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Abstract: In the remote sensing field, object detection holds immense value for applications such as
land use classification, disaster monitoring, and infrastructure planning, where accurate and efficient
identification of objects within images is essential for informed decision making. However, achieving
object localization with high precision can be challenging even if minor errors exist at the pixel
level, which can significantly impact the ground distance measurements. To address this critical
challenge, our research introduces an innovative hybrid approach that combines the capabilities of
the You Only Look Once version 7 (YOLOv7) and DEtection TRansformer (DETR) algorithms. By
bridging the gap between local receptive field and global context, our approach not only enhances
overall object detection accuracy, but also promotes precise object localization, a key requirement
in the field of remote sensing. Furthermore, a key advantage of our approach is the introduction
of an automatic selection module which serves as an intelligent decision-making component. This
module optimizes the selection process between YOLOv7 and DETR, and further improves object
detection accuracy. Finally, we validate the improved performance of our new hybrid approach
through empirical experimentation, and thus confirm its contribution to the field of target recognition
and detection in remote sensing images.

Keywords: object detection; detection transformer; YOLOv7; multimodalities

1. Introduction

Detecting objects in remote sensing images presents a set of intricate challenges that
demand innovative solutions. Remote sensing data typically originate from diverse sensor
modalities, such as optical, synthetic aperture radar (SAR), or multispectral sensors. Each
modality possesses unique characteristics and intricacies, thus necessitating adaptable
detection methods to select the optimal one for the situation at hand [1]. Additionally,
remote sensing images exhibit high variability in environmental conditions, such as changes
in lighting and weather, which poses challenges in the development of robust models for all
scenarios. Not only that, the vast geographical areas covered by such images also require
algorithms capable of efficiently processing large datasets.

The fusion of data from multiple sensors introduces complexities due to spatial,
spectral, and temporal resolution variations. Geo-referencing remote sensing images poses
difficulties related to geometric distortions, registration, and non-linear distortions caused
by the Earth’s curvature [1,2]. Moreover, the presence of limited annotated training data
(which are often costly to acquire) impedes accurate model development, especially in the
context of rare and specific object detection. Detecting small objects and resolving class
imbalance issues further complicates the challenge, given that the number of objects of
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interest is typically much smaller than the number of background objects [3]. Finally, it is
noted that the multifaceted nature of object detection in remote sensing images is influenced
by factors such as adaptability to diverse object types, considerations of real-time processing,
semantic context understanding, as well as privacy concerns when capturing sensitive
information [4]. Therefore, in order to overcome these challenges and thus drive innovation
in this critical field, the integration of advanced machine learning, domain expertise, and a
deep understanding of the remote sensing data intricacies are absolutely necessary [5].

Deep learning, particularly convolutional neural networks (CNNs), has had a signifi-
cant impact on many aspects of computer vision, including tasks like object recognition,
detection, and segmentation, while it has also sparked inspiration in fields like remote
sensing [1,3]. These networks typically take RGB images as input and apply a series of
operations, including convolution, local normalization, and pooling [2]. Furthermore,
CNNs rely heavily on extensive training data, and the resulting pre-trained models are
then used as versatile feature extractors for various downstream applications [1].

One of the fundamental components of CNNs is the convolution operation, which is
essential for capturing local interactions like contour and edge information within input
images [4]. CNNs incorporate inductive biases such as spatial connectivity and transla-
tion equivariance, contributing to the construction of robust and efficient architectures.
However, a limitation of CNNs is their local receptive field, which restricts their ability to
model long-range dependencies in an image, such as relationships between distant parts [5].
Furthermore, convolutions are content-independent because they use fixed filter weights
that are applied uniformly to all inputs, regardless of their characteristics [6].

Recently, vision transformers (ViTs) have emerged as a compelling alternative in the
field of computer vision. They are based on the self-attention mechanism, which effectively
captures global interactions by learning how elements in a sequence relate to one another [7].
New studies have also highlighted that ViTs excel in modeling content-dependent and long-
range interactions, while dynamically adapting their receptive fields to mitigate data-related
issues and thus, ultimately, learning highly effective feature representations [8,9]. Overall,
ViTs and their various adaptations have proven successful in a wide range of computer
vision tasks, including image classification, object detection, and image segmentation [10].

CNN-based methods typically struggle with capturing global features. In response
to this limitation, the DETR model has been developed, and its effectiveness in capturing
long-range relationships in remote sensing images (RSIs) has been established [11]. Many
of these transformer-based approaches draw inspiration from the YOLO object detection
paradigm, known for its exceptional speed, as it streamlines the process by directly pre-
dicting bounding-box coordinates and categories. As a result, this eliminates the need for
region proposal search, and thus leads to significantly faster inference times [12]. More-
over, YOLOv7, a variant of the YOLO algorithm, has demonstrated improved small object
recognition and robustness to different backgrounds [13]. In Ref. [14], a comparative anal-
ysis noted that YOLO achieves a commendable equilibrium between detection accuracy
and computational efficiency in contrast to other CNN-based detectors within the context
of RSIs.

As it was mentioned earlier, object detection plays a pivotal role in various remote
sensing applications, ranging from land use classification and disaster monitoring to
infrastructure planning. In this domain, achieving high accuracy in object localization is
of paramount importance, as even minor errors at the pixel level can lead to significant
discrepancies in ground distance measurements [15]. With the growing demand for precise
and reliable object detection in remote sensing, novel approaches combining the strengths
of different detection methods have emerged. In this research work, we present a hybrid
approach that leverages the strengths of both YOLOv7 and the DETR, two state-of-the-art
object detection frameworks [16].
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1.1. Related Work
1.1.1. General Object Detection

The field of object detection has seen significant advancements with the rise of deep
learning. Object detectors can be broadly categorized into two types: those with a region-
of-interest proposal step (two-stage) [17] and those without (one-stage) [18]. Notably, the
YOLO algorithm family, has gained attention due to their efficiency and simplicity in the
one-stage design, incorporating advanced technologies like the spatial pyramid pooling
(SPP) module in YOLOv3 [19] and the Mish activation function in YOLOv4 [20].

1.1.2. Vision Transformer (ViT)

Transformers, originally developed for natural language processing (NLP) tasks [21],
have shown remarkable success in tasks such as machine translation, question answering,
text classification, and document summarization [22]. This success is attributed to the
transformer’s ability to capture complex dependencies through a self-attention mechanism.
Notably, the ViT [7] extended the applicability of transformers to images by treating images
as sequences of patches, demonstrating a performance competitive with that of the CNN
method in image recognition tasks. Additionally, the DETR was the first successful attempt
to employ transformers for object detection, combining a transformer encoder and decoder
with a standard CNN model and utilizing a set-matching loss function [11].

1.1.3. Hybrid Approaches

CNN methods struggle with capturing global contextual information due to the
inherent locality of the convolution operation. In contrast, transformers excel in globally
attending to interdependencies among image feature patches through multi-head self-
attention, and thus manage to preserve ample spatial details that are essential for effective
object detection [23].

Hybrid approaches in remote sensing, which combine the capabilities of transformers
and CNNs, have gained increasing attention for their potential to revolutionize object
detection and image analysis [21]. These approaches offer the promise of enhanced accuracy
and versatility, yet they are accompanied by several notable challenges. The intricate self-
attention mechanisms of transformers, while powerful, increase model complexity and
computational demands [24]. Consequently, this extends training times and raises resource
requirements, making it imperative to explore efficient training strategies and model
architectures that are less resource-intensive [25]. One of the fundamental challenges is the
need for substantial and diverse datasets, which are often scarce in remote sensing due to
the high costs and effort involved in data collection and annotation [26]. Moreover, the
integration of large-scale hybrid models into existing workflows demands compatibility
with geospatial tools, data formats, and standards [11], necessitating the development of
bridges between computer vision and geospatial domains. On another note, coordinating
the training of both transformers and CNNs within hybrid models is a complex task,
requiring specialized techniques to ensure effective knowledge transfer and regularization
strategies to mitigate overfitting during fine-tuning for domain-specific tasks [27]. Finally,
achieving interpretability and explain ability in hybrid models is crucial for transparent
decision making [28], but it remains an ongoing challenge [29].

Despite the aforementioned obstacles, the field of remote sensing actively embraces hy-
brid models for their potential to address long-standing problems and push the boundaries
of what is achievable in many applications. In addition, the use of complex and opaque
black-box models, like deep neural networks and ensembles, in machine learning, raises
challenges in understanding their decision-making processes. Additionally, even though
there are the so-called explainers, who aim to elucidate these processes, they have limita-
tions such as imperfect explanation fidelity and ambiguity in their explanations [28,30].

Generally, the literature contains several works that integrate transformers and CNNs.
One approach introduces a Swin transformer-based backbone to enhance local perception as
well as to leverage the strengths of both methods for improved local feature extraction [31].
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Another study combined multi-scale global and local information from transformers and
CNNs using an adaptive feature fusion network, in order to capture a comprehensive range
of contextual information [32]. Ref. [16] presented a Siamese U-shaped network structure
based on the Swin transformer, incorporating encoder, fusion, and decoder modules to
facilitate more effective information integration. Ref. [33] proposed a framework that
integrates transformer and UNet architectures to capture enriched contextualized features,
up-sample them, and then fuse them with multi-scale features in order to eventually
generate global–local features for enhanced image understanding. Ref. [34] suggested a
hybrid CNN–transformers framework design for crop segmentation that effectively merges
local details and global contextual information to improve segmentation accuracy. Ref. [35]
developed an approach for remote sensing image caption generation, which involved the
adaptation of transformers with residual connections, dropout, and adaptive feature fusion
in order to enable more precise and context-aware captions.

1.2. Contributions

The novelty and contributions of the proposed hybrid approach for object detection in
remote sensing applications can be summarized as follows:

• Integration of YOLOv7 and Detection Transformer We seamlessly integrate YOLOv7
and detection transformers, leveraging their complementary features. YOLOv7 ex-
cels in local object detection, while detection transformers provide global context,
enhancing object detection by combining local precision and global awareness.

• Automatic Selection Module Our automatic model selection module, trained on
the mean average precision mAP0.5:0.95-based detection accuracy scores, serves as
a decision-making component that optimizes the choice between YOLOv7 and de-
tection transformers. It achieves higher localization accuracy by selecting the most
suitable model for each scenario, a vital innovation in remote sensing object detec-
tion. This module serves as a decision-making component that optimizes the choice
between YOLOv7 and detection transformer.

• Improved Object Localization in Remote Sensing The main achieved benefit as per the
results is reaching higher object localization accuracy, as measured by the mAP0.5:0.95
metric values of the proposed approach while the achieved mAP0.5 values are compa-
rable to the individual benchmark models. This addresses the critical requirement in
remote sensing, where slight pixel-level errors can lead to significant ground distance
discrepancies. Our hybrid approach consistently improves mAP0.5:0.95 scores, benefit-
ing object detection, land use classification, disaster monitoring, and infrastructure
planning.

• Benchmark-Beating Results Our hybrid approach outperforms individual models,
establishing itself as an innovative solution in remote sensing object detection. The
enhancements in mAP0.5:0.95 scores underscore the practical relevance and applicabil-
ity of this research in real-world remote sensing tasks, contributing significantly to
advancing geospatial information extraction.

2. Materials and Methods

While current methods such as the YOLOv7 adopt a local receptive field during
prediction, others like the DETR employ the attention mechanism to perform a global
context-informed manner of prediction. In this work, a hybrid approach is proposed
that combines the merits of the two approaches by directing the prediction towards the
most suitable model for each input image. Therefore, the images that could benefit from
the local perceptive field will be processed by YOLOv7, and the images that need global
context will be processed by DETR. As for the decision between the two strategies for each
image, an automatic selection algorithm is brought forward that depends on the detection
performance of the individual images and aims to create a selection model based on the
training data without un-explained assumptions. Hence, a straightforward, informed, and
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valid decision can be made. Below, a detailed description of our proposed algorithm will
be provided.

The proposed workflow for object detection commences with an automatic selection
(AS) module. During the training phase, this module was exposed to a diverse train-
ing dataset that includes images analyzed by both YOLOv7 and DETR methods, with
mAP0.5:0.95 scores serving as the key metric. Therefore, by training the module based on
this dataset, it acquires the expertise to autonomously analyze the characteristics of new
test images and select the strategy that maximizes accuracy. This adaptive decision-making
process significantly enhances the detection performance, an essential factor for promoting
precision in remote sensing.

Our new method also integrates a convolutional transformer detection block (CTDB),
where the DETR captures the global context, is pretrained on contextual representations
and fine-tuned for the specific detection task, and effectively utilizes dilated backbones to
improve small object detection [11]. Moreover, the DETR passes the input embeddings to
the transformer’s encoder–decoder, which generates output embeddings. Finally, the DETR
passes each output embedding to a classifier feed-forward network (FFN) and a bounding
box FFN for producing the final predictions, as shown in Figure 1 [11]. Meanwhile, YOLOv7
incorporates extended–efficient layer aggregation networks (E-ELAN) enhancements as
well as novel model scaling to ensure accurate local object detection [36]. Together, these
components form a comprehensive and intelligent object detection workflow tailored to
the unique demands of remote sensing applications. Up next, our hybrid structure for
object detection will be presented, where Figure 2 illustrates the architecture of our method,
Section 2.1. highlights the decision-making process via the automatic selection module,
and Section 2.2. shows the CTDB.
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2.1. Decision-Making Process

In our methodology, the AS module is primarily reliant on predictions generated by
the detection models, without any need for modifying the detection models or acquiring ad-
ditional information from them. This minimal information requirement provides enhanced
flexibility when establishing hybrid approaches between different models. Moreover, this
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approach streamlines the collaboration process and ensures the accuracy of information
within the model.

The AS module, a pivotal component within the hybrid object detection structure
illustrated in Figure 2a, assumes a critical role in determining the application of either
YOLOv7 or DETR to a given test image. As for its configuration, a comprehensive eval-
uation was conducted, where various modules such as the EfficientNetB0, InceptionV3,
ResNet50, ResNet101, and Darknet53 were considered, with each bringing its own unique
characteristics to the forefront.

EfficientNetB0, known for its efficiency, balances computational resources and accu-
racy [37]. InceptionV3, characterized by its inception modules, demonstrates versatility
in capturing complex features [38]. ResNet50, a residual network architecture, showcases
improved training ease and accuracy, especially when in the context of deep networks [39].
ResNet101, an extension of ResNet50, offers further depth and feature representation ca-
pabilities [9]. Darknet53, known for its role in YOLO models, emphasizes efficient object
detection through its unique architecture [40].

The aforementioned comprehensive empirical approach highlights the significance
of fine-tuning the model selection process based on experimental results, while also con-
sidering the nuanced strengths of different model architectures in the pursuit of optimal
performance for the object detection task at hand [11,41]. In fact, this evaluation identified
ResNet101 as the optimal choice for the AS module, since it outperformed its counterparts
in terms of both computational efficiency and accuracy.

Hereinafter, we provide a step-by-step description of the decision-making process,
implemented by the AS module, in the context of the proposed object detection algorithm,
with the purpose of determining the most appropriate detection model for an input image.

2.1.1. Automatic Selection Module (AS)

The first step in the decision-making process is the operation of the AS module,
denoted by the input image represented as (x). AS is responsible for evaluating the
characteristics of the input image and utilizing its training to make predictions about the
performance of the available detection models. Moreover, in the context of our algorithm,
the mAP0.5:0.95 quantity has been chosen for evaluation of the automatic selection model
training quality. The reason behind our choice is because it is a comprehensive measure
of detection accuracy across different intersection over union (IoU) thresholds, which
means that the mAP0.5:0.95 accounts for recall, precision, and localization of the prediction.
Therefore, in this way, the module learns from these training data how the performance
of each model varies on different images, while also considering factors such as image
content, complexity, and object distribution.

During the training, the automatic selection modules are exposed to a diverse set
of training data. This dataset includes various images for which object detection has
been performed using both YOLOv7 and DETR models. In fact, these images are used as
input to our proposed AS model. Subsequently, for each input image (x) in the training
dataset, the automatic selection model predicts the expected mean average precision values
mAP0.5:0.95 YOLOv7 and mAP0.5:0.95 DETR [42].

For a given input image (x), the automatic selection model predicts the expected
mean average precision values mAP0.5:0.95 YOLOv7 and mAP0.5:0.95 DETR [42]. Specifically,
the mAP0.5:0.95 of YOLOV7 for the image (x) can be calculated as follows:

mAP0.5:0.95 YOLOv7 =
1

10

10

∑
i=1

AP0.5+0.05·i , (1)

while the mAP0.5:0.95 of DETR for the input image (x) is given by the following equation:

mAP0.5:0.95 DETR =
1
10

10

∑
i=1

AP0.5+0.05·i (2)
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2.1.2. Decision-Making Phase

The decision-making phase is based on an informed selection based on the predicted
mAP0.5:0.95 values, and it is essential to the autonomous operation of the system. In the
following, the mathematical expression of the criterion for the selection of the appropriate
detection model is denoted as M, and it is defined as follows:

M =

{
YOLOv7 if mAP0.5:0.95 YOLOv7 > mAP0.5:0.95 DETR

DETR otherwise
(3)

Based on Equation (3), it is evident that if the predicted mAP0.5:0.95 value for the
YOLOv7 method is larger than the one for DETR, then the input image is directed to
YOLOv7. In any other case, it is guided towards the DETR method.

This algorithm is a structured and automated approach that enhances detection ac-
curacy by adapting to the unique characteristics of the image at hand. This innovative
automatic selection module leverages performance metrics from both the YOLOv7 and
DETR methods to ensure an autonomous choice of the most appropriate detection strategy.
This adaptability contributes to the improvement of detection performance, particularly
in remote sensing scenarios, where precision is paramount due to the direct correlation
between pixel-level errors in the images and ground-level distances. Essentially, this in-
telligent module acts as a mechanism for precise and reliable object detection by making
the optimal processing strategy selection for each specific case. The automatic selection
module is a key innovation that leverages performance metrics from both YOLOv7 and
DETR to autonomously guide the selection of the most appropriate detection model for
each image. Its capacity to adapt and optimize model choice based on image content
significantly enhances object localization accuracy, making it an asset in remote sensing
and object detection.

2.2. Convolutional Transformer Detection Block (CTDB)

The CTDB consists of two object detection modules, the DETR and the YOLOv7, while
its general architecture is depicted in Figure 2b.

2.2.1. DETR-DC5-R101 Model Architecture

The DETR-DC5-R101 model represents a significant extension of the DETR architec-
ture, introducing a DC5-R101 backbone that enhances feature extraction and contextual
awareness. This integration is a strategic choice that addresses the common challenges
faced by traditional object detection methods. These challenges include difficulties adapting
to variations in object scale, complex object shapes, and cluttered scenes with overlapping
objects. On another note, the DC5-R101 backbone offers solutions by enhancing adapt-
ability, feature extraction, and contextual awareness. As a result, this ensures that the
DETR model with the DC5-R101 backbone remains at the forefront of object detection
capabilities [11,43].

The model’s architectural flow initiates with the input image (x), complemented by
the incorporation of positional encodings PE(x) to precisely capture object positions. In
addition, positional encodings are introduced to the input feature maps, allowing the model
to understand spatial relationships. These encodings can be defined as follows for a 2D
position (i, j) in the feature map, and more specifically for positional encodings [44]:

PE(i, j) = [sin(i/10000∧(2⋆d/emb_dim)), cos(i/10000∧(2⋆d/emb_dim))
sin(j/10000∧(2⋆d/emb_dim)), cos(j/10000∧(2⋆d/emb_dim))] ,

(4)

where i and j represent the row and column indices in the feature map, while 2⋆d and
emb_dim refer to the number of dimensions in the positional encoding.

The DC5-R101 backbone, a principal component of this architecture, excels in its ability
to adaptively adjust the receptive field of feature maps, a fundamental requirement for
robust object detection. This adjustment is achieved through the introduction of dilations
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and stride modifications, leading to an enhanced feature map output. This operation can
be represented using the following equation [11]:

Hbackbone = DC5−R101(PE(x)) (5)

where Hbackbone represents the output of the DC5-R101 backbone, and PE(x) is the input
image with positional encodings. However, this architectural enhancement comes at the
trade-off of increased computational cost due to intensified self-attention mechanisms in
the encoder. As for the DC5 operation in this context, it is mathematically represented
as follows:

DC5(Y, d) = Conv(Y, 5 × 5, dilation = d) (6)

Based on Equation (6), DETR leverages a CNN with a kernel (5 × 5) and a specified
dilation rate (d) to enhance adaptability for fine-grained detail capture. The kernel (5 × 5)
is chosen for its effectiveness in capturing intricate patterns and spatial relationships. As
for the dilation rate, it introduces adaptability to the convolutional operation, influencing
receptive field construction. This approach enables the network to process information at
multiple scales, crucial for tasks requiring detailed analysis.

Furthermore, the DETR architecture employs a transformer encoder that incorporates
self-attention and feed-forward layers. Within this encoder, the self-attention mechanism
calculates attention scores for each object query–key pair (Qi, Ki) through the formula
below [21]:

Attention(Qi, Ki) = So f tmax

(
QiKT

i√
dk

)
·V (7)

where dk denotes the dimension of keys and values, and V represents the values, while the
transformer encoder output is represented as Htrans f ormer.

The model makes predictions for each object query using feedforward layers. Specifi-
cally, class predictions (Pcls) and bounding box predictions (Pbox) are generated using the
following equations [21]:

Pcls = Softmax
(

Wc·Htrans f ormer

)
(8)

Pbox = Wbox·Htrans f ormer (9)

where Wc and Wbox are the learned weight matrices.
The model is trained using a combination of loss functions (Losstotal), including a

classification loss (Losscls) and a localization loss (Lossbox) [11]:

Losstotal = Losscls + Lossbox (10)

In object detection models, the terms “classification loss” and “localization loss” refer
to two essential components of the overall loss function, which guides the training of the
model. Losscls is crucial in object detection since it measures the accuracy of predicting
object class labels by quantifying the difference between predicted and ground truth
labels. Furthermore, this quantity is calculated with a loss function like cross-entropy;
it guides the model to assign high probabilities to correct class labels, thereby ensuring
accurate identification of object categories. As for the Lossbox, it assesses the accuracy
of predicting bounding box coordinates for objects in an image. In fact, it gauges how
well the predicted bounding boxes align with the actual object positions. Moreover, it is
typically calculated with smooth L1 loss or a similar regression function and encourages the
model to precisely locate objects in the image by minimizing disparities between predicted
and ground truth bounding boxes. Finally, the Losstotal combines the Losscls and Lossbox
to create a joint optimization goal for training. Basically, the DETR architecture aims to
simultaneously minimize both components and thus achieve a balance between accurate
object classification and precise localization within the image.
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2.2.2. Convolutional Neural Network YOLOv7

YOLOv7, the latest iteration of the YOLO series, represents a significant advancement
in both object detection speed and accuracy compared to its predecessors. Its key improve-
ment lies in the overall architecture, where the concept of E-ELAN has been introduced.

This method features a series of convolutional layers, followed by detection layers that
are responsible for predicting bounding boxes and object class probabilities. In addition,
it utilizes techniques like expansion, shuffling and cardinality merging to enhance the
network’s learning capacity continuously. Most importantly, this augmentation does
not disrupt the original gradient flow, ensuring stable training. In fact, E-ELAN has
been found to be particularly effective in guiding different sets of computational blocks
in order to acquire diverse features, as shown in Figure 3a [45]. Finally, the YOLOv7
introduces a novel approach to model scaling, which aims to preserve the model’s inherent
characteristics from its initial design, while also maintaining the optimal structure, as
shown in Figure 3b. Overall, these innovations represent a significant stride forward in the
YOLO series framework in terms of network optimization and enhancement.
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2.3. Materials

In this study, the specialized VIdeo Satellite Objects (VISO) dataset was utilized for
the precise detection of objects within satellite images [46]. The VISO dataset comprises
an extensive collection designed for the task of detecting and tracking moving objects
within satellite videos. This dataset includes 47 satellite video sequences, all of which were
captured by Jilin-1 satellite platforms. Each image in this dataset boasts a high resolution,
measuring 12,000 pixels in width and 5000 pixels in height. Furthermore, this extensive
collection not only provides a diverse range of objects but also encompasses various sizes
and scales, enriching the dataset with real-world complexities. In our work here, we focus
on the detection of three common classes: airplanes, ships, and trains.

The training process utilized a computer with a 12th Gen Intel(R) Core (TM) i7-12700H
processor running at 2.70 GHz, 16.0 GB of installed RAM (15.7 GB usable), and a GeForce
RTX 3070 graphics card. Furthermore, the deep learning framework employed for this
work was Pytorch.

3. Results

As it was mentioned earlier, we integrated different deep learning neural networks
into the AS module in order to assess their object detection performance in terms of
accuracy and determine the optimal one. Specifically, the modules we considered were
the EfficientNetB0, InceptionV3, ResNet50, ResNet101, and Darknet53. The results of this
evaluation are summarized in Table 1. Based on that, ResNet101 demonstrated superior
accuracy compared to others, and thus it is designated as the one capable of producing
research outcomes with optimal robustness and credibility.

Table 1. Accuracy of the automatic selection module using different convolutional neural networks
for different objects.

Methods Accuracy of Selection According to Objects

Plane Ship Train

Resnet101 85% 83.7% 88.57%

Efficientnetb0 84.45% 78.26% 78.26%

Inceptionv3 80.17% 76.09% 69.57%

Resnte50 81.4% 70.25% 72.15%

Darknet53 83.47% 79.35% 80.65%

In the context of our experimental investigations, the previously mentioned process
was implemented for training and testing for five iterations, while employing a data
partitioning strategy that allocated 65% for training and 35% for validation. The main
objective was again to detect objects within three distinct categories: planes, ships, and
trains. Moreover, this study seeks to gauge the performance of our new novel hybrid object
detection algorithm by comparing it with established models, namely the YOLOV7 and
DETR. Table 2 displays measurements that encompass critical evaluation metrics, averaged
over five iterations of tests for the three aforementioned object categories. Specifically, these
metrics are the mAP0.5 and mAP0.5:0.95 quantities; the accuracy related to the training of the
CNN- Resnet101 automatic selection module; the “gain”, which refers to the absolute value
of the disparity between the correct detection scores of YOLOv7 and DETR; and the “loss”,
which indicates the absolute value of the difference between the incorrect detection scores
of YOLOv7 and DETR.

These comprehensive evaluations (i.e., metrics) offer insights into the performance
of our hybrid structure in comparison to the individual YOLO and DETR conventional
methods. Therefore, based on Table 2 as well as Figure 4, where the mAP0.5 and mAP0.5:0.95
values for each object and method are compared, the superiority of our new approach in
terms of efficiency and effectiveness in object detection tasks is highlighted.
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Table 2. Comprehensive comparison of key metrics, including mAP, training accuracy, gain, and loss,
calculated as averages from five separate test iterations.

Object mAP0.5 mAP0.5:0.95 Training Accuracy Gain Loss

YOLOv7 DETR AS Yolov7 DETR AS CNN-Res101

Plane 0.97 0.96 0.98 0.70 0.68 0.79 85% 0.292 0.13

Ship 0.96 0.97 0.97 0.54 0.64 0.64 83.7% 0.17 0.16

Train 0.979 0.98 0.98 0.68 0.70 0.74 88.57% 0.1779 0.0697
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4. Discussion

This section outlines the specifics of implementing and training hybrid structures,
along with an examination of the results obtained.

4.1. Implementation Details

In this work, we trained a new AS module using a dataset comprising 394 im-
ages. This module’s input layer operated on standardized images with dimensions set at
224 × 224 pixels, incorporating three color channels representing the Red, Green, and Blue
(RGB) color spectrum. In the training phase, the Adam optimization algorithm is operated
with specific hyperparameter choices to strike a balance between stable convergence and
efficient learning [47]. The decision to employ the Adam optimizer is rooted in its adap-
tive nature, combining momentum. Moreover, RMSprop (root mean square propagation)
methods were also chosen to be utilized, due to the fact that they often result in faster
convergence and improved performance in deep learning tasks [48]. As for the learning
rate, it was initialized at 0.0001, a relatively low value, to ensure cautious updates to model
parameters, especially in the early stages of training. In fact, this mitigates the risk of over-
fitting to the training data [49]. Additionally, the model was trained using information from
30 epochs with the purpose of allowing it to learn and adapt to the underlying patterns at
hand. On another note, for each epoch, the data were partitioned into four mini-batches
to balance the computational efficiency with stable convergence [50]. Smaller mini-batch
sizes are favored in situations wherein computational resources are constrained, as they
allow for more frequent updates of model parameters. In fact, this choice contributes to
a more stable and efficient optimization process [51]. Moreover, these hyperparameter



Remote Sens. 2024, 16, 51 12 of 17

selections were made through a combination of established best practices and empirical
experimentation, tailored to the specific requirements and characteristics of our dataset and
research objectives. Ultimately, they collectively contribute to a well-balanced and effective
training regimen for our neural network model.

In the context of object detection, our research focuses on the training of YOLOv7 and
DETR models. We initiated the optimization of model parameters with an initial learning
rate of 0.0001 and a batch size set to 2. On top of that, to guard against overfitting, we
implemented data augmentation methods, which encompassed actions such as image
flipping, rotation, and adjustments to hue.

In Table 3, we provide a comparison of the number of epochs required to train both
YOLO and DETR-based models across various datasets, focusing on three object categories:
planes, ships, and trains. Intriguingly, the results demonstrate that the DETR achieves
convergence with fewer epochs compared to YOLOv7, something that showcases its
efficiency in terms of training duration. Also, it is worth highlighting that this efficiency is
notable, despite DETR having a higher number of parameters in its transformer architecture
compared to YOLOv7.

Table 3. Number of epochs and datasets.

Object Number of Epochs Number of Images

Yolov7 DETR Training Validation
Plane 100 20 1965 281
Ships 100 20 456 114
Train 50 20 198 49

4.2. Analysis and Visualization of Object Detection

Within the realm of computer vision and object detection, the evaluation metrics
mAP0.5 and mAP0.5:0.95 serve as pivotal benchmarks for assessing the performance of de-
tection models [52]. These metrics are commonly applied in conjunction with widely
recognized datasets like Pascal VOC and COCO, offering robust means to rigorously evalu-
ate the efficacy of object detection algorithms. Specifically, mAP0.5 calculates the average
precision for each object class at an IoU threshold of 0.5, and subsequently computes the
mean across all classes. This metric essentially measures the model’s competence in accu-
rately localizing objects when there exists a minimum 50% overlap between the predicted
bounding box and the ground truth bounding box. In simpler terms, it quantifies the
model’s capacity to detect objects that align reasonably well with the ground truth bound-
ing boxes. Conversely, mAP0.5:0.95 offers a more comprehensive evaluation by considering
a range of IoU thresholds, spanning from 0.5 to 0.95 in small increments (e.g., 0.5, 0.55, 0.6,
. . ., 0.95). This metric computes the average precision for each class at each of these IoU
thresholds and subsequently calculates the mean across all classes and IoU thresholds. In
practical applications, mAP0.5:0.95 is typically favored, since it provides a holistic assessment
of a model’s performance across diverse IoU thresholds, thereby rewarding models capable
of detecting objects with varying degrees of spatial overlap with the ground truth. Both
mAP0.5 and mAP0.5:0.95 play a critical role in evaluating object detection models, offering
valuable insights into their ability to strike a balance between recall (detecting objects)
and precision (accurately detecting objects) at different levels of object overlap with the
ground truth.

The experimental results yielded compelling evidence to validate the efficacy of our
new approach in enhancing object detection performance. Notably, the discrepancies
observed between mAP0.5 and mAP0.5:0.95 underscored the inherent challenges faced by
detection models when confronted with specific IoU thresholds, spanning from 0.5 to 0.95.
Furthermore, these disparities manifested uniquely across the three object classes, namely
planes, ships, and trains. In fact, a comprehensive analysis of the dataset depicted in
Figure 5 revealed the distribution of the number that each of the three objects was de-
tected with respect to the area. Specifically, it showed that planes were predominantly
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concentrated within the small and medium area categories, a scenario conducive to YOLO’s
strengths, owing to its smaller local receptive field. In contrast, ships exhibited a distribu-
tion encompassing small, medium, and large area categories, favoring DETR’s performance,
which surpassed that of YOLO. Conversely, trains were associated with larger areas, align-
ing perfectly with DETR’s capabilities, and consequently resulting in superior performance.
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In conclusion, these findings underscored YOLO’s proficiency in handling small
objects, DETR’s excellence in detecting large objects, and the substantial performance
enhancement achieved by the proposed hybrid structures in terms of both the mAP0.5 and
mAP0.5:0.95 metrics. As a result, this improvement in detection and localization capabilities
conclusively validates the effectiveness of the proposed approach in the context of object
detection compared with individual detection models.

In Figure 6, we visually show the results of our hybrid proposed object detection model
for the three distinct object categories: small planes (a), ships detected from multispectral
(MS) images (b), ships detected from PANchromatic (PAN) images (c), and train (d). Our
primary aim with this visualization is to assess our detection model’s performance across
a diverse range of objects and image types. Particularly noteworthy is Figure 5a, which
emphasizes the hybrid model’s efficiency in detecting small planes within intricate settings,
including residential areas. In fact, this underscores the model’s ability to adapt to varying
and challenging contexts. Additionally, Figure 6b,c show ship detection using both multi-
spectral and panchromatic images, providing insights into how the model performs across
different imaging modalities. Overall, these visual depictions offer a qualitative perspective
on the accuracy and effectiveness of our object detection approach, shedding light on its
capacity to identify objects of interest within diverse contextual and imaging scenarios.

Based on the aforementioned, our comprehensive evaluation not only reaffirms the
effectiveness of the proposed hybrid object detection model in terms of accuracy and
efficiency. On top of that, we explored the model’s performance on datasets of varying
sizes and complexities, thus addressing potential concerns related to scalability. In fact,
scalability is essential for accommodating the increasing demand for object detection in
large-scale and dynamic environments. With this in mind, our results revealed that our
proposed hybrid approach achieves a consistent and robust performance across diverse
datasets. Finally, these findings contribute valuable insights to the broader field of computer
vision, emphasizing the model’s versatility and applicability in real-world scenarios.
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5. Conclusions

In this paper, we introduced an innovative hybrid approach for object detection in
remote sensing applications, which combines the strengths of YOLOv7 and DETR. This
integration effectively strikes a balance between local object detection precision and global
context awareness, resulting in a substantial improvement in object detection accuracy and
enhanced object localization precision.

One of the key advantages of our approach is the inclusion of an automatic selection
module. This module, trained using detection accuracy scores based on the mean average
precision mAP0.5:0.95, serves as an intelligent decision-making component. It optimizes the
choice between YOLOv7, and detection transformers based on the unique characteristics of
each image, further enhancing object localization accuracy.

Our experimental results undeniably demonstrate the superior performance of our
hybrid approach, establishing it as a top-performing solution for remote sensing object
detection. This research not only pushes the boundaries of the field, but also holds signifi-
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cant promise for applications in geospatial information extraction, land use classification,
disaster monitoring, and infrastructure planning within the realm of remote sensing. Ulti-
mately, our approach not only enhances object detection, but also refines the precision of
object localization in remote sensing applications, marking a substantial advancement in
this domain.
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