exhibited in Table 4. The BasicRFB is
derived from RFBNet, which is a combination of the multi-branch convolution and atrous
convolution. The multi-branch convolution is mainly derived from GoogleNet [45] and
the atrous convolution from the idea of ASPP. The SimSPPF module is initially introduced
in YOLOv6, utilized to simplify the complexity of the model and reduce the inference
time [46]. Based on the results, the image pyramid UNet with ASPP obtains the highest
IoU, F1-score and recall, which are 73.22%, 84.54%, and 80.55%, respectively. Although
the image pyramid UNet with SimSPPF has the greatest precision of 91.06%, the other
three metrics are the lowest of these three models. Even though ASPP has the largest
number of parameters among the three modules, which would increase the burden of
model computation, ASPP is chosen to be added to the network in this study in order to
obtain the most accurate citrus-growing regions extraction results.

Table 4. Results of module ablation experiments.

Precision IoU F1-Score Recall

Pyramid UNet BasicRFB 89.13% 66.22% 79.68% 72.04%
Pyramid UNet SimSPPF 91.06% 61.30% 76.01% 65.23%

Pyramid UNet_ASPP (ours) 88.96% 73.22% 84.54% 80.55%
Note: Bold numbers indicate the highest values in each column.

4.3.3. Comparison of Loss

During the study, different loss functions are selected for ablation experiments, includ-
ing cross-entropy loss, weighted cross-entropy loss, dice loss [47], and IoU loss [48]. Table 5
shows the evaluation results, in which the three metrics received the highest scores when
using weighted cross-entropy as a loss function. Although, dice loss obtains the highest
accuracy in precision, several other metrics are inferior to weighted cross-entropy loss.
Thus, the weighted cross-entropy loss is suitable for the purpose of this study.

Table 5. Results of loss ablation experiments.

Precision IoU F1-Score Recall

Cross-entropy Loss 89.51% 67.32% 80.47% 73.09%
Dice Loss 92.27% 59.67% 74.74% 62.81%
IoU Loss 92.01% 67.37% 80.51% 71.55%

Weighted Cross-entropy Loss 88.96% 73.22% 84.54% 80.55%
Note: Bold numbers indicate the highest values in each column.
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4.4. Analysis of Results from Various Regions

The citrus-growing regions in the three study areas are extracted using the proposed
model, as shown in Figure 9. Owing to the multiscale feature capture structure, the location
and contours of citrus-growing regions in the study areas can be extracted accurately by the
proposed model. Figure 9a shows the extraction results for the whole county of Xinping.
Citrus-growing regions are mainly distributed on both sides of the river valley, with good
extraction results. Citrus-growing regions with a small area and scattered distribution
exist in the eastern county. The regional images in Figure 9b,c are the results of testing
the model. The extraction of the test area in Longling County (Figure 9b) shows that the
citrus-growing regions in this study area are concentrated in the river valley area, with only
a few scattered distributions throughout the map. The extraction results in Figure 9c of the
Binchuan test area demonstrate that more citrus-growing areas exist in the region, mainly
in the east–central part of the country, with the area of citrus plots gradually decreasing to
both sides. The proposed model obtains more reliable and complete extraction results on
the regions that are not involved in the training model, which indicates that the model has
a good generalization ability for various regions.
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4.5. Comparison with the Method of Object-Oriented RF

To verify the advantages of deep learning models for contextual information utilization,
the object-oriented RF algorithm is chosen to compare with the proposed model. The
training samples for the object-oriented RF are all from Xinping County imagery, and no
further samples are added from the test dataset in Longling and Binchuan. According to
the field survey and the interpretation on Google Maps, 2372 background and 530 citrus
samples are generated. The used spectral bands and indices of the object-oriented RF are
consistent with those of the proposed model. The proposed method outperforms the object-
oriented RF method, as shown in Table 6. It achieves greater than 85% for all evaluation
metrics, whereas the kappa and UA of the object-oriented RF cannot reach 50%.

Table 6. Results of the object-oriented RF and the proposed method. UA is the user accuracy, PA is
the producer accuracy, and OA is the overall accuracy.

Ours Object-Oriented RF

OA 97.28% 87.04%
Kappa 0.9051 0.4649

PA 97.27% 78.31%
UA 87.55% 40.19%

Note: Bold numbers indicate the highest values in each row.

Figure 10 shows the classification results of the object-oriented RF for citrus-growing
regions. The distribution trend in Figure 10a is roughly the same as that in Figure 9a, and
the citrus plots are uniformly dispersed in the river valley area. Compared with those in
Figure 9b,c, the detected citrus-growing regions in Figure 10b,c are significantly fewer and
not clustered, with smaller plot sizes. Local zoomed-in views of the extraction results are
also shown in Figures 9 and 10. The proposed model obtains more complete results in the
local areas in Figure 9a, whereas the object-oriented method has more mixed results in
Figure 10a, making the specific boundaries of the planting regions difficult to identify. The
citrus orchard in Figure 9b is fully identified, whereas the citrus orchard in Figure 10b is
only partially extracted. For the region in Figure 10c, the object-oriented method cannot
recognize the citrus-growing regions at all. The object-oriented classification is a process of
segmentation followed by classification, and the objects with irregularly structured features
are difficult to segment [49].
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5. Discussion
5.1. Validity of the Proposed Model

Deep learning has achieved significant results in various fields. However, specific
modifications must be made to improve results to implement deep learning in different
domains [15]. Currently, most deep learning-based semantic segmentation techniques (e.g.,
computer vision) utilize only the RGB bands of images. Remote sensing images contain rich
spectral information beneficial for distinguishing crops, but further research is needed to
utilize this information [19,50]. In this study, nine bands from Sentinel-2 satellite images are
employed to create three vegetation indices, which are selected using the Relief F algorithm.
As inspired by [34], the trunk part of the proposed model can acquire global information
and maintain the integrity of the extracted region boundaries, and the branch part can
retain and complement detailed local information, reducing the confusion and errors.

The study area consists of other vegetation and crops that are likely to pose difficulties
for the extraction of citrus-growing regions. The citrus-growing regions generally have
clear boundaries and a bigger area than other surrounding crops. The proposed method has
the structure of detail learning that helps differentiate other crops. The idea of combining
this model with the ASPP module is inspired by [51,52], and experiments confirm that
this combination is effective. The comparison shown in Figure 8f,g demonstrates that the
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proposed model can distinguish the borders of citrus-growing regions. Overall, a combina-
tion of modules improves the model to some extent. It is able to fulfill the requirement of
providing a fast extraction of citrus-growing regions with optimal results.

5.2. Extraction Model Transferability

The proposed model has acceptable spatial transferability. When transferring the
model to Longling for the extraction of citrus-growing regions without adding extra training
data to fine-tune the model, it can be found in Figure 9b that the citrus-growing regions
are intact with very little confusion. In fact, the citrus orchard in Longling and some citrus
orchards in Xinping are planted by the same company, which may make the citrus orchards
in the two regions have some similarity in planting structure. This result demonstrates that
this model is able to learn the planting structure of citrus planting regions.

However, the results in the Binchuan test area are fragmented, which can be attributed
to two possible reasons. First, the differences in the images acquired at different times
affects the results. Second, the citrus orchards in Binchuan are located in the suburbs,
and the images are influenced by the local climate and soil conditions [5]. The planting
structure is related to the neighboring crops of the local citrus orchards, which is different
from Xinping areas. As shown by the results in [53], the context information for each
domain is variable and unique. Therefore, the model can be fine-tuned with data to have
better transferability. The inclusion of multi-source data in the future is also expected to
uncover correlation features between different regions.

5.3. Computational Costs of Extraction Models

The number of parameters of all the models in the experiments is shown in Figure 11.
It can be seen that the parameters of the proposed model are relatively large with a higher
training cost [54]. However, the proposed model uses pre-training parameters that can
make the model converge faster. Since a lightweight high-accuracy model would be more
practical in production [55], the model will be light-weighted with guaranteed accuracy to
reduce training costs in future works.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 21 
 

 

of combining this model with the ASPP module is inspired by [51,52], and experiments 
confirm that this combination is effective. The comparison shown in Figure 8f,g demon-
strates that the proposed model can distinguish the borders of citrus-growing regions. 
Overall, a combination of modules improves the model to some extent. It is able to fulfill 
the requirement of providing a fast extraction of citrus-growing regions with optimal re-
sults. 

5.2. Extraction Model Transferability 
The proposed model has acceptable spatial transferability. When transferring the 

model to Longling for the extraction of citrus-growing regions without adding extra train-
ing data to fine-tune the model, it can be found in Figure 9b that the citrus-growing re-
gions are intact with very little confusion. In fact, the citrus orchard in Longling and some 
citrus orchards in Xinping are planted by the same company, which may make the citrus 
orchards in the two regions have some similarity in planting structure. This result demon-
strates that this model is able to learn the planting structure of citrus planting regions. 

However, the results in the Binchuan test area are fragmented, which can be at-
tributed to two possible reasons. First, the differences in the images acquired at different 
times affects the results. Second, the citrus orchards in Binchuan are located in the sub-
urbs, and the images are influenced by the local climate and soil conditions [5]. The plant-
ing structure is related to the neighboring crops of the local citrus orchards, which is dif-
ferent from Xinping areas. As shown by the results in [53], the context information for 
each domain is variable and unique. Therefore, the model can be fine-tuned with data to 
have better transferability. The inclusion of multi-source data in the future is also expected 
to uncover correlation features between different regions. 

5.3. Computational Costs of Extraction Models 
The number of parameters of all the models in the experiments is shown in Figure 

11. It can be seen that the parameters of the proposed model are relatively large with a 
higher training cost [54]. However, the proposed model uses pre-training parameters that 
can make the model converge faster. Since a lightweight high-accuracy model would be 
more practical in production [55], the model will be light-weighted with guaranteed ac-
curacy to reduce training costs in future works. 

 
Figure 11. Number of parameters for all models. 

6. Conclusions 
This work focuses on the difficulty of extracting citrus-growing regions with few 

available multispectral images and irregular planting structures. An improved model for 
citrus-growing region extraction based on UNet, combining the image pyramid and the 
ASPP module, is proposed. The spectral bands and indices selected from Sentinel-2 satel-
lite images are input into the model. This model consists of two parts, namely, the trunk 

Figure 11. Number of parameters for all models.

6. Conclusions

This work focuses on the difficulty of extracting citrus-growing regions with few
available multispectral images and irregular planting structures. An improved model
for citrus-growing region extraction based on UNet, combining the image pyramid and
the ASPP module, is proposed. The spectral bands and indices selected from Sentinel-2
satellite images are input into the model. This model consists of two parts, namely, the
trunk and branch parts. The trunk part is employed to increase VRF and obtain multiscale
spatial information, and the branch part can introduce detailed information to reduce
the errors in extracting citrus-growing regions. To confirm the effectiveness and strength
of the model, commonly used models, such as UNet, PSPNet, DeepLabv3, DeepLabv3+,
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MANet, and object-oriented RF models, are employed for the comparison of extracting
citrus-growing regions. By comparison with other classical semantic segmentation models,
the proposed model obtains the optimal extraction accuracy with a precision of 88.96%, an
IoU of 73.22%, a recall of 80.55%, and an F1-score of 84.54%, owing to the designed spatial
learning structure. The extraction results in this study have more complete boundaries
with fewer commission and omission errors. For various areas and images, this model has
a generalization capability to obtain more complete results. Moreover, by comparison with
the object-oriented RF, the object-oriented RF model is prone to make misclassifications in
the training areas and perform poorly in test areas, whereas the proposed model can obtain
smooth and accurate segmentation results in different areas. This result confirms that the
proposed method is robust and effective for the automatic extraction of citrus-growing
regions. However, this study has some problems that need further investigation. The
results are impacted by the discrepancies between the images that are obtained at various
times, as well as by the nearby plants that have spectral features and planting structures that
are similar to citrus plants. Future studies will solve the problem of distinguishing similar
crops from citrus orchards by trying more spectral combinations and adding multisource
data, such as radar data, topographic data, or environmental information.
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