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Abstract: The Qinghai–Tibetan Plateau (QTP), which has a unique and severe environment, suffers
from the absence of rainfall gauges in western arid land. Using different precipitation products in
this region would easily lead to contradictory results. To evaluate nine fine-resolution precipitation
products in the QTP, we propose a “down to top” methodology, based on water balance and drought
chain, by forecasting two accuracy assessment indices—multi-year precipitation bias and precipitation
correlation. We assessed the biases of all products in the Jinsha–Yalong, Yellow, Heihe, Yangtze,
Yarlung Zangbo catchments and interior drainage areas. And we assessed gauge-based correlation
of precipitation products, based on the correlations between precipitation product-based effective
drought index (EDI), Soil Moisture Active Passive (SMAP)-based soil moisture anomaly, and the
moderate-resolution imaging spectroradiometer (MODIS)-based normalized difference vegetation
index (NDVI) anomaly (R = 0.712, R = 0.36, and R = 0.785, respectively) for cross-sectional rainfall
observations on the Tibetan Plateau in 2018. The results showed that ERA5-Land and IMERG merged
precipitation dataset (EIMD) can efficiently close the water budget at the catchment scale. Moreover,
the EIMD-based EDI exhibited the best performance in correlation with both the SMAP-based
soil moisture anomaly and MODIS-based NDVI anomaly for the three main herbaceous species
areas—Kobresia pygmaea meadow, Stipa purpurea steppe, and Carex moorcroftii steppe. Overall,
we find that EIMD is the most accurate among the nine products. The annual average precipitation
(2001–2018) was determined to be 568.16 mm in the QTP. Our assessment methodology has a remote
sensing basis with low cost and can be used for other arid lands in the future.

Keywords: precipitation product; water balance; drought chain; effective drought index; soil moisture
active passive; normalized difference vegetation index; herbaceous species

1. Introduction

The Qinghai–Tibetan Plateau (QTP) is usually called the “water tower of Asia” owing
to its importance in the hydrological cycle. Many South and East Asian rivers originate
from the QTP. In recent years, water balance issues in the QTP have attracted great attention.
A recent study identified an imbalance in the Asian water tower caused by the accelerated
transformation of ice and snow into liquid water [1]. Due to the harsh natural environment,
such as continental glaciers [2] and the arid area in western QTP, there are only a few
meteorological stations maintained by the China Meteorological Administration [3], which
has caused uncertainties in determining the western part of the 400 mm isohyet [4].

Reanalysis products and remote sensing of precipitation are two significant supple-
ments. Reanalysis methods merge background forecast models and data assimilation,
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and their performance may depend on the quality of assimilated datasets [5], which are
sparsely and non-representatively distributed in the QTP region. A variety of uncertainties
of satellite-based precipitation products are associated with sensor accuracy, revisit time
gaps, spatial resolution, relationships between remotely sensed signals and rainfall rates,
and atmospheric effects [6]. Considering this context, scientific methods are required to
assess the imperfect datasets in these remote areas with fewer gauges.

Precipitation is not a continuous variable and has strong spatial gradients. Rain gauges
are the most common instruments to directly measure precipitation at the point scale [7].
However, rain gauges often suffer from low-density networks and frequent time-series
gaps [8]. Previous precipitation evaluations show that station density is the most influential
factor that affects grid data quality [9,10]. The density of existing observational stations
on the QTP is much lower than for the rest of China. Most observation stations are in the
central and eastern parts of the plateau, with few in the west [11]. A pertinent challenge
is to identify other reliable methods to assess precipitation products. According to the
principle of conservation of mass in closed systems, long-term water balance effectively
partitions precipitation into runoff and evapotranspiration [12]. Unlike plot-based rain
gauges, runoff at the catchment outlet represents the integrated response to all hydrological
processes within the catchment [13]. The biases in precipitation climatologies are corrected
based on worldwide streamflow observations [14].

As one of the most widespread and costly hydrological imbalance phenomena in
the world [15], higher frequency and lower intensity of drought events occur in western
QTP [16]. Reanalysis and remote sensing precipitation products-based drought indices
were shown to be able to capture the occurrence and characteristics of drought events;
however, they are influenced by various sources, the complex topography, and atmospheric
processes [17,18]. The correlations of meteorological drought indices based on the Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS) in the QTP are better than
those based on the Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), the
reason being that many spatial details of rain gauge observations are lost in the latter [19].
The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG)
product has slightly better capability to capture meteorological drought than the Tropi-
cal Rainfall Measurement Mission (TRMM)-based Multi-satellite Precipitation Analysis
(TMPA) product in Nepal and the southern QTP; gauge-based validation shows that this
is because the IMERG product yields better performance in detecting precipitation and
non-precipitation events than TMPA [20]. It seems that droughts, which are one example of
an extreme event, can reflect the accuracy of precipitation products in the QTP. Droughts are
usually classified as meteorological, agricultural, hydrological, or socioeconomic. Common
to all types of drought is the fact that they originate from a deficiency of precipitation that
results in water shortage [21]. Rainfed agricultural drought processes are validated by
following the “precipitation–soil moisture–vegetative growth” drought chain diagram [22].
The development of space technology provides abundant remotely sensed data for vast
areas with harsh weather conditions and complex topographies. Optical and microwave
remote sensing is a useful tool for land surface soil moisture and vegetation monitoring
in large areas. The Soil Moisture and Ocean Salinity (SMOS; European Space Agency,
November 2009) and Soil Moisture Active Passive (SMAP; National Aeronautics and Space
Administration, January 2015) missions are dedicated to the acquisition of global soil mois-
ture information. The soil moisture products nominally released by SMOS and SMAP
indicate average soil moisture at the top of the surface, which are conventionally compared
with 5 cm in situ data [23]. The normalized difference vegetation index (NDVI) is the
most used vegetation index, which is calculated based on remote sensing measurements
of visible and near-infrared radiation. Stressed vegetation has positive but low values of
NDVI [24]. The quality of the precipitation deficit can be evaluated by remote sensing-based
component interactions during drought processes at specific species areas in the QTP.

In this paper, we attempt to evaluate nine fine-resolution (less than or close to 0.1 de-
gree grid) precipitation products in the Qinghai–Tibetan Plateau based on the surrounding
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drought chain and water balance rather than gauge observation. The specific objectives are
to: (1) assess precipitation products against rain gauge observations in the QTP and predict
gauge-based correlations based on drought chains; (2) assess the climatology characteris-
tics of precipitation products based on water balance principles; (3) assess the correlation
of precipitation products based on drought chains in the QTP; and (4) comprehensively
evaluate the precipitation products.

2. Materials and Methods
2.1. “Down to Top” Surrounding Assessment Methodology

Can the accuracy of precipitation products from the aspect of climatology and abnor-
mal precipitation in arid areas be assessed using the internal relationships among internal
constraints within the water cycle? Precipitation (P) can be regarded as the sum of precipita-
tion climatology (P) and precipitation abnormality (∆P). Precipitation climatology captures
the central location or mean level of precipitation. Precipitation abnormality shows the
departure of precipitation from normal levels.

P = P + ∆P (1)

The key point of water balance or hydrologic balance is that the water amount on
earth will never disappear and only moves within diverse geospheres during water cycle
processes (Figure 1a). The great importance of the water balance equation, which posits
that precipitation is equal to runoff plus evaporation and was first suggested by A. Penck
in 1896 [12], is well known in hydrological sciences. The partition of precipitation into
evapotranspiration and runoff at the land surface plays an important role in the Earth’s
hydrology and climate system [25,26]. Common precipitation abnormal phenomena are
droughts and floods. The key point of the drought definition is the concept of a water deficit.
Precipitation deficits are propagated over time through the surface runoff, soil moisture,
streamflow, and groundwater components of the hydrologic cycle. Precipitation deficit
is the dominant precipitation abnormality in arid areas of the QTP. Precipitation can be
considered the first carrier of the drought signal [27]. According to the agricultural drought
processing assessment framework [22], abnormal precipitation (∆P) at a specific site causes
abnormal soil moisture (∆SM) and vegetation (∆V) through a condition anomaly. The
positive correlation values among precipitation, soil moisture, and vegetation anomalies
show the closeness of component relationships within the drought chain (Figure 1b). This
suggests that abnormal precipitation is also likely to be assessed by their closeness within
the drought chain.

2.2. The Framework for Precipitation Product Assessment

We evaluate the fine-resolution precipitation products based on traditional gauge ob-
servations and our proposed surrounding assessment methodology (Figure 2). We evaluate
the bias and correlation of two accuracy indices and employ pixel-based meteorological–soil
moisture drought correlation and meteorological–vegetation drought to predict gauge-
based assessment correlation. Surrounding evaluations include two aspects: we will first
assess precipitation biases in sub-basins and large basins combined with multi-year aver-
age ET product values and watershed runoff observations. Based on microwave remote
sensing soil moisture products and remote sensing vegetation products, we calculate
meteorological–soil moisture drought correlation, meteorological–vegetation drought cor-
relation and synthesis correlation to evaluate the correlations of precipitation products.
Finally, we will comprehensively assess multiple precipitation products based on traditional
gauge observations and our proposed assessment methodology.
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Figure 2. Flowchart of precipitation product assessment.

2.3. Study Area

Five administrative provinces of China occupy the QTP (25–39◦N, 73–105◦E), with the
average annual precipitation of this region decreasing from the southeast to the northwest as
warm and humid air masses moving from the Indian Ocean are blocked by huge mountains.
The QTP is the origin of several major rivers in Asia, including the Yarlung Zangbo River,
Hei River, Yangtze River, Yellow River, and Lancang River (Figure 3a). A series of high
mountains, including the Kunlun, Qilian, Tanggula, and Hengduan mountains, stretches
along the plateau. We selected the Jinsha–Yalong river basin as our study area, including
the Jinsha River (upper reaches of the panzhihua hydrological station) and the Yalong River,
which is a major tributary river of the Yangtze River in Southwest China. A main feature of
the rivers in this area is their large river fall (Figure 3b).
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Figure 3. Study area: (a) locations of the six large catchment areas and CWTP rainfall gauges in the
QTP, (b) location of drainage catchment in the Jinsha–Yalong basin, (c) fit of catchment delineation
and catchment area records, (d) spatial pattern of Kobresia pygmaea meadow (K) (cyan color),
Stipa purpurea steppe (S) (yellow color), and the Carex moorcroftii steppe (C) (red color), and
(e) relationship between the measured vegetation coverage and MODIS vegetation NDVI in the
herbaceous species areas.

The Vegetation Map of the People’s Republic of China (1:1,000,000) is the scientific
achievement of more than 200 scientists after more than 30 years of hard work. This
atlas exhibits the whole picture of vegetation in China, including 55 vegetation types,
960 types of formations, and more than 2000 dominant plant species. For this study,
three dominant grass species in the Tibet Plateau were selected—Kobresia pygmaea
meadow, Stipa purpurea steppe, and Carex moorcroftii steppe, which occupy areas of
49.470 × 104 km2, 39.245 × 104 km2, and 19.832 × 104 km2 within the Tibet Plateau, re-
spectively (Figure 3d). The Kobresia pygmaea meadow, which represents the world’s
largest alpine ecosystem, is a common carpet-like sedge species found in the QTP. It has
unisexual lateral spikes with slender yellow-green filiform leaves and normally grows
in humid habitats above an elevation of 4000 m and below the local snow line [28]. The
Stipa purpurea steppe is the dominant species of the Tibetan Plateau’s alpine steppe and is
endemic to the Tibetan Plateau and the Pamir Mountains of Central Asia, where it grows at
elevations of 1900–5150 m a.s.l. [29,30]. Lastly, the Carex moorcroftii steppe is a widespread
dominant sedge found in alpine steppes and meadows in the middle and northern parts of
the Qiangtang Plateau.

2.4. High-Resolution Precipitation Product Materials
2.4.1. Gauge Rainfall Observation in the Central and Western Tibetan Plateau

Two observation transects running south–north and west–east across this region
were used to obtain hourly rainfall data during the warm season (May–September). The
south–north transect extends from Yadong Valley to Shuanghu County; the west–east
transect extends from Shiquanhe to Naqu in the central TP [11]. We downloaded the
hourly rain gauge data for the warm season (May–September) in the central and western
Tibetan Plateau in 2018 from the National Tibetan Plateau Data Center DOI: 10.11888/At-
mos.tpdc.272983 (accessed on 21 December 2023) and calculated total precipitation during
the warm season for 19 stations along the south–north transect and for 20 stations along
the west–east transect.
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2.4.2. Precipitation Products

We evaluated nine monthly-scale high-resolution precipitation products in the Qinghai–
Tibetan Plateau according to our proposed method (Table 1). The time series of most
datasets cover the period from 2001 to 2018. The datasets include: enhanced global
dataset for the land component of the 5th generation of European ReAnalysis (ERA5-
Land) [31], the Integrated Multi-satellitE Retrievals for GPM Final Precipitation L3 (GPM3
IMERGDF) 1 day 0.1 degree × 0.1 degree V06 [32], the China Meteorological Forcing
Dataset (CMFD) [33], the Tibet Plateau Meteorological Forcing Dataset (TPMFD) [34], the
PERSIANN-Cloud Classification System (PERSIANN-CCS) [35], monthly Multi-Source
Weighted-Ensemble Precipitation (MSWEP) [36], the Climate Hazards Group InfraRed
Precipitation (CHIRPS) with station data [37], and the bias correction CPC MORPHing
technique product (CMORPH-ADL) [38]. We simply averaged monthly ERA5-Land pre-
cipitation and GPM IMERG precipitation as new datasets named ERA5-Land and IMERG
Merged Dataset (EIMD), respectively, in this paper, as shown in Table 1.

Table 1. High-resolution precipitation products.

Precipitation
Product Time Series Spatial

Resolution Characteristics

ERA5-Land 2001–2018 11.132 km

Integration of the ECMWF land surface model that is driven by
downscaled meteorological forcing from ERA5 climate reanalysis. The
monthly ERA5-Land products were from Copernicus Climate Data
Store https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on
21 December 2023)

GPM IMERG 2001–2018 0.1 degree

Using both forward and backward morphing and including monthly
gauge analyses, the final version of the dataset for 2001 to 2018 was
downloaded from https://disc.gsfc.nasa.gov/datasets/GPM3
IMERGHH06/summary?keywords=GPM (accessed on
21 December 2023)

CMFD 2001–2018 0.1 degree

The dataset was created through a fusion of remote sensing products,
reanalysis datasets, and in situ observation data at weather stations
downloaded from DOI: 10.3972/westdc.002.2014.db (accessed on 21
December 2023)

CHIRPS 2001–2018 0.1 degree

CHIRPS incorporates in-house climatology, CHPclim, 0.05-resolution
satellite imagery, and in situ station data to create gridded rainfall time
series for trend analysis and seasonal drought monitoring. Monthly
dataset is available from https:
//data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/netcdf
(accessed on 21 December 2023)

CMORPH-ADL 2001–2018 8 km

Bias correction is performed for the raw CMORPH through probability
density function (PDF) matching against the CPC daily gauge analysis
over land and through adjustment against the Global Precipitation
Climatology Project (GPCP) pentad merged analysis of precipitation
over the ocean. A 30 min dataset is available from the National Centers
for Environmental Information
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-
precipitation-estimates/access/30min/8km (accessed on
21 December 2023)

MSWEP 2001–2018 0.1 degree
The MSWEP product is unique in that it merges gauge, satellite, and
reanalysis data. Monthly data are available from
https://www.gloh2o.org/mswep/ (accessed on 21 December 2023)

TPMFD 2001–2018 3 km
The ERA5 precipitation is corrected by high-resolution simulation at
coarse spatial resolution and downscaled using a convolution neural
network (CNN)-based model at the daily scale.

https://cds.climate.copernicus.eu/cdsapp#!/home
https://disc.gsfc.nasa.gov/datasets/GPM3IMERGHH06/summary?keywords=GPM
https://disc.gsfc.nasa.gov/datasets/GPM3IMERGHH06/summary?keywords=GPM
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/netcdf
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/netcdf
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km
https://www.gloh2o.org/mswep/
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Table 1. Cont.

Precipitation
Product Time Series Spatial

Resolution Characteristics

PERSIANN-CCS 2003–2018 0.04 degree

PERSIANN-CCS system enables the categorization of cloud-patch
features based on cloud height, areal extent, and variability of texture
estimated from satellite imagery. Monthly datasets from 2003–2018
were from persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS/mthly
(accessed on 21 December 2023).

EIMD 2001–2018 0.1 degree Monthly average of ERA5-Land and IMERG, in this paper

2.5. Other Datasets
2.5.1. Evapotranspiration

We downloaded five evapotranspiration datasets:

1. ERA5-land monthly total evaporation products [31] and ERA5 monthly total evapo-
ration products were downloaded from Copernicus Climate Data Store https://cds.
climate.copernicus.eu/cdsapp#!/home (accessed on 21 December 2023)

2. ETMonitor Global actual evapotranspiration dataset 1-km resolution [39] from
2001–2018 was downloaded from https://www.tpdc.ac.cn/. DOI:10.11888/Hydro.tpdc.
270298.CSTR:18406.11.Hydro.tpdc.270298 (accessed on 21 December 2023)

3. Monthly mean evapotranspiration dataset for the Tibet Plateau (2001–2018) [40] was
downloaded from https://www.tpdc.ac.cn/. DOI:10.11888/Hydro.tpdc.270995.CSTR:
18406.11.Hydro.tpdc.270995 (accessed on 21 December 2023)

4. GLDAS Noah Land Surface Model L4 0.25 × 0.25-degree V2.1 evapotranspiration
dataset [41], which forces the combination of model and observation data, was down-
loaded from the Goddard Earth Sciences Data and Information Services Center https:
//disc.gsfc.nasa.gov/datasets/GLDASNOAH025M2.1/summary?keywords=gldas
(accessed on 21 December 2023)

2.5.2. Runoff Dataset

We collected and calculated a multi-year average runoff dataset for the Zhimenda sta-
tion on the Tongtian River (2001–2012) [42]. Tangnaihai station data on the Yellow River
(2001–2018) were from the Yellow River Conservancy Commission of the Ministry of Water Re-
sources. Yangcun station (2001–2014) and Yingluoxia station (2001–2015) data on the Yarlung
Zangbo River were from a local survey bureau of hydrology (Figure 3a). As sub-basins of the
Jinsha–Yalong watershed, 4-year average runoff data for seven stations in the Jinsha River
basin—Tuo-tuohe, Zhimenda, Batang, Gangtuo, Benzilan, Shigu, and Panzhihua—and three
stations in the Yalong River basin—Ganzi, Yajiang, and Tongzilin—in 2011, 2012, 2017, and
2018 were collected and calculated from the Annual Hydrological Report of the P.R.C. We de-
lineated the catchments of all stations based on HydroSHEDS https://www.hydrosheds.org
(accessed on 21 December 2023), which is derived from elevation data of the Shuttle Radar
Topography Mission (SRTM) at 3 arc-second resolution. Comparisons of areas delineated by
ARCGIS ver. 10.8 software (Esri Inc., Redlands, CA, USA) and station drainage areas show
that the RMSEs of all catchments is 0.035 × 104 km2 (Figure 3c).

2.5.3. Microwave Remote Sensing-Based Soil Moisture Dataset

We extracted daily SMAP-enhanced L3 radiometer soil moisture (SPL3SMP_E.005)
data from 2015 to 2018 for the QTP domain using an application for extracting and exploring
analysis-ready samples (AppEEARS) https://appeears.earthdatacloud.nasa.gov/ (accessed
on 21 December 2023), which offers a simple and efficient way to access and transform
geospatial data from a variety of federal data archives.

persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS/mthly
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://www.tpdc.ac.cn/
https://www.tpdc.ac.cn/
https://disc.gsfc.nasa.gov/datasets/GLDASNOAH025M2.1/summary?keywords=gldas
https://disc.gsfc.nasa.gov/datasets/GLDASNOAH025M2.1/summary?keywords=gldas
https://www.hydrosheds.org
https://appeears.earthdatacloud.nasa.gov/
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2.5.4. Vegetation Remote Sensing and Survey Dataset

The Global MODIS NDVI dataset (MOD13A3) data are provided as a 1 km gridded
Level 3 product every month. Drawing on this, we extracted the NDVI dataset from 2015 to
2019 for the Tibet Plateau domain using AppEEARS. We also employed the Qinghai–Tibetan
plateau vegetation survey data (2019) provided by the National Tibetan Plateau Data Center
http://data.tpdc.ac.cn. DOI: 10.11888/Terre.tpdc.272863.CSTR: 18406.11.Terre.tpdc.272863.
(accessed on 21 December 2023), which includes the vegetation coverage dataset extracted
using the belt transect method for 44 sampling plots in Northern Tibet. The dataset was
collected from July to August 2019. For each plot, there were 10 sampling sites with
measurements of 50 cm × 50 cm. We calculated the average coverage of the sampling
sites for each plot. Among the 42 vegetation measurement plots evaluated during the 2019
summer field survey, 14 plots were located in the Stipa purpurea-dominated area, and 28
were located in the Kobresia pygmaea-dominated area (Figure 3e). The correlation between
the measured coverage and the MODIS NDVI served to demonstrate the characteristics
of the different species. With an increase in the NDVI, the coverage of Stipa purpurea
showed an increasing linear trend (R = 0.536). By contrast, a slight increase in the coverage
of Kobresia pygmaea was observed with an increase in the NDVI (R = 0.188).

2.6. Drought Indices

The drought chain was evaluated based on the precipitation-based index, the evapotranspiration-
based index, the soil moisture-based index, and the MODIS vegetation-based index. The
correlation coefficient (R) was employed to evaluate the interactions during the drought
chain “precipitation–soil moisture–vegetation” procedure.

2.6.1. Precipitation-Based Index

The effective drought index (EDI) [43] is appropriate for the operational monitoring
of meteorological and agricultural drought situations, with a single input required for
calculations. The EDI program (FORTRAN 90) was employed to caculate monthly EDI.
The calculation procedure is as follows:

5. Calculate the monthly EP (Equation (2)).

EP =
i

∑
n=1

[(
n

∑
m=1

Pm

)
/n

]
(2)

where i is the period over which the sum of the precipitation is calculated, which is
generally the most common precipitation cycle. Furthermore, Pm denotes the precipitation
that occurred m days ago. Thus, EP denotes the usable precipitation accumulated for the
entire year.

6. Calculate the mean EP (MEP) for each month.
7. Calculate the difference between the EP and MEP, which is DEP (Equation (3)).
8. When the DEP is represented by a negative number, it indicates conditions drier than

the average. If this dry period continues, add the days of prolonged dryness to the
existing period and recalculate the EP for that specific period.

9. Calculate the MEP and DEP again.
10. Divide the monthly DEP using the standard deviation (SD) of the DEP over the past

years (Equation (4)).

For the time series of precipitation products, this paper defines the period from
2002–2018 as the reference climate years. Finally, we calculated the monthly EDI based on
the nine precipitation datasets.

DEP = EP − MEP (3)

EDI = DEP/SD(DEP) (4)

http://data.tpdc.ac.cn
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2.6.2. Soil Moisture-Based Index

We calculated the soil moisture anomaly index (SMAI) based on the SMAP soil
moisture and average soil moisture data (Equation (5)), with i and j representing the
specific year and month, respectively, pertaining to the data:

SMAIi,j =
SMi,j − SMi,ave

SMi,ave
(5)

2.6.3. MODIS Vegetation-Based Index

We calculated the NDVI anomaly (NDVIA) based on the MODIS monthly NDVI data
(Equation (6)), with i and j representing the specific year and month pertaining to the data:

NDVIAi,j =
NDVIi,j − NDVIi,ave

NDVIi,ave
(6)

2.7. Statistical Methodology
2.7.1. Assessment Indices

We used Pearson’s correlation coefficient (R), which indicates the strength of the
linear relationship between the values of the monthly rain gauge observations (Om) and
precipitation product values (Pm), ranging from −1 for an inverse linear relationship to 1
for a perfect linear relationship (Equation (7)). The bias, which shows systematic deviations
of precipitation products’ multi-year average values (P) in relation to the not estimated
values (P̂), is simultaneously a measure of deviation because it does coincide with the real
value and is systematic because it occurs consistently on average (Equation (8)).

R(Pm, Om) =
Cov(Pm, Om)

σ(Pm, Om)
(7)

Bias =
1
N

N

∑
i=1

(P −
_
P) (8)

2.7.2. Predictors for Correlation Estimations

We employed three predictors, meteorological–soil moisture drought PR1 (Equation (9)),
meteorological–vegetation drought PR2 (Equation (10)), and synthesis PR3 (Equation (11)),
to estimate gauge-based assessment correlation: PR1—SMAI–EDI correlation,
PR2—NDVIA–EDI correlation, and PR3—arithmetic mean of SMAI–EDI correlation
and NDVIA–EDI correlation in specific pixels. As cross-sectional rainfall observation was
used for TPMFD product validation (private conversation), eight products except TPMFD
were employed to predict gauge-based assessment correlation.

PR1(SMAI, EDI) =
Cov(SMAIi,j, EDIi,j)

σ(SMAIi,j, EDIi,j)
(9)

PR2(NDVIA, EDI) =
Cov(NDVIAi,j, EDIi,j)

σ(NDVIAi,j, EDIi,j)
(10)

PR3(SMAI, EDI) =
R(SMAIi,j, EDIi,j) + R(NDVIAi,j, EDIi,j)

2
(11)

where PR1, PR2, PR3 is the correlation predictor, and i and j are the pixel column and line
serial number, respectively.
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3. Results
3.1. Validation Based on Rain Gauge Observations

The rainfall observations from May to September 2018 showed that, compared with
other products, TPMFD and EIMD precipitation products had the maximum R. CMORPH
and PERSIANN-CCS had the minimum R. From the aspect of RMSE, except MSWEP,
all other products overestimated the observations. TPMFD had the minimum RMSE of
30.04 mm, while ERA5-Land had the maximum RMSE of 234.7 mm (Figure 4). Compared
with south–north cross-sectional rainfall observations of 19 gauges, the ERA5-Land, IMERG,
and CMFD had the largest precipitation bias for the gauges between 27◦N and 28◦N and
PERSIANN-CCS had increasing bias with increase in latitude (Figure 5a). Compared
with the west–east cross-sectional rainfall observations of 20 gauges, CMORPH had larger
precipitation bias for the gauges between 84◦ and 92◦E. In contrast, the MSWEP had minus
bias for the gauges between 84◦ and 87◦E. The PERSIANN-CCS had increasing bias with
increase in longitude (Figure 5b). Compared to the precipitation observations from overall
gauges, all the nine products overestimated total precipitation from May to September
2018. ERA5-Land, PERSIANN-CCS, and EIMD had the largest bias, while CMFD, MSWEP,
and TPMFD had the smallest bias (Figure 5c). We predicted their gauge-based correlation
(r) by using the “precipitation–soil moisture–vegetation” drought chain method. The
results showed that we estimated the R of eight precipitation products based on the PR1
correlation between EDI and SMAP soil moisture with a fitness correlation of 0.712. Further,
we estimated the R of eight precipitation products based on the PR2 correlation between
EDI and NDVI with a fitness correlation of 0.36. When we calculated the average R of both
the SMAP-based correlation and the NDVI-based PR3 correlation, the fitness correlation
was 0.785 (Figure 6).
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3.2. Evaluation of Precipitation Climatology in QTP Based on Water Balance Principles

Multi-product comparisons between four-year (2011, 2012, 2017, and 2018) average
annual precipitation products and annual precipitation estimates based on runoff and five
ET products were conducted for 10 sub-basins of the Jinsha–Yalong basin. Upon adding all
five ET products to runoff, ERA5-Land ET, ERA5 ET, ETMonitor, and GLDAS ET showed
high RMSE and overestimated precipitation values. The RMSE obtained by adding MET
to the ERA5-Land precipitation provided a precipitation value of 80.86 mm. By contrast,
adding the values of all five ET products to runoff led to an underestimation of precipitation
by IMERG, CMFD, CHIRPS, CMORPH, and MSWEP. Upon adding all five ET products to
the runoff, PERSIANN-CCS precipitation exhibited the worst fit.

Meanwhile, upon adding all five ET products to runoff, ERA5 and ERA5-Land ET
exhibited better fit to TPMFD and EIMD precipitation values. Especially upon adding
all the ET products to runoff, ERA5 and ERA5-Land ET exhibited the best fit to EIMD
precipitation values with the highest Rs of 0.924 and 0.929, respectively, and the lowest
RMSEs of 56.79 and 49.8 mm, respectively (Figure 7).

Multi-product comparisons of average annual precipitation products and annual
precipitation estimates based on runoff and ERA5-Land in the Jinsha–Yalong, Yellow,
Heihe, Yarlung Zangbo catchments, and the Qiangtang and Qaidam interior drainage
areas of central and eastern Qinghai–Tibetan Plateau showed that the multi-year ERA5-
Land and PERSIANN-CCS precipitations overestimated drainage runoff and ERA5-Land
evapotranspiration. Meanwhile, multi-year IMERG precipitation underestimated drainage
runoff and ERA5-Land ET, as did multi-year CMFD, CHIRPS, CMORPH, MSWEP, and
TPMFD precipitation. By contrast, multi-year EIMD and TPMFD precipitation achieved
improved agreement with regard to runoff and ERA5-Land ET. EIMD yielded the second
largest R and the second smallest RMSE for all large basins. By contrast, PERSIANN-CCS
yielded the smallest R and highest RMSE for all large basins (Figure 8).
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Figure 7. Evaluation of nine precipitation products based on 4-year average annual runoff and
ET products in 10 sub-basins of the Jinsha–Yalong: P1 = ERA5-Land, P2 = IMERG, P3 = CMFD,
P4 = CHIRPS, P5 = CMORPH, P6 = MSWEP, P7 = TPMFD, P8 = PERSIANN-CCS, P9 = EIMD,
(1) = ERA5-Land ET, (2) = ERA5 ET, (3) = ETa-TP-SEBS ET, (4) = GLDAS ET, (5) = ETMonitor ET.
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Figure 8. Evaluation of nine precipitation products based on 4-year average annual runoff and
ERA5-Land ET in HeiheQai dam, Yellow River, Yangtze, Qiangtang, and Brahmaputra basins:
P1 = ERA5-Land, P2 = IMERG, P3 = CMFD, P4 = CHIRPS, P5 = CMORPH, P6 = MSWEP,
P7 = TPMFD, P8 = PERSIANN-CCS, P9 = EIMD.

3.3. Evaluation of Precipitation Product Correlation for the QTP Based on Drought Chains

According to the cumulative percentage of correlation between SMAP and the effective
drought index, the average correlations of indices for different products followed the order
EIMD > ERA5-Land > MSWEP > IMERG > CHIRPS > TPMFD > CMFD > CMORPH
> PERSIANN-CCS (Figure 9). We compared nine precipitation products in the three
vegetation areas from 2015 to 2018 based on SMAP soil moisture, MODIS NDVI, and
both. The average R of EIMD exhibited the highest values in all three vegetation areas.
These were 0.597 in the Carex moorcroftii steppe, 0.535 in the Stipa purpurea steppe, and
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0.549 in the Kobresia pygmaea meadow. In the Kobresia pygmaea meadow, the average
R of IMERG (0.537) was higher than that of ERA5-land (0.397). By contrast, in the Stipa
purpurea steppe and the Carex moorcroftii steppe, the average Rs of ERA5-Land (0.524,
0.582) were higher than those of IMERG (0.446, 0.506). For the entire QTP region, the results
showed that the average Rs of the different products followed the order EIMD (0.563) >
MSWEP (0.512) > IMERG (0.509) > CHIRPS (0.500) > ERA5-Land (0.486) > TPMFD (0.427)
> CMFD (0.365) > CMORPH (0.343) > PERSIANN-CCS (0.076). EIMD exhibited the highest
R, and PERSIANN-CCS exhibited the lowest R (Figure 10).
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Figure 10. Correlations between monthly NDVI and effective drought index (EDI) from 2001 to 2018
in the Kobresia pygmaea meadow (K), the Stipa purpurea steppe (S), the Carex moorcroftii steppe (C),
and in all three areas (CSK).

3.4. Comprehensive Evaluation of Precipitation Products

We summarized diverse assessments based on gauges, runoff observations, and
drought chains (Table 2). The results showed that CMFD, MSWEP, and TPMFD were the
top three precipitation products during the warm season based on bias evaluation against
gauge observations. TPMFD, EIMD, and MSWEP were the top three precipitation products
during the warm season based on correlation evaluation against gauge observations. The
ranking of PERSIANN-CCS was 8, based on both bias and correlation evaluations against
gauge observations. The ranking of EIMD was 7 based on bias evaluation of gauges from
May to September. The ranking of EIMD was 2 based on correlation evaluation against
gauges and drought chain in the Stipa purpurea steppe. EIMD ranked as the top based on
watershed runoff and drought chain in the Carex moorcroftii steppe, the Kobresia pygmaea
meadow, and all three vegetation areas. EIMD was evaluated as the best precipitation
product for the QTP. By contrast, PERSIANN-CCS ranked bottom in all three vegetation
areas and watershed runoff. Further, the ranking of PERSIANN-CCS was 8 based on bias
and correlation evaluation against gauges from May to September. PERSIANN-CCS can
be regarded as the worst precipitation product with regard to the QTP. Thus, we deter-
mined that the annual average precipitation (2001–2018) in the QTP was 568.16 mm based
on EIMD.
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Table 2. Summary of precipitation assessments based on gauges, runoff observations, and drought chain.

From High
to Low
Quality

Bias Based on
Gauges (May to

Sep.)

Correlation Based
on Gauges

(May to Sep.)

Bias Based on
Watershed

Runoff

Correlation Based on Drought Chain

Carex
Moorcroftii
Steppe (C)

Stipa Purpurea
Steppe (S)

Kobresia
Pygmaea

Meadow (K)

All Three
Varieties (CSK)

1 CMFD TPMFD EIMD EIMD ERA5-Land EIMD EIMD
2 MSWEP EIMD TPMFD ERA5-Land EIMD IMERG MSWEP
3 TPMFD MSWEP CHIRPS MSWEP MSWEP CHIRPS IMERG
4 CHIRPS IMERG CMFD CHIRPS CHIRPS MSWEP CHIRPS
5 CMORPH ERA5-Land MSWEP IMERG IMERG TPMFD ERA5-Land
6 IMERG CMFD ERA5-Land TPMFD TPMFD ERA5-Land TPMFD
7 EIMD CHIRPS CMORPH CMORPH CMFD CMFD CMFD
8 PERSIANN-CCS PERSIANN-CCS IMERG CMFD CMORPH CMORPH CMORPH
9 ERA5-Land CMORPH PERSIANN-CCS PERSIANN-CCS PERSIANN-CCS PERSIANN-CCS PERSIANN-CCS

4. Discussion
4.1. The Water Balance Method for Estimating Precipitation Accuracy

Some research shows that water is imbalanced on the QTP [44]. But our results showed
that, compared with the five ET products, there were greater uncertainties associated with
the nine precipitation products with regard to the QTP (Figures 7 and 8). The influence of
human water use on runoff is limited in the QTP [45]. EIMD and ERA5-Land ET could
efficiently close the water balance in the Jinsha–Yalong, Yellow, Heihe, Yangtze, Yarlung
Zangbo catchments and interior drainage areas. Therefore, we propose that the water still
maintains balance in the QTP. Precipitation is partitioned into terrestrial water balance
components, such as fluxes (evaporation, transpiration, runoff) and, what is more, changes
in storage (soil moisture, groundwater) [46]. A recent study showed that there is a seasonal
recharge–storage–runoff process combined with monthly Gravity Recovery and Climate
Experiment (GRACE) dataset [47]. The seasonal bias of precipitation is expected to be
evaluated using the water balance method. Bias seems more appropriate than correlation
coefficient to select the best rainfall product for hydrological modelling [48]. Our proposed
evaluation methodology of precipitation bias based on water balance could help to select
precipitation product before applying hydrological simulations in future.

4.2. The Drought Chain Method for Estimating Precipitation Accuracy

There are significant temporal effects of drought on vegetation in grassland areas of
the QTP during the growing season, which reach their peak in July and August. Compared
to the east monsoon region, most of the western regions have higher-frequency and lower-
intensity drought events [16]. The drought chain phenomenon commonly occurs in western
regions of the QTP where precipitation observations are lacking. Compared with SMOS-IC,
FY3B, JAXA, and LPRM soil moisture products, the uncertainty of SMAP is lowest over the
entire QTP [49]. The accuracy of reanalysis and remote sensing precipitation products is
affected by extreme precipitation events. For instance, the best precipitation estimate from
IMERG was for moderate rainfall levels rather than for light and extreme rainfalls [50,51].
There are similar spatial patterns in the correlations between AMSR-E soil moisture and
NDVI and between EDI and NDVI in northern China [52]. This study further validated
that there is a close relationship between EDI and SMAP soil moisture in the QTP (Figure 9).
Precipitation frequency contributed more than total precipitation to peak vegetation growth
in the Tibetan Plateau, especially in arid areas [53]. Our drought chain method reveals
monthly precipitation changes. Diverse mechanisms of arid and humid biomes determine
the sensitivity of biomes to drought [54]. Unlike herbaceous plants, during drought events,
the deep root systems of woody plants can help them withstand drought stress [55]. We
considered the Kobresia pygmaea meadow, the Stipa purpurea steppe, and the Carex
moorcroftii steppe as three herbaceous species in the QTP. Our results demonstrate the
importance of selecting representative vegetation when using our evaluation method in
other regions. Moreover, drought propagation is closely related to the water cycle. Satellites
enable more comprehensive estimation of multiple aspects of the water cycle, such as
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lake level and volume changes [56,57]. More factors in the water environment should be
considered in drought chain processes.

4.3. Comprehensive Evaluation of Precipitation Products

There are mismatches between station-based precipitation observations at the point
scale and pixel-based precipitation products. Our water balance and drought chain method-
ology has advantages at the grid or watershed scale. The largest precipitation biases relative
to the south–north cross-sectional rainfall observations of 19 gauges occurred between
27◦N and 28◦N (Figure 5) due to greater overestimation/underestimation in regions with
higher precipitation rates [58]. Previous evaluation of precipitation products in the Qinghai–
Tibetan Plateau based on 83 China Meteorological Administration rainfall gauges showed
that MSWEP and CHIRPS can represent the spatial patterns of climatological precipita-
tion. PERSIANN_CCS has poor performance [59]. In the periphery of Tibetan Plateau,
precipitation assessment showed that CHIRPS outperforms PERSIANN-CCS in all sea-
sons in northwest Pakistan [60]. CHIRPS and MSWEP are more skillful than CMORPH
and real-time PERSIANN-CCS-Adj. across complex topographical and climatic gradi-
ents [61]. MSWEP shows better correlation than CHIRPS in the highlands of Indo-Pak [62].
These findings support the interpretation of our evaluation results. Our study shows that,
compared to cross-sectional rainfall observations in the Tibetan Plateau, most precipita-
tion products overestimate precipitation (Figures 4 and 5). This is due to wetting losses,
trace precipitation, wind undercatch and evaporation losses of gauge observations [63].
Runoff observations and drought chains are a more reliable basis. CMFD and TPMFD
merge daily ground observations from the China Meteorological Administration [33,34].
Cross-sectional rainfall observations were used for TPMFD validation. These reanaly-
sis products performed well against gauge observations. A previous study showed that
ERA5-Land presents severe overestimations of precipitation amount. IMERG products
outperform ERA5-Land in estimating precipitation amount in the Tibet Plateau. How-
ever, the simulation performance of ERA5-Land is comparable to IMERG by hydrological
model in the Yellow River [64]. Our study shows that IMERG is better than ERA5-Land
in three herbaceous species areas (Table 2), which is comparable to the results of previ-
ous studies. The comparison of GPM IMERG with nine satellite and reanalysis products
in China reveals that, although the IMERG product outperforms most datasets, IMERG
underestimates snowfall compared with gauge and reanalysis data [65]. Our results
show that the simple average method for merging ERA5-Land and IMERG precipitation
(EIMD) can balance spatial-temporal patterns of precipitation and yields the most reliable
precipitation estimates.

5. Conclusions

Large differences in precipitation products are the main uncertainties for water bal-
ance evaluation in the QTP. Our successful application of water balance and drought
chain (WBDC) principles reveals that it is appropriate in areas that lack ground-based
observations. The correlation between EDI based on diverse precipitation products and
SMAP-based soil moisture anomaly as well as MODIS-based NDVI anomaly can predict the
correlation between gauge observations and precipitation products with more confidence
(R = 0.785). The water balance principle can distinguish precipitation climatology within
watershed cells of diverse precipitation products. The simple average method for merg-
ing ERA5-Land and IMERG precipitation (EIMD), as proposed in this study, successfully
reduces biases and verifies the water balance in both main basins and sub-basins while
also clarifying the vegetation drought disaster chain in three herbaceous species areas
in the Qinghai–Tibetan Plateau. Our proposed “down to top” surrounding assessment
methodology enabled the assessment of precipitation datasets generated by remote sensing
technology over a region with sparse observations. Drylands cover about 41% of Earth’s
land surface [66]. This emphasizes the potential of the “precipitation–soil–vegetation”
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internal relationship perspective for water resource management in such remote or topo-
graphically complex areas.
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