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Abstract: Synthetic Aperture Radar (SAR) imagery is significant in remote sensing, but the limited
spatial resolution results in restricted detail and clarity. Current super-resolution methods confront
challenges such as complex network structure, insufficient sensing capability, and difficulty extracting
features with local and global dependencies. To address these challenges, DMSC-GAN, a SAR
image super-resolution technique based on the c-GAN framework, is introduced in this study.
The design objective of DMSC-GAN is to enhance the flexibility and controllability of the model
by utilizing conditional inputs to modulate the generated image features. The method uses an
encoder–decoder structure to construct a generator and introduces a feature extraction module that
combines convolutional operations with Deformable Multi-Head Self-Attention (DMSA). This module
can efficiently capture the features of objects of various shapes and extract important background
information needed to recover complex image textures. In addition, a multi-scale feature extraction
pyramid layer helps to capture image details at different scales. DMSC-GAN combines perceptual
loss and feature matching loss and, with the enhanced dual-scale discriminator, successfully extracts
features from SAR images for high-quality super-resolution reconstruction. Extensive experiments
confirm the excellent performance of DMSC-GAN, which significantly improves the spatial resolution
and visual quality of SAR images. This framework demonstrates strong capabilities and potential in
advancing super-resolution techniques for SAR images.

Keywords: super-resolution; Synthetic Aperture Radar (SAR); conditional Generative Adversarial
Network (c-GAN)

1. Introduction

Synthetic Aperture Radar (SAR) is a remote sensing technology based on phased-
array radar knowledge [1]. SAR generates Earth surface images by coherently processing
radar platform motion and multiple radar echoes. SAR exhibits the advantages of all-day,
all-weather imaging, making it widely applied and highly valuable in various fields such
as agriculture, disaster management, and marine monitoring [2,3]. However, inherent
constraints stemming from physical limitations and imaging parameters often impact
SAR images, leading to undesirable consequences such as reduced spatial resolution. To
surmount these limitations, advanced super-resolution (SR) techniques for SAR image
enhancement have been pursued by researchers. These techniques aim to generate high-
resolution images from low-resolution SAR images. The primary research objectives are
to improve the spatial resolution of SAR images, enhance spatial details, and surpass the
limitations imposed by imaging systems, thereby enhancing the visual quality of SAR images.

In the field of image SR, the task of Single-Image SR (SISR) [4] is regarded as complex
and challenging to recover a high-resolution image from a single low-resolution image
directly. This approach offers the advantage of efficiency. In practical scenarios, acquiring
multiple SAR images of the same target from different angles proves challenging, thus
leading to a primary focus on the SISR problem of SAR images. The mainstream SISR
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algorithms currently encompass interpolation-based, reconstruction-based, and learning-
based methods, each characterized by distinct attributes, advantages, and limitations.

The earliest methods applied to SR tasks were interpolation-based models. These
models utilize simple techniques such as bilinear interpolation [5], bicubic interpolation [6],
or nearest-neighbor interpolation [7] to generate images. These methods offer fast com-
putation by computing the relationships between neighboring pixels to determine the
target pixel values. However, they fail to recover high-frequency details, often resulting
in blurry output effectively. In response to the limitations of interpolation-based methods,
reconstruction-based approaches emerged. These approaches primarily rely on statistical
methods to determine pixel values by constructing statistical relationship equations be-
tween pixels. Examples of such approaches include maximum likelihood estimation [8] and
Bayesian estimation [9], which provide a rational statistical framework for SR. In compari-
son to interpolation-based methods, reconstruction-based methods generally yield sharper
images. However, these models exhibit higher computational complexity, sensitivity to
model assumptions, and limited generalization capability.

Significant advancements have been achieved in SR tasks in recent years through
using learning-based models, particularly those employing deep learning. SISR tasks have
predominantly embraced deep learning models as a mainstream approach. Within the
sphere of deep learning-based methods, three categories can be identified: convolutional
neural network (CNN) [10], self-attention mechanism (transformer) [11], and Generative
Adversarial Network (GAN) [12]. GAN is effectively applied for image generation by
generating realistic data through a generative network and employing adversarial training
of the discriminative network [13]. This enables the generator to learn the distribution of
actual data progressively. By combining GAN with conditional learning, the development
of a powerful deep learning model known as conditional Generative Adversarial Network
(c-GAN) [14] was realized. By incorporating conditional information as the input, this
model empowers the generator to produce high-resolution images corresponding to specific
conditions [15], thus exhibiting considerable potential in the domain of SR tasks.

However, SAR image reconstruction algorithms have received comparatively less
research attention, as most existing methods primarily concentrate on optical image SR.
The direct application of optical image algorithms to SAR images is not considered ideal,
potentially due to inadequate consideration of SAR image characteristics, such as speckle
noise. Consequently, dedicated research addressing the specific features of SAR images
is imperative. CNN-based methods have proven effective in extracting and utilizing the
underlying spatial information of SAR images. For instance, Shen et al. [16] devised
a PolSAR SR framework utilizing a residual CNN, surpassing traditional methods in
objective evaluation metrics and subjective assessment. Smith et al. [17] introduced a novel
algorithm that combines a CNN and a visual transformer (ViT), tailored explicitly for near-
field SAR image SR. This hybrid approach integrates the strengths of both CNNs and ViTs,
allowing simultaneous processing of local and global receptive fields, thereby enhancing
the details of the generated images. In another approach, Yang et al. [18] enhanced the
resolution of generated SAR images by employing an improved nonlocal mean (NLM) to
suppress speckle noise and optimize the loss function based on the structural similarity
index. The powerful generative method GAN has also found successful application in
SAR image SR [19]. NFGAN [20] combines SAR image denoising and super-resolution
reconstruction, effectively eliminating noise from super-resolution reconstructed images.
These methods incorporate a perceptual loss function comprising adversarial and content
loss. Even so, more research is needed into the in-depth exploration of loss functions, as
the currently introduced loss functions are relatively simplistic. Additionally, the feature
extraction networks employed in these studies may need to adequately extract features,
which limits the improvement in generated image quality and hinders the generation of
high-resolution SAR images that meet the standards of human visual perception.

Inspired by the image super-resolution algorithms, this study proposes DMSC-GAN,
a SAR image super-resolution framework based on the conditional Generative Adversarial
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Network. This framework is carefully designed to cater to the requirements of SAR image
super-resolution tasks, representing a significant advancement over the conventional c-
GAN approach. The primary contributions of this paper include the following:

(1) A unified conditional Generative Adversarial Network framework has been developed,
integrating adversarial loss, perceptual loss, and feature matching loss. This study
represents the first application of perceptual and feature-matching loss in SAR image
SR tasks. Perceptual loss emphasizes high-level semantic information in images,
enhancing the perceptual quality of the generated images compared to traditional
pixel-level difference metrics. Feature matching loss preserves the structure and details
of the target image, improving the ability to recover fine image details.

(2) An encoder–decoder structure is adopted in the generator, enabling the generation
of high-resolution images through feature extraction, feature reconstruction, and
contextual information utilization. A feature extraction module and a multiscale
feature extraction pyramid layer designed explicitly for SAR image SR are proposed.
These components effectively capture details and structural information at various
scales, enhancing the reconstructed image’s quality.

(3) A network structure comprising five layers of dual-scale discriminators is constructed
to discriminate images at different scales. Using dual-scale discriminators enhances
the learning capability of the generator and contributes to improved training stability.
Considering that SAR images are grayscale, relevant enhancements have been made
to the discriminator’s output.

The remaining sections of this paper are structured as follows: Section 2 presents some
closely related works. Section 3 outlines DMSC-GAN, comprehensively explaining the
GAN framework and introducing different loss functions. In Section 4, the experimental
results are presented, accompanied by quantitative and qualitative analyses. Section 5
concludes the paper by summarizing DMSC-GAN and discussing its implications.

2. Related Works
2.1. CNN-Based Methods

In recent years, notable advancements in SR algorithms based on CNN have been
witnessed. The pioneering SRCNN [21] introduced the concept of an end-to-end network
architecture, markedly enhancing the quality of generated high-resolution images beyond
conventional interpolation methods and affirming the suitability of CNNs for SR tasks.
Subsequently, more sophisticated models, exemplified by EDSR [22] and HSENET [23],
have emerged, broadening the scope of CNN-based SR by incorporating deeper models and
distinctive architectural choices, resulting in substantial enhancements in visual metrics.

For SAR images, WDCCN [24] employs a weighted, densely connected convolutional
network, effectively enhancing image resolution. Zhan et al. [25] have introduced an adaptive
line search strategy, redefining the step size in the reconstruction process, thereby improving
super-resolution reconstruction effectiveness and the convergence speed for SAR images.

Despite the advancements in CNN-based SR algorithms, challenges persist. A primary
concern is enhancing the interpretability of the generated high-resolution images. The
intricate nature of deep CNN models poses challenges in comprehending the mapping
relationship between low- and high-resolution images. Simultaneously, apprehensions
arise regarding potential artifacts or unrealistic details introduced during the generation
process, necessitating the resolution of issues related to substandard image quality.

2.2. Transformer-Based Methods

The utilization of the transformer architecture, initially prominent in natural language
processing, has progressively extended its reach into the image processing domain. Re-
searchers have increasingly recognized its effectiveness in modeling global features of
images through the serialization of image data, marking a significant development in the
field [26].
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In the specific context of image SR tasks, recent research endeavors have concentrated on
designing transformer-based models tailored for this purpose. One notable advancement is
Lei et al. [27], introducing a multilevel enhancement structure. This architecture effectively
integrates high- and low-dimensional features at multiple scales, facilitating the generation of
high-frequency details and significantly enhancing the quality of super-resolved images.

Additionally, the SWINIR [28], proposed by Liang et al., has emerged as a robust
baseline model for image SR tasks. SWINIR builds upon the Swin Transformer architecture.
It leverages layered representations to capture global contextual information and local
details, thereby bolstering the recovery of fine-grained image features. DTRN [29] is a Dual
Transformer Residual Network that consists of a transformer branch and a CNN-based
residual branch, where the transformer branch captures the global relationships of the
feature map.

2.3. GAN-Based Methods

The demonstration of the pivotal role played by GAN in SR tasks is evident through
the introduction of adversarial training mechanisms, which augment the fidelity of gener-
ated images through the competitive interaction between generators and discriminators.
The foundational SRGAN [30] model, incorporating adversarial loss and perceptual loss,
establishes a basis for generating high-quality super-resolution images. ESRGAN [31] fur-
ther advances SR performance by incorporating residual dense blocks, while BSRGAN [32]
considers image degradation models for practical applications and improved adaptation to
natural scenes. The GCFSR [33] framework underscores a focus on perceptual loss and L1
loss through adversarial loss to produce realistic facial details, emphasizing the potential of
these losses in SR tasks.

C-GAN has demonstrated excellent image processing capabilities in various domains.
The application of c-GAN to the semantic segmentation task by Wang et al. [34] resulted
in enhanced performance through the collaborative action of the global generator and the
local enhancement network, along with the integration of the PatchGAN discriminator
and feature matching loss. Liu et al. [35] proposed CCWGAN, utilizing residual dense
blocks to generate high-quality remote sensing images effectively. In the realm of MRI
super-resolution, Nasser et al. [36] successfully elevated the performance of isotropic
and anisotropic MRI super-resolution by incorporating perceptual loss and conditioning
on low-resolution MRI images. Hanano et al. [37] achieved the improved generation
of facial expression images by enhancing cGAN in combination with a self-supervised
guided encoder. Drawing upon these methodologies, a DMSC-GAN is constructed in this
study, utilizing an encoder–decoder structure and incorporating feature matching loss and
perceptual loss. The framework includes two discriminators operating at distinct scales
and conducting discrimination through 1 × 1 points. Through the integration of these
components, the intended outcome is to proficiently steer the generation of high-resolution
images, ultimately enhancing the accuracy and quality of the generated outcomes.

3. Methods

This section reveals the overall framework of DMSC-GAN, providing a comprehensive
exposition of each module within the network. This encompasses an introductory overview
of the generator and dual-scale discriminator modules, explaining their structures and
functionalities. Following this, the employed loss function in this paper is presented for
further examination.

3.1. Network Structure
3.1.1. General Framework

Existing SR algorithms primarily developed for optical images do not yield satisfac-
tory results when directly applied to SAR image SR. In response to this limitation, a novel
framework explicitly tailored for SAR image super-resolution based on the c-GAN archi-
tecture is introduced in this paper. Unlike non-GAN models that minimize the variance
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of mean square error for image reconstruction, resulting in smooth images with reduced
high-frequency details, GAN-generated images have been shown to effectively enhance
visual clarity [30]. The proposed model, DMSC-GAN, as depicted in Figure 1, comprises a
generator with an encoder–decoder structure and two discriminators at different scales. In
addition to generating the adversarial loss function, network training also uses perceptual
loss and feature matching loss. The main steps of network training are as follows: prepare
the dataset, initialize the parameters, set the loss function, create the generator generate
super-resolution images using adversarial training, update the network parameters using
gradient descent, iteratively train the generator and the discriminators until a satisfactory
result is obtained, and finally use the generator to generate images. The experimental
process is divided into two stages: the training stage, where the complete network model
is trained, and the testing stage, where only the trained generator is utilized to generate
target images.

LR

HR

Generator

Discriminator1

Generated

Trained Generator

LR

Generated

Test phaseTrain phase

Discriminator2

VGG

GAN

FM

Figure 1. The general framework of DMSC-GAN, including an enhanced feature extraction generator
and discriminator at two different scales.

3.1.2. Generator

The proposed generator structure in this paper, as depicted in Figure 2, is based on an
encoder–decoder architecture. The encoder is on the left side, while the decoder is on the
right. To facilitate feature reuse, skip connections are introduced between the encoder and
decoder. This encoder–decoder design enables hierarchical feature extraction of the input
data, capturing abstract and high-level semantic features that are subsequently recombined
by the decoder. The generator effectively preserves rich details and texture features by
incorporating multi-scale feature information, thereby improving image reconstruction.
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The generator takes in low-resolution SAR images, denoted as ILR ∈ R3×H×W , as
input. Upon reading, the original SAR image, a single-channel grayscale image, is con-
verted to RGB mode. This conversion does not introduce additional color information,
as the grayscale image only possesses one color channel. Consequently, all three RGB
channels become identical. The initial stage of feature extraction involves the utilization
of 3 × 3 convolution with the LeakyReLU activation function, leading to the extraction
of feature maps x0 ∈ RC×H×W . Subsequently, the features undergo mapping to higher
dimensions through three encoder stages, where the channel numbers are doubled, and
the feature sizes are halved at each stage. For instance, in the k-th stage of the encoder, the

obtained features are represented as xk ∈ R2kC× H
2k ×

W
2k . Each encoder stage consists of the

proposed Basic Blocks and downsampling modules. The number of downsampling mod-
ules is adjusted accordingly to ensure the consistency of feature sizes for the concatenated
inputs. The upper-level feature extraction in each stage aims to capture features at different
scales and complement the output features of the encoder.

At the end of the encoder, we incorporate a Basic Block module, which captures
long-term dependencies between SAR images. Channel compression is employed to retain
only the most relevant information for feature reconstruction, resulting in a decrease in the
output dimension of the encoder and an improvement in the computational efficiency of
subsequent decoding operations.

The decoder comprises three stages, each consisting of an upsampling module and
a Basic Block module. The upsampling module employs transpose convolution with a
kernel size of 2 and a stride of 2 for upsampling operations. As each upsampling layer is
applied, the number of channels halves while the feature size doubles. The input for each
stage is obtained by concatenating the upsampling output from the previous stage with the
complementary features. Two Edge Detail Enhancement Modules (EDEMs) are devised,
incorporating a design wherein the input of the first layer of the decoder is supplemented by
the output of the first layer of the encoder, and the input of the second layer of the decoder
is supplemented by the output of the second layer of the encoder. This approach facilitates
the provision of additional edge features to the decoder. To leverage the multi-scale feature
extraction operation, a Basic Block Pyramid Level (BBPL) module is constructed by altering
the size of the attention window within the Basic Block. This block extracts depth features
from the encoder’s twice-downsampled feature maps as complementary inputs to the
decoder. We incorporate the modulator proposed in [38] into each decoder to improve the
model’s generalization ability in handling different degradation patterns. The modulator
is a randomly initialized position vector that enhances the model’s robustness against
interference.

Following the three decoding stages, a size N × H × W feature map is obtained.
This feature map is then reshaped to match the target image resolution, denoted as
R ∈ R3×sH×sW , using Pixel Shuffle with an upsampling factor of s and a 3 × 3 convo-
lution. Afterward, the s-times bilinear interpolation result of the low-resolution image
ILR↑s ∈ R3×sH×sW is added to R through a skip connection. This addition yields the recon-
structed image ISR ∈ R3×sH×sW , where ISR = ILR↑s + R. Introducing this skip connection
mitigates the training challenges of the model and enables it to capture fine details more
effectively in low-resolution images.

In image processing, transformers have been adapted in various forms. For instance,
Uformer [38] is a U-shaped architecture designed specifically for image restoration tasks.
It incorporates a locally enhanced window (LeWin) module, facilitating the simultaneous
extraction of local information and contextual features. This architecture effectively reduces
the computational complexity of the model. Building on this concept, Kulkarni et al. [39]
proposed a novel algorithm called AIDTransformer for aerial image dehazing. They intro-
duced Attentive Deformable Transformer Blocks, which combine attention mechanisms
with deformable operations. This approach allows for the removal of haze from images
while preserving essential textures.
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Considering the remarkable ability of AIDTransformer to recover fine details and
textures in dehazing, we have enhanced its fundamental module by introducing the Basic
Block, illustrated in Figure 3. The Basic Block comprises two cascaded transformer struc-
tures and a 3 × 3 convolutional layer (Conv3×3). This module overcomes the limitation of
the original module by effectively modeling long-range dependencies in image processing.
It captures global information while emphasizing local features. We have incorporated a
skip connection that connects the input and output to address the challenges of training
this module. The overall process can be summarized as follows:

Layer Norm

DMSA

FFN

DMSA

FFN

+ +

+ +

Layer Norm

Layer Norm Layer Norm

Conv3*3

+

Input

Output

Patch 

Embed

Patch 

Unembed

Figure 3. Structure of Basic Block.
P = FFN(LN(DMSA(LN(X)) + X)) + DMSA(LN(X)) + X

Q = FFN(LN(DMSA(LN(P)) + P)) + DMSA(LN(P)) + P

Y = PUE(Conv3×3(PE(Q))) + X

(1)

where X denotes the input of the Basic Block, Y denotes the output of the Basic Block, P
signifies the output of the first Feedforward Neural Network (FFN) after mapping with the
residuals, Q denotes the output of the second FFN after mapping with the residuals, PE
stands for patch embedded, and PUE stands for patch unembedded.

The feature extraction component in DMSC-GAN employs the deformable multi-
head self-attention (DMSA) module proposed in AIDTransformer. This module utilizes
a deformable multi-head attention mechanism to adapt to geometric variations within
objects in the image and capture distinctive features of objects with different shapes. In our
approach, we utilize the DMSA module as our feature extractor. The structure of DMSA
is shown in Figure 4. SADC is a space-aware deformable convolution that focuses on the
relevant image region by providing offsets associated with the texture. Furthermore, we
incorporate an FFN consisting of three fully connected layers with the GELU activation
function. To ensure normalization, LN is applied before each DMSA and feedforward
network layer.

The pyramid structure has proven to be a highly effective approach for multi-scale
modeling in various tasks. However, there needs to be more research on applying pyramid
structures in SAR image SR, particularly utilizing pyramid structures with varying window
sizes. Kong et al. demonstrated the effectiveness of a pyramid structure with different
window sizes in extracting feature information at different scales [40]. Building upon
this motivation, we propose a Basic Block Pyramid Layer (BBPL) for SAR image SR, as
illustrated in Figure 5. In order to encompass features of different scales, window sizes of
2, 4, and 8 are selected. SAR images contain varying features and smaller window sizes
(e.g., 2) can effectively capture smaller-scale local details like textures and edges in the
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image. On the other hand, a larger window size (e.g., 8) enables the extraction of larger-
scale global features, such as the overall structure and interrelationships among features.
However, huge windows (e.g., 16) cause the model to overly rely on global context while
disregarding local details, leading to a decline in performance. Moreover, using a larger
window increases the training volume of the model and amplifies training difficulty.

SADC

Conv1*1

Conv1*1

SADC SADC

dd

QQ KK VV

Output

Attention

Map

Input

+

Figure 4. Structure of DMSA.
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Figure 5. Structure of BBPL.

BBPL comprises three Basic Blocks operating in parallel, each with a unique window
size of 2, 4, and 8. To effectively integrate feature information from multiple scales, we
employ a 1 × 1 convolutional layer to merge the parallel features and reduce the number of
channels. This merging process facilitates the extraction of essential image features while
reducing the computational complexity of subsequent model operations. BBPL can be
expressed as follows:

Yo = Conv1×1(cat(B2(Xi), B4(Xi), B8(Xi))) (2)

where Bk(k = 2, 4, 8) represents a Basic Block with a window size of k, the input to each
Basic Block is denoted as Xi, and the output is denoted as Yo.

To balance the network parameters and training speed, we introduce a BBPL module
between the second layer of the encoder and the decoder. Placing it at the second layer
is motivated by the fact that the first layer primarily captures coarse-grained informa-
tion, while the third layer focuses on fine-grained details. There must be more than these
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two layers to effectively capture coarse and fine-grained features. However, the interme-
diate layer’s extracted features can effectively address this limitation. They encompass
low-frequency and high-frequency details, making them valuable for subsequent feature
reconstruction. By incorporating the BBPL module in the intermediate layer, we can uti-
lize these features to extract coarse and fine-grained information from the image while
maintaining low network parameters. This approach significantly enhances the image
reconstruction performance.

The Edge Detail Enhancement Module (EDEM) is introduced to capture prominent
edge details in SAR images, such as buildings and roads, which the Basic Block needs
to learn effectively. The structure of EDEM, depicted in Figure 2, is applied between the
encoder and the decoder’s first and second layers. EDEM takes two inputs: Input 1, the
feature map extracted by the Basic Block without downsampling, and Input 2, the down-
sampled feature map with additional supplementary features incorporated. These two
inputs represent feature maps at different scales, with Input 2 capturing richer edge detail
features. To highlight the details in the edge regions and incorporate them into subsequent
modules, we subtract the upsampled version of Feature Map 2 (X2↑s) from Feature Map
1 (X1), resulting in a feature map that specifically contains edge detail information (Yout).
This operation effectively enhances the model’s ability to reconstruct edge detail features.
The representation of EDEM is as follows:

Yout = X1 − X2↑s (3)

3.1.3. Discriminator

Designing a suitable discriminator for SAR image generation tasks presents a chal-
lenge due to the distinct characteristics of SAR images compared to other optical remote
sensing images. SAR images are typically grayscale and encompass intense information
and advanced features like polarization and phase, enabling sophisticated analysis and
interpretation. Moreover, SAR images exhibit intricate texture details. Thus, to generate
SAR images that are more realistic, it is essential to develop a discriminator that is carefully
tailored to these unique attributes.

The PatchGAN architecture is commonly employed as a discriminator for optical
image generation tasks. This approach entails designing the discriminator as a fully convo-
lutional network that produces image patches as outputs. These patches are subsequently
averaged to determine the discrimination outcome. However, due to the consistent content
distribution in SAR images, employing patch-based discrimination may introduce redun-
dancy. To address this issue, we propose an alternative discriminator design that utilizes a
score-based approach.

In our specific discriminator design, the output is a single point with dimensions
of 1 × 1. The loss calculation evaluates the generated image based on this single point.
This design enables more effective discrimination of SAR images. Given the relatively
uniform content distribution in SAR images, having the discriminator output a single point
facilitates a comprehensive evaluation of the overall quality of the generated image, avoiding
excessive local discrimination. By computing the loss for each point, we obtain a holistic
quality assessment of the generated image, which guides the training of the generator.

We propose a multi-scale discriminator design to address the limitations of relying
solely on a single 1 × 1 point for discrimination in SAR image SR tasks. The multi-scale
discriminator consists of two discriminators with the same structure but different input
image scales. This design allows for more reliable discrimination information. The structure
of the multi-scale discriminator is depicted in Figure 6. It is composed of a five-layer CNN
serving as the backbone. The first layer comprises two convolutional layers with Rectified
Linear Unit (ReLU) non-linear activation functions. The second and third layers consist
of two batch normalization (BN) layers and convolutional layers with ReLU activation
functions. The fourth layer comprises a single BN layer and a ReLU convolutional layer.
The final layer is fully connected with pooling and ReLU activation functions. The size of
the convolutional kernels in the discriminator is uniformly set to 3 × 3.
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Our discriminator operates in two input modes to enable effective discrimination
between the generated SAR images and authentic high-resolution SAR images. In one
mode, the upsampled result of the low-resolution SAR image is concatenated with the
generated image. In contrast, in the other mode, it is concatenated with the actual image.
To handle these two input scales, we employ two discriminators. The first discriminator
discriminates the 256 × 256 images corresponding to the generated images. The second
discriminator focuses on the downsampled results: the 128 × 128 images. Our design uses
two discriminators to capture detailed texture information at the original scale and global
features contributing to edge contour information. At each layer of the discriminator, we
calculate the feature matching loss. This loss computation facilitates the alignment of the
generator’s features with those of actual images, resulting in improved quality for the
generated images. By incorporating feature matching loss at multiple layers, we encourage
the generator to match the actual image features at different levels of abstraction, leading
to a more realistic and visually pleasing output.
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Figure 6. Discriminators and feature matching loss.

3.2. Loss Functions
3.2.1. Total Loss

In the entire framework of the Generative Adversarial Network, the total loss can be
decomposed into three components:

Ltotal = LGAN + λLVGG + µLFM (4)

where LGAN is the generation adversarial loss, LVGG is the VGG perceptual loss, and LFM
is the feature matching loss. These losses are combined using the weight coefficients λ
and µ in a balanced loss function. The subsequent explanation will provide a detailed
formulation and description of these losses.

3.2.2. Generate Adversarial Loss

Two discriminators are utilized in this study to assess the images at both the orig-
inal scale and the downsampled scale. As a result, the adversarial loss comprises two
components: the adversarial loss between the generator and the first discriminator, which
discriminates images at the original scale, and the adversarial loss between the generator
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and the second discriminator, which operates at the downsampled scale. The formulation
of the multi-adversarial loss for the generator network is expressed as follows:

Ladv = −Ex[log(D1(x↑, G(x)))]−Ex[log(D2(x↑, G(x)))] (5)

The low-resolution SAR image is denoted as x, the upsampled version of x using
bilinear interpolation is represented as x↑, and the generator’s output, which is the SR
image, is denoted as G(x). The discriminators at the two scales are denoted as D1 and D2,
corresponding to the original and downsampled scales, respectively. The low-resolution
SAR image contains comprehensive information, and the upsampled low-resolution SAR
image concatenation with the image under discrimination is performed. This combined
input is provided to the discriminators, allowing them to leverage the valuable reference in-
formation embedded in the low-resolution SAR image, thus facilitating accurate judgments
by the discriminators.

Like conventional SR networks, our generator network also incorporates content loss
to guide the generation process. By prioritizing the image’s content over the sole pursuit
of generating a realistic image, the generator can reduce potential artifacts and distortion
effects, resulting in a more realistic and natural appearance of the generated image. This
content loss is calculated using the L1 norm, which encourages the generator to produce
images that closely resemble the target images.

Lcontent =
1

HW
∥G(x)− y∥1 (6)

Here, H and W denote the height and width of the images, respectively. The high-
resolution image corresponding to the low-resolution SAR image x is denoted as y.

The utilization of multiple discriminators aids in capturing various aspects of the im-
age and compensating for potential information loss associated with a single discriminator.
The discriminator loss employed in our approach is formulated as follows:

LD = ∑
k=1,2

[
Ex

[
log(Dk(x↑, G(x)))

]
+E(x,y)

[
log(1 − Dk(x↑, y))

]]
(7)

Thus, the overall loss of our Generative Adversarial Network can be expressed as follows:

LGAN = Ladv + Lcontent + LD (8)

3.2.3. Perceptual Loss

The concept of perceptual loss was initially introduced in the domain of image style
transfer by Johnson et al. [41]. They employed deep convolutional neural networks to
calculate the perceptual loss, which quantifies the dissimilarity between generated and
target images by comparing high-level visual features extracted from the network. Since
then, perceptual loss has found successful applications in various tasks, including SR, as
demonstrated in ESRGAN [31]. By incorporating perceptual loss, we aim to ensure visual
coherence between the generated images and the desired high-resolution SAR images.
Although the utilization of perceptual loss in SAR image SR has been limited, in this
study, we leverage its potential to provide enhanced guidance for texture restoration. The
formulation of perceptual loss is as follows:

LVGG =
N

∑
i=1

1
Ci HiWi

∥φi(G(x))− φi(y)∥1 (9)

where φ denotes the VGG19 network, φi represents the i-th layer of the network, and
Ci HiWi denotes the size of the feature map at the i-th layer. To compute the perceptual loss,
we employ the L1 loss to measure the discrepancies between the feature maps extracted
from different layers of the VGG networks. This choice of loss function allows us to more
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accurately evaluate the similarity between the generated images and the target images,
enabling a more effective assessment of their resemblance.

3.2.4. Feature Matching Loss

To tackle the challenge posed by the substantial disparity between high-resolution
SAR images and their low-resolution counterparts, we employ the feature matching loss,
initially introduced by Salimans et al. [42], to guide the network in reconstructing more
accurate details. The feature matching loss involves calculating the weighted sum of the
output features from each layer of the discriminator. It quantifies the statistical distinctions
between the feature vectors extracted from the high-resolution SAR images and those from
the generated SAR images. By minimizing the feature matching loss of the discriminator,
the generator is encouraged to produce images that exhibit a higher level of similarity
to the high-resolution SAR images. The utilization of the feature matching loss in both
discriminators can be observed in Figure 6, and its formulation is expressed as follows:

LFM = ∑
k=1,2

E(x,y)

[
T

∑
i=1

1
Ni

[∥∥∥D(i)
k (x↑, y)− D(i)

k (x↑, G(x))
∥∥∥

1

]]
(10)

In the above equation, D(i)
k represents the i-th layer of the k-th discriminator, Ni

represents the number of elements in the feature map of the i-th layer, and T denotes the
total number of layers in the discriminator, where T is set to 5 in our specific discriminator.
The feature matching loss plays a crucial role in stabilizing the model’s training process
and ensuring that the generated SR SAR images capture the desired high-level features
in the high-resolution SAR images. By incorporating the feature matching loss, we can
effectively enhance the quality of the generated images.

4. Results
4.1. Dataset and Parameter Settings

The SEN1-2 dataset [43], which consists of SAR and optical images acquired from
the Sentinel-1 and Sentinel-2 satellites, was utilized in this study. The dataset is accessible
through the link https://mediatum.ub.tum.de/1436631 (accessed on 25 March 2023). With
a spatial resolution of 5 m, the dataset is commonly employed in image fusion applications.
The SAR images from this dataset were specifically selected for our experimental objectives.

The initial step of the data preprocessing involves cropping the SAR images to dimen-
sions of 256 × 256 pixels. We manually excluded regions exhibiting evident duplication or
significant issues to ensure the dataset’s quality. Data augmentation techniques, including
rotation and mirroring, are applied to augment the dataset. To generate the required low-
resolution SAR images for input to DMSC-GAN, we downsample the high-resolution SAR
images using bilinear interpolation. For instance, if the upscaling factor is 2, we perform a
downsampling by a factor of two, resulting in low-resolution images of size 128 × 128. Sim-
ilarly, for an upscaling factor of 4, downsampling by a factor of four yields low-resolution
images of size 64 × 64. The training dataset comprises pairs of low-resolution SAR im-
ages and their corresponding high-resolution SAR images. We have carefully selected
5696 image pairs for training and 824 for testing. In the generator network, the input is the
low-resolution SAR image, and the output is a 256 × 256 × 3 image. For the discriminator,
the input is formed by concatenating the high-resolution SAR image or the generator’s
output with the bilinearly upsampled version of the low-resolution SAR image, resulting
in images of size 256 × 256 × 6.

To further showcase the effectiveness of DMSC-GAN, a selection was made of a
SAR image dataset of Nanjing, Jiangsu Province, in this study. The dataset comprised
images acquired by the RADARSAT-2 satellite, boasting a resolution of 5 m. These images
underwent preprocessing and were subsequently cropped to 256 × 256. A random sample
of 1664 image pairs was chosen for testing purposes, while the training phase utilized a set
of 9952 pairs. Comparatively, the Nanjing dataset served as an auxiliary collection, strictly

https://mediatum.ub.tum.de/1436631
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employed for network structure comparisons, while exclusively, the SEN1-2 dataset was
utilized for other experiments.

The training process is conducted with the following parameter settings: a batch size
of 8, a total of 100 epochs, and utilizing the Adam optimizer. The initial learning rate is
2 × 10−4. After 50 iterations, the learning rate is halved. The coefficients λ and µ in the
total loss are set to 20, which are determined empirically. The implementation of the entire
network is executed using the PyTorch framework version 1.12.1. The experiments are
carried out on two Micro-Star NVIDIA GeForce GTX 3080Ti graphics cards sourced from
Taiwan, China.

4.2. Valuable Metrics

To address the limitation of prioritizing pixel-level differences over perceived quality
in PSNR [44] and SSIM [45], alternative metrics such as MSE [46], FID [47], and LPIPS [48]
have been introduced, which enhance the generation of visually pleasing and realistic SR
images during GAN training. The selection of objective metrics aims to mitigate potential
inaccuracies arising from subjective evaluation when assessing the quality of the generated
SR images. MSE quantifies the mean squared difference between the generated and target
images, ensuring proximity in terms of pixel values. Perceived similarity, evaluated by
LPIPS, considers higher-level features such as edges, texture, and overall appearance,
yielding a more meaningful metric from a perceptual standpoint. On the other hand, FID
employs the Inception network to assess the feature representations of the generated and
authentic images, encompassing both quality and diversity aspects and offering a metric
applicable to generators.

4.3. Results and Analysis
4.3.1. Different Networks Analysis

SEN1–2 dataset. In order to assess the superior performance of DMSC-GAN in SAR
image SR, a comparative study was conducted, evaluating it against traditional convolu-
tional neural network methods, including HSENET, SWINIR with transformer architecture,
supervised SRGAN, unsupervised CycleGAN [49] and Pix2pixHD [34]. The experimental
results for these six methods, considering an upscaling factor of 4, are summarized in
Table 1.

Table 1. Comparison of metric results of different methods on SEN1-2 dataset with scale factor 4.

Number of
Parameters PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

HSENET [23] 4.79 M 24.334956 0.626694 0.1233 42.56807 0.365132
SWINIR [28] 0.89 M 24.865050 0.645047 0.1135 94.86809 0.427522
SRGAN [30] 25.12 M 20.959648 0.444068 0.1660 38.37431 0.369272

CycleGAN [49] 89.2 M 21.052766 0.418084 0.1674 71.22200 0.401133
pix2pixHD [34] 64.13 M 20.974240 0.271080 0.1345 158.3319 0.446123

DMSC-GAN 50.08 M 24.379220 0.632996 0.0905 24.52293 0.304919
Note: Bold and red font in the table indicate optimal values for each indicator.

Based on the compared methods, SWINIR has the fewest parameters, allowing it to
construct a global model by leveraging pixel relationships and achieve faster execution
during reconstruction. In contrast, HSENET combines multi-scale and self-similarity
feature extraction techniques to exploit the inherent self-similarity of images. However,
due to multiple repetitive modules, HSENET has more parameters than SWINIR. Non-
GAN methods, compared to GAN-based models, demonstrate faster execution speeds.
CycleGAN has the highest number of parameters, primarily due to its utilization of two
generators and two discriminators. In comparison to SRGAN and CycleGAN, DMSC-GAN
falls in between the two in terms of the number of parameters and is less than pix2pixHD.
DMSC-GAN incorporates a deeper generator and includes two discriminators, resulting in
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a larger network parameter count. Nevertheless, this design choice also contributes to the
improved quality of the generated images.

DMSC-GAN achieves the second-highest scores in terms of PSNR and SSIM, slightly
below SWINIR. However, it surpasses all other methods in the remaining three metrics.
The FID score reached 24.52293, and the LPIPS score was 0.304919. These results indi-
cate a significant improvement of 13.85138 and 0.064353, respectively, compared to the
second-best SRGAN. Additionally, DMSC-GAN outperforms both supervised SRGAN
and unsupervised CycleGAN in all five metrics. Compared with pix2pixHD, DMSC-GAN
exhibits significant improvements, including a substantial PSNR increase of 3.40498 dB, an
SSIM improvement of 0.361916, a reduced MSE of 0.044, a substantial FID improvement of
133.80897, and a decreased LPIPS by 0.141204. Notably, DMSC-GAN excels in improving
the FID and LPIPS scores compared to non-GAN models while demonstrating overall
enhancements across all five metrics compared to GAN models.

Figure 7 displays the generated images from various models. The images demonstrate
that the results produced by DMSC-GAN closely resemble the original high-resolution
SAR images, significantly improving the quality of the generated images. Upon visual
inspection, the image outcomes produced by pix2pixHD are deemed unsatisfactory. The
underlying issue is attributed to the fact that the pix2pixHD model was initially tailored for
image segmentation tasks, and its network structure and loss function were not specifically
optimized and enhanced for image SR. In contrast, except for the pix2pixHD model, when
non-GAN networks are employed, the resultant images exhibit blurriness, whereas GAN
networks yield images of greater explicitness. The reason behind this disparity lies in
the optimization process of non-GAN models, which focuses on minimizing the pixel-
level MSE between the generated and target images. Consequently, non-GAN models
produce overly smooth SAR images that lack fine-grained details and appear blurry. On
the other hand, GAN-based models excel in recovering consistent regions such as water
bodies but struggle with non-consistent regions like buildings, where they fail to capture
fine edges and texture details, resulting in spurious noise and inadequate restoration of
architectural details. In contrast, DMSC-GAN generates images with clear boundaries
and improved visual quality. The observations from Table 1 corroborate these findings,
as non-GAN models achieve higher PSNR and SSIM scores. However, it is essential to
note that high PSNR and SSIM scores do not guarantee good image quality. Hence, PSNR
and SSIM should not be considered as the primary evaluation metrics for SAR image
SR, as they lack sensitivity to blurriness. Instead, the FID and LPIPS metrics provide a
more comprehensive evaluation of the generated images, as they align more closely with
human visual perception. DMSC-GAN effectively addresses the task of SAR image SR
and successfully enhances the resolution of complex urban structures, resulting in more
explicit images. In summary, DMSC-GAN effectively enhances resolution in SAR images
and reconstructs complex urban areas into more precise and visually appealing images.

Low-resolution HSENET SWINIR SRGAN

High-resolution CycleGAN pix2pixHD DMSC-GAN

Figure 7. Cont.
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Low-resolution HSENET SWINIR SRGAN

High-resolution CycleGAN pix2pixHD DMSC-GAN

Low-resolution HSENET SWINIR SRGAN

High-resolution CycleGAN pix2pixHD DMSC-GAN

Figure 7. Comparison of super-resolution methods for SAR images on the SEN1-2 dataset with scale
factor 4. The images encompass distinct categories such as land, water, and buildings. The images in
each set of examples are magnified representations of the corresponding red boxes in low-resolution.

Experiments were conducted with an upscaling factor of 2, and the results are pre-
sented in Table 2 and Figure 8. The images from different methods show relatively small
visual differences, indicating that all methods can recover edge and texture details in SAR
images. This can be attributed to the richer texture features obtained through upsampling
the low-resolution SAR images at a factor of 2, reducing the reconstruction task’s difficulty.
Among the networks, SWINIR achieves the highest PSNR and SSIM scores. In comparison,
DMSC-GAN demonstrates a reduction in FID by 9.7626195 and a decrease in LPIPS by
−0.230057 compared to SWINIR. Additionally, DMSC-GAN shows improvements in all
evaluation metrics except LPIPS compared to SRGA, pix2pixHD and CycleGAN. From
Figure 8, it can be observed that DMSC-GAN successfully reconstructs small water bodies
and buildings with precise edges and texture details while generating fewer additional
spurious noises. However, it may need help recovering fine-grained road details due to
resolution limitations.

Table 2. Comparison of metric results of different methods on SEN1-2 dataset with scale factor 2.

PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

HSENET [23] 32.501118 0.946473 0.048009 17.791472 0.145714
SWINIR [28] 32.526080 0.946553 0.047989 18.245021 0.145906
SRGAN [30] 26.315893 0.883792 0.097451 42.898615 0.168614

CycleGAN [49] 26.499108 0.811076 0.072088 55.838985 0.233098
pix2pixHD [34] 24.184933 0.629430 0.094691 26.844749 0.312196

DMSC-GAN 29.549176 0.899100 0.066561 8.4824015 0.375963

Note: Bold and red font in the table indicate optimal values for each indicator.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8. Comparison of super-resolution methods for SAR images on the SEN1-2 dataset with
scale factor 2. From top to bottom, (a) low-resolution SAR images, (b) high-resolution SAR images,
(c) HSENET [23], (d) SWINIR [28], (e) SRGAN [30], (f) CycleGAN [49], (g) pix2pixHD [34], and
(h) DMSC-GAN. The images in each set of examples are magnified representations of the correspond-
ing red boxes in low-resolution.

The Nanjing dataset served as an additional dataset in this study, allowing for a
supplementary evaluation. The approach’s effectiveness was further substantiated by
comparing the performances of HSENET, SWINIR, SRGAN, CycleGAN, and pix2pixHD
on the Nanjing dataset. Experiments were conducted with upscaling factors of 4 and 2.

For the upscaling factor of 4, superior image quality was attained with DMSC-GAN,
as exemplified in Figure 9 and Table 3, in which both FID and LPIPS reached their optimal
values of 18.076831 and 0.302789, respectively. In contrast, SWINIR outperformed DMSC-
GAN in the remaining three metrics; however, the images generated by SWINIR exhibited
blurriness and lacked the precision of DMSC-GAN. This blurriness arises from SWINIR’s
utilization of pixel-level loss functions, such as MSE, which necessitates a comparison of ev-
ery pixel between the generated and target images. Such a noise-sensitive loss function tends
to yield smoothed and blurred images. Additionally, compared to the methods pix2pixHD,
CycleGAN, and SRGAN, DMSC-GAN consistently outperformed across all five metrics.
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Low-resolution HSENET SWINIR SRGAN

High-resolution CycleGAN pix2pixHD DMSC-GAN

Low-resolution HSENET SWINIR SRGAN

High-resolution CycleGAN pix2pixHD DMSC-GAN

Figure 9. Comparison of super-resolution methods for SAR images on the Nanjing dataset with scale
factor 4. The images in each set of examples are magnified representations of the corresponding red
boxes in low-resolution.

Table 3. Comparison of metric results of different methods on Nanjing dataset with scale factor 4.

PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

HSENET [23] 24.240684 0.776175 0.276929 90.407407 0.318421
SWINIR [28] 24.262664 0.777036 0.275934 94.426039 0.319870
SRGAN [30] 21.252563 0.626194 0.387912 48.738168 0.303787

CycleGAN [49] 19.576099 0.500774 0.473037 61.429233 0.384389
pix2pixHD [34] 19.506061 0.368588 0.516983 207.24340 0.455423

DMSC-GAN 23.071761 0.639293 0.341874 18.076831 0.302789

Note: Bold and red font in the table indicate optimal values for each indicator.

For the upscaling factor of 2, Figure 10 and Table 4 revealed that the metrics of
images generated by HSENET and SWINIR were slightly superior to those of DMSC-
GAN, although the differences were insignificant. Additionally, there were no noticeable
distinctions in the generated images. However, compared to CycleGAN and SRGAN,
DMSC-GAN consistently demonstrated optimal metrics and produced the most explicit
images. These methods generally recovered intricate image features at an upscaling factor
of 2, with minimal discrepancies in the generated images. This phenomenon can be
attributed to the reduced reconstruction complexity at this upscaling factor.

In summary, the experiments involving the SEN1-2 and Nanjing datasets affirmed the
outstanding performance of DMSC-GAN across diverse datasets. DMSC-GAN significantly
improved the quality of generated images compared to alternative methods, reinforcing its
effectiveness.
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Table 4. Comparison of metric results of different methods on Nanjing dataset with scale factor 2.

PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

HSENET [23] 42.281733 0.994939 0.033340 1.230831 0.017767
SWINIR [28] 42.244439 0.994922 0.033504 1.238465 0.018002
SRGAN [30] 30.225158 0.895788 0.181940 49.30404 0.066738

CycleGAN [49] 33.856949 0.963765 0.090024 10.57524 0.075776
pix2pixHD [34] 26.645575 0.828449 0.226714 54.10698 0.227345

DMSC-GAN 36.666837 0.979992 0.065459 7.531907 0.048948

Note: Bold and red font in the table indicate optimal values for each indicator.

Low-resolution

High-resolution HSENET SWINIR

SRGAN CycleGAN DMSC-GAN

Low-resolution

High-resolution HSENET SWINIR

SRGAN CycleGAN DMSC-GAN

Figure 10. Comparison of super-resolution methods for SAR images on the Nanjing dataset with
scale factor 2. The images in each set of examples are magnified representations of the corresponding
red boxes in low-resolution.

4.3.2. Generator Ablation Analysis

In the previous section, the effectiveness of DMSC-GAN was demonstrated, as it
achieved the best results on the dataset. To further validate the effectiveness of the com-
ponents in the generator, an ablation study was conducted by generating images using
only the generator without the discriminator. Specifically, the contributions of the Basic
Block and BBPL modules were discussed. The impact of including convolutions in the
Basic Block, the convolutional kernel size, and the number of DMSA modules used were
investigated. The experimental results are presented in Table 5. From the third and fourth
rows of the table, it is observed that including convolutional operations improved the PSNR
by 0.18013 dB and SSIM by 0.010325 compared to not including convolutions. This indicates
that including convolutions effectively enhances the quality of SAR image generation by
assisting the generator in learning local features. Comparing the first and second rows of
the table, it can be seen that the size of the convolutional kernel also influences the quality
of the generated images. SAR images generated with a 3 × 3 kernel in the Basic Block
showed an improvement of 5.786666 in FID compared to a 1 × 1 kernel, suggesting that
using a 3 × 3 kernel has a more significant impact. Furthermore, comparing the second and
third rows of the table, the impact of the number of DMSA modules on the generator’s



Remote Sens. 2024, 16, 50 19 of 26

performance was examined. It is observed that using two DMSA modules outperformed
using a single DMSA, with an increase of 0.15536 dB in PSNR and 2.545298 improvement
in FID. This is because a single DMSA can only extract shallow-level global features while
using two DMSA modules enables the extraction of deeper-level high-frequency detail
features, which is beneficial for SAR image SR reconstruction. Figure 11 presents the results
of incorporating Basic Block modules with different structures.

Table 5. Metrics comparison after removing the discriminator and improving the Basic Block in the
generator.

Numbers of DMSA Convolutional Kernel Size PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

1 1 × 1 24.67631 0.637865 0.117107 48.813308 0.392619
1 3 × 3 24.62208 0.636978 0.118497 43.026642 0.379279
2 3 × 3 24.77744 0.643775 0.116286 40.481344 0.369691
2 NULL 24.59731 0.633450 0.118902 46.240227 0.382706

Note: Bold and red font in the table indicate optimal values for each indicator.

(a) (b) (c) (d) (e) (f)

Figure 11. Comparison after removing discriminator and improving the Basic Block in generator.
From left to right, (a) low-resolution SAR images, (b) high-resolution SAR images, (c) 1 DMSA and
convolution kernel for 1, (d) 1 DMSA and convolution kernel for 3, (e) 2 DMSA and convolution
kernel for 3, (f) 2 DMSA and no convolution added. The images in each set of examples are magnified
representations of the corresponding red boxes in low-resolution.

An ablation study was conducted on the BBPL module to examine the influence of
the number of parallel Basic Block branches. The experimental outcomes are presented in
Table 6. For the experiments, the branch with one parallel Basic Block had a window size
of 2, the branch with two parallel Basic Blocks had window sizes of 2 and 4, and the branch
with three parallel Basic Blocks had window sizes of 2, 4, and 8. It can be observed from
the table that the best results were obtained when three parallel branches were utilized.
Conversely, the performance was the lowest when only one parallel branch was employed.
When comparing three branches to one branch, the PSNR improved by 0.10685 dB and
the FID by 2.87843. Figure 12 showcases the generated outcomes from the experiments.
Combining the figures and the table validates that integrating parallel branches and varying
the computational window size enables the capture of feature information at different scales,
thereby effectively enhancing the quality of the generated images.
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Table 6. Metrics comparison after removing discriminator and improving BBPL in the generator.

Number of Parallel Branches Window Size PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

1 (2) 24.670593 0.640805 0.118237 43.359775 0.375963
2 (2, 4) 24.679036 0.640990 0.118229 42.033652 0.372189
3 (2, 4, 8) 24.777443 0.643775 0.116286 40.481345 0.369691

Note: Bold and red font in the table indicate optimal values for each indicator.

(a) (b) (c) (d) (e)

Figure 12. Comparison after removing discriminator and improving BBPL in generator. From left to
right, (a) low-resolution SAR images, (b) high-resolution SAR images, (c) 1 window, (d) 2 window,
(e) 3 window. The images in each set of examples are magnified representations of the corresponding
red boxes in low-resolution.

4.3.3. Discriminator Ablation Analysis

An ablation study was executed to evaluate the impact of the discriminator in the
network, considering variations in the number of discriminators and the discriminative
approach at the end of the discriminator. The experimental outcomes are outlined in
Table 7. “Patch GAN D1” signifies the utilization of a single Patch GAN for discrimination,
employing the discriminative network from [40], where the discriminator generated a
32× 32-dimensional vector as output. In contrast, “Patch GAN D2” indicates the utilization
of two Patch GANs. Similarly, “DMSC-GAN D1_nF” and “DMSC-GAN D2_nF” repre-
sent the use of one or two DMSC-GAN discriminators, excluding the last fully connected
layer responsible for discriminating the 32 × 32 feature vectors. Meanwhile, “DMSC-GAN
D1_F” and “DMSC-GAN D2_F” denote the utilization of a single or two DMSC-GAN
discriminators, including the last fully connected layer, with the discriminator outputting a
1 × 1-dimensional score. From rows 1–2, it is evident that the image quality reconstructed
using two discriminators is significantly superior to that obtained with a single discrimina-
tor. The FID and LPIPS improved by 118.10154 and 0.02489, respectively. Figure 13 further
illustrates that when using a single discriminator, the reconstructed generated images
appear more blurred, and there are noticeable artifacts in some regions due to misjudgment.
Rows 3–4 indicate that when employing our proposed discriminator without utilizing a
1 × 1-dimensional score for discrimination, there is little distinction between using one
and two discriminators. The reconstruction performance is similar in both cases. From
rows 4–5, it can be observed that when the discriminator incorporates a fully connected
network and employs a 1 × 1-dimensional score for discrimination, the performance of
two discriminators surpasses that of a single discriminator. Notably, all five indicators
exhibit the best results in this case, affirming the effectiveness of the proposed multi-scale
discriminator and the utilization of a 1 × 1-dimensional output vector for discrimination.
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Low-resolution (a) (b) (c)

High-resolution (d) (e) (f)

Low-resolution (g) (h) (i)

High-resolution (j) (k) (l)

Figure 13. Comparison after improving discriminator. (a–f) and (g–l) generated results for rows 1–6
in the corresponding Table 7. The images in each set of examples are magnified representations of the
corresponding red boxes in low-resolution.

Table 7. Metrics comparison after improving discriminator.

PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

Patch GAN D1 23.97352 0.58292 0.09482 143.9430 0.35673
Patch GAN D2 23.09322 0.50428 0.10497 25.84146 0.33184

DMSC-GAN D1_nF 23.65684 0.54055 0.09836 25.59454 0.31652
DMSC-GAN D2_nF 23.70958 0.54286 0.09781 25.70513 0.31812
DMSC-GAN D1_F 23.77107 0.54676 0.09710 24.99729 0.30776
DMSC-GAN D2_F 24.37922 0.58299 0.09051 24.52293 0.30492

Note: Bold and red font in the table indicate optimal values for each indicator.

4.3.4. Loss Function Analysis

In order to investigate the impact of diverse loss functions on the network’s perfor-
mance, the network underwent training employing a range of loss functions, and the
results are displayed in Table 8 and Figure 14. In the table, “w/o feat” denotes the exclusion
of the feature matching loss, “w/o vgg” indicates the omission of the perceptual loss,
and “w/feat&vgg” signifies the utilization of both losses concurrently. The results reveal
that feature matching and perceptual loss significantly impact the network’s performance.
Compared to using both losses simultaneously, excluding the feature-matching loss results
in a decrease of 5.57363 in FID and 1.6321 dB in PSNR. Omitting the perceptual loss leads
to a decrease of 2.35678 in FID and a decrease of 0.87492 dB in PSNR. The figure shows
that the accuracy of the generated features, such as roads and waters, is improved, and
the image recovery with the incorporation of both losses exhibits enhanced clarity and
quality simultaneously. These findings demonstrate that both losses play crucial roles in
the network and are indispensable. It highlights the effectiveness of incorporating feature
matching loss and perceptual loss in DMSC-GAN.
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(a) (b) (c) (d)
Figure 14. Comparison under different loss functions. (a) High-resolution SAR images, (b) no feature
matching loss, (c) no VGG loss, and (d) with feature matching loss and VGG loss.

Table 8. Metrics comparison under different loss functions.

PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

w/o feat 22.74712 0.48423 0.10923 30.09656 0.342194
w/o vgg 23.50430 0.528215 0.10013 26.87971 0.333591

w/feat&vgg 24.37922 0.58299 0.09051 24.52293 0.30492

Note: Bold and red font in the table indicate optimal values for each indicator.

The network’s performance was assessed through experiments to investigate the
impact of weighting coefficients on the loss function. Table 9 displays the results, indicating
varying degrees of influence based on the changes in these coefficients. The network
performs poorly when both coefficients are set to 0, resulting in an FID index of 146.7726,
an LPIPS index of 0.43851, and the generated image appearing blurred with low clarity.
However, setting the coefficients to 5 and 5 improves the network’s performance with a
PSNR metric of 23.626, an SSIM metric of 0.53151, and a decreased MSE metric of 0.09887.
A slight decrease in performance is observed when setting the coefficients to 5 and 10, with
a PSNR metric of 23.36392, an SSIM metric of 0.52065, and the network’s performance is
comparable to the prior experiments. Similarly, when the coefficients are set to 10 and 5,
the PSNR metric is 23.28437, the SSIM metric is 0.52063, and the MSE metric is 0.10266.
Setting both coefficients to 10 improves the network’s performance, achieving a PSNR
metric of 23.89908, an SSIM metric of 0.55937, and a reduced MSE metric of 0.09565. Slight
performance drops are observed when the coefficients are set to 0 and 20, resulting in
a PSNR metric of 23.50430, an SSIM metric of 0.52821, and an MSE metric of 0.10013.
Likewise, setting the coefficients to 20 and 0 leads to a PSNR metric of 22.74712, an SSIM
metric of 0.48423, and an MSE metric of 0.10923. Optimal network performance occurs
when both coefficients are set to 20, resulting in a PSNR metric of 24.37922, an SSIM metric
of 0.58299, a minimum MSE metric of 0.09051, a minimum FID metric of 24.52293, and a
minimum LPIPS metric of 0.30492. Compared to setting both coefficients to 0, this results
in a PSNR improvement of 1.20716 dB and a substantial FID improvement of 122.24967.
However, the network performance gradually deteriorates when both coefficients are set
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to 30 or 40. The PSNR metric drops to less than 23 dB, the SSIM metric falls below 0.55,
and the FID metric exceeds 25. These findings demonstrate that empirically optimizing the
weighting coefficients significantly impacts network performance.

Table 9. Metrics comparison under different weighting coefficients of the loss function.

λ µ PSNR↑ SSIM↑ MSE↓ FID↓ LPIPS↓

0 0 23.17206 0.47407 0.10473 146.7726 0.43851
5 5 23.62600 0.53151 0.09887 33.77657 0.33035
5 10 23.36392 0.52065 0.10175 25.83090 0.32731

10 5 23.28437 0.52063 0.10266 25.21156 0.32604
10 10 23.89908 0.55937 0.09565 25.93467 0.30814
0 20 23.50430 0.52821 0.10013 26.87971 0.33359

20 0 22.74712 0.48423 0.10923 30.09656 0.34219
20 20 24.37922 0.58299 0.09051 24.52293 0.30492
30 30 22.66092 0.54197 0.14542 26.34720 0.33183
40 40 22.13496 0.49232 0.14785 31.43907 0.36090

Note: Bold and red font in the table indicate optimal values for each indicator.

5. Conclusions

In this study, DMSC-GAN is proposed for SAR image super-resolution. The generator
module follows an encoder–decoder architecture, incorporating convolutional operations
and DMSA to extract informative features. A multi-scale feature extraction pyramid is
created using varying window sizes to capture features at different scales. The discrimi-
nator is enhanced by employing two discriminators to assess inputs at different scales to
enhance discriminative capability. Perceptual loss and feature matching loss are introduced
to provide more comprehensive feedback to the generator from the discriminator. The
superiority of DMSC-GAN in terms of performance metrics compared to the SRGAN
method is demonstrated through the analysis of research experiment results. Specifically, a
significant improvement of 3.4196 dB in PSNR and 0.1889 in SSIM on the SEN1-2 dataset
was observed with DMSC-GAN. Additionally, there was a substantial increase of 13.85
in the FID score. These enhancements vividly capture the effectiveness of DMSC-GAN
in elevating the quality and fidelity of the generated SAR images, surpassing the capa-
bilities of the SRGAN method. Hence, the experimental findings affirm the approach’s
feasibility in accomplishing SAR image super-resolution tasks, notwithstanding certain
limitations that necessitate further research and improvement. The following suggestions
are recommended for future enhancements:

(1) Improvement of the loss function: A SAR image super-resolution-specific loss function
should be devised to optimize model training and attain superior results in super-
resolution.

(2) Reduction of model size: To expedite the model training process, lightweight modules
designed explicitly for SAR image feature extraction should be developed, thereby
augmenting the algorithm’s real-time capabilities and computational efficiency.

(3) Data augmentation and small-sample learning: Given the limited availability of SAR
image data, exploring data augmentation techniques to expand the training set is
warranted. Furthermore, investigating small-sample learning methods can facilitate
improved handling of the limited image quantity.

(4) Multi-domain learning: The training set should encompass diverse SAR images,
incorporating different polarization modes and resolutions to enhance the model’s
generalization ability.
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