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Abstract: Hyperspectral classification is a task of significant importance in the field of remote sensing
image processing, with attaining high precision and rapid classification increasingly becoming a
research focus. The classification accuracy depends on the degree of raw HSI feature extraction, and
the use of endless classification methods has led to an increase in computational complexity. To
achieve high accuracy and fast classification, this study analyzes the inherent features of HSI and
proposes a novel spectral–spatial feature extraction method called window shape adaptive singular
spectrum analysis (WSA-SSA) to reduce the computational complexity of feature extraction. This
method combines similar pixels in the neighborhood to reconstruct every pixel in the window, and
the main steps are as follows: rearranging the spectral vectors in the irregularly shaped region,
constructing an extended trajectory matrix, and extracting the local spatial and spectral information
while removing the noise. The results indicate that, given the small sample sizes in the Indian
Pines dataset, the Pavia University dataset, and the Salinas dataset, the proposed algorithm achieves
classification accuracies of 97.56%, 98.34%, and 99.77%, respectively. The classification speed is
more than ten times better than that of other methods, and a classification time of only about 1–2 s
is needed.

Keywords: hyperspectral image classification; SSA; adaptive window shape; feature extraction

1. Introduction

The continuous spectral bands of HSI can provide abundant spectral information [1].
HSI incorporates two-dimensional spatial details that depict the relative positioning of
various ground objects and the contours of their distribution ranges [2]. HSI classification is
the process of assigning the pixels in an image to different categories or land cover types [3].
However, the high correlation of near-continuous band reflectance causes redundancy
and overlap in spectral information, which not only increases the computational effort
but also reduces the classification accuracy. The limitations of imaging technology create
an imbalance between spatial and spectral resolution, with severe interference from both
atmospheric transmittance and the weather, which leads to a significant reduction in
classification performance [4]. For existing HSI datasets, as the number of data dimensions
increases, the number of training samples remains the same, and with a limited number
of samples, more statistics need to be estimated. This results in a decline in the accuracy
of statistical estimation. While higher spectral dimensionality significantly enhances the
separability of classes, it concurrently leads to a reduction in classification accuracy across
an unspecified number of bands. This phenomenon is associated with the challenge of
dimensionality, commonly known as the Hughes phenomenon [5].
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Classification of the raw data presents a great challenge to the performance of the
classifier [6]; therefore, HSI classification methods generally consist of two parts: feature
extraction and classification judgments [7]. Feature extraction refers to the extraction of
the part of the original input data that can optimally represent the original data, which
greatly reduces the algorithm complexity without affecting the classification results. In past
decades, various HSI classification methods have been proposed; for example, principal
component analysis (PCA) [8], independent component analysis (ICA) [9], linear discrimi-
nant analysis (LDA) [10], and minimum noise fraction (MNF) [11] are classical methods for
feature extraction based on statistical learning theory. It was shown in [12] that the spectral
feature curves of HSI exhibit nonlinear properties and a popular structure; as such, many
streamline learning methods such as Laplace feature mapping (LEs) [13] and local linear
embedding (LLE) [14] have been introduced in the field of HSI feature extraction. In recent
years, singular spectrum analysis (SSA) [15] has been applied to HSI feature extraction, and
SSA has shown good ability to extract spectral vector features during noise removal. The
above methods only perform feature extraction on spectral dimensions without combining
spatial information, which imposes some limitations.

Several classical spatial feature extraction methods have been introduced into the
field of HSI spatial information feature extraction, such as HSI morphological feature
extraction (MP) through morphological transformation [16]. Extended morphological
feature extraction (EMP) has also been proposed [17]. In [18,19], attribute filters were
employed to replace open and close operations in morphological features, resulting in
the extraction of attribute features (AP) and extended attribute features (EAP). The gray-
level co-occurrence matrix (GLCM) [20] and wavelet transform (WT) methods [21], and
their variants, are classical image processing methods that have also been introduced
into the field of HSI spatial feature extraction. A Gabor filter can effectively analyze two-
dimensional spatial information, which can then be extended to 3D Gabor [22], a method
that can fully represent signal variance in local three-dimensional regions. In recent years,
a variety of spectrum feature extraction methods based on graph embedding theory [23]
have been proposed. Methods for feature extraction based on spectral perception and
local adaptive collaborative representation were proposed in [24,25], respectively, yielding
favorable outcomes. Based on SSA, 2DSSA [26] was proposed as a means to extract
image spatial information and was superior to many feature extraction algorithms. In [27],
1.5DSSA was proposed as a method for constructing a center pixel containing local spatial
information and spectral information according to the Euclidean distance between the
center pixel and the center pixel in the small window. In [28], a method combining PCA
and SPCA with 2DSSA was proposed as a means to extract multi-scale spatial–spectral
features (MSF-PCs). In [29], SpaSSA was proposed as a way to process large pixel blocks
with 2DSSA and small pixel blocks with 1DSSA to realize window-size-adaptive SSA and
extract local spatial–spectral HSI features. Numerous methods that use spatial feature
extraction involve a fixed window traversing each pixel operation, including the center
pixel and neighborhood pixel, which not only requires a large amount of computation
but also exhibits poor adaptation to irregular shape regions. With the development of
deep learning, HSI classification methods based on deep learning have been increasingly
proposed [30]. Although the application of methods based on deep convolutional neural
networks [31–33] and various attention mechanisms based on transformer networks [34]
can extract the deep features of HSI, these methods not only require sophisticated hardware
such as a computer but also greatly increase the amount of computation required and
cannot complete efficient classification.

To give full play to the performance of SSA in HSI feature extraction, make up for
the shortcomings of existing algorithms, reduce the amount of computation, and improve
the classification speed, this paper proposes a new adaptive SSA algorithm for the ir-
regular shape region to quickly extract effective spatial–spectral features in HSI. Several
experiments on three open data sets and comparisons with other methods show that
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the experimental results fully demonstrate the superiority of the algorithm. The main
contributions of this paper can be summarized as follows.

(1) The WSA-SSA algorithm is proposed, which is adaptive to the window shape and
can extract HSI features for irregularly shaped pixel blocks. The feature map contains
both the original data spectral information and local spatial information to improve the
classification accuracy.

(2) The spectral vectors in the irregularly shaped window were rearranged, and the
scale was selected to construct the trajectory matrix for subsequent processing. Instead
of the window sliding pixel by pixel in a certain direction, the calculation amount was
reduced, and the HSI image was quickly classified by combining it with the classifier.

(3) Experiments on three datasets show that, in the case of a small number of training
samples, the classification performance of the proposed method is superior to several of
the most advanced SSA-based methods.

The rest of this paper is organized as follows: The Section 2 introduces the principles
of SSA and 2DSSA. The Section 3 describes the HSI classification method based on WSA-
SSA. The Section 4 gives the experimental results and the analysis of the experimental
results to prove the superiority of the proposed method. Finally, in the Section 5, the thesis
is summarized.

2. Related Work

This section introduces the main techniques used in the feature extraction method
proposed in this paper, the superpixel segmentation technique, and the principles and
methods of traditional SSA. Although SSA and 2DSSA have many drawbacks, the feature
extraction method in this paper improves on these two methods and their principles are
used in the proposed strategy.

SSA is an eigen-spectrum decomposition method based on the Hankel matrix, which
is usually used to deal with nonlinear time series and can analyze and predict time series.
It is based on singular value decomposition (SVD) of a specific matrix constructed over a
time series, which can be used to decompose the trend, oscillation components, and noise
from a time series. SSA has a very wide range of applicability. For time series, neither
the parametric model nor stationarity conditions need to be assumed. The process of SSA
consists of two complementary phases: decomposition and reconstruction [35]. In the
decomposition stage, the SSA algorithm performs a lagged arrangement of the original
one-dimensional signal to obtain the trajectory matrix and performs a singular value
decomposition of the trajectory matrix to obtain the contribution of each eigenvalue to the
trajectory matrix. In the reconstruction stage, the target signal is separated from other signal
components and reconstructed according to the signal characteristics using the constraint
conditions. In the process of HSI feature extraction, SSA can extract the main trend of
the one-dimensional spectral vector. In the SVD step, the first reconstruction component
corresponds to the largest eigenvalue and contains the largest amount of original data
information, which can roughly replace the raw data [36]. When the EVG value is 1, a
better classification effect can be obtained.

2DSSA, like SSA, can extract components such as the trend, oscillation, and noise of a
given 2D signal [37]. In [38], the theory of 2DSSA was extended to 2D image processing, and
good performance was achieved. 2DSSA extracts its spatial structure features in a similar
step to traditional SSA, only the way of constructing the trajectory matrix is different.
The trajectory matrix structure constructed by 2DSSA is the Hankel by Hankel (HbH)
structure [39]. The subsequent SVD of the constructed trajectory matrix and the subsequent
reconstruction operations are similar to the conventional SSA. The 2DSSA method has
several advantages in the spatial feature extraction of 2D gray images. Firstly, each lag
vector in the constructed trajectory matrix contains local information about the image, while
the trajectory matrix as a whole contains global spatial information. In addition, 2DSSA can
effectively suppress noise. In HSI, 2DSSA can extract local space features and global space
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features. Combined with the spectral feature extraction method, a better classification effect
can be obtained.

3. Proposed Method

In this section, we mainly introduce the HSI classification method based on WSA-SSA.
The method can be roughly divided into three steps: (1) region division according to the
spatial information; (2) spatial–spectral features of HSI extraction based on WSA-SSA; and
(3) classification. Figure 1 is a flow diagram of the proposed classification method. The
following part describes the three steps in detail.
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Figure 1. Schematic of the proposed WSA-SSA for the HSI classification framework.

3.1. Region Division Based on Spatial Information

Segmentation of minor regions preserves locally valid information and boundary in-
formation of the image. Superpixel segmentation technology can divide pixels with similar
characteristics into small areas. Using superpixel to describe image features reduces compu-
tational complexity and is generally used as a pre-processing step in image processing [40].
Among the many superpixel segmentation algorithms, the most widely used methods are
entropy rate segmentation (ERS) [41] and simple linear iterative clustering (SLIC) [42]. The
ERS preserves the boundary information of the image to the greatest extent but generates
superpixels with irregular shapes. The shape of the superpixel obtained by the SLIC is
more regular, but it partially destroys the boundary information and provides an inaccurate
description of the contours. In the process of image preprocessing for HSI classification,
the ERS algorithm is used to preprocess the HSI to retain the intact boundary information
without affecting the classification results. To reduce the amount of computation, the
PCA algorithm is used to reduce the dimension of HSI, the first principal component after
dimensionality reduction is segmented by superpixel, and different labels are assigned to
different superpixel regions, facilitating subsequent feature extraction and classification.

3.2. WSA-SSA

The ERS method is employed for superpixel segmentation of the first principal com-
ponent of the Hyperspectral Image (HSI). This process involves partitioning the image
into small, irregularly shaped regions based on the first principal component, assigning
different labels to distinct regions, and ensuring that pixels within these irregularly shaped
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areas share similar characteristics. Features of the HSI are then extracted based on the
positions of obtained superpixel labels. The proposed WSA-SSA algorithm in this paper
identifies superpixel labels, determines their positions, and records their coordinate loca-
tions. The recorded coordinates, selected according to the labels, are located on the HSI,
and subsequent calculations are performed only on the regions with the same label. The
processed portions, chosen based on the labels, are illustrated in Figure 2.
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A superpixel is defined as S, consisting of N pixel vectors denoted as S = {(x1, y1, bands),
(x2, y2, bands), . . . , (xN , yN , bands)}, where (xi, yi) is the position coordinate of the pixel
in the superpixel and bands represents the spectral dimension. Since it is an irregularly
shaped superpixel, the pixels in the superpixel are arranged into a one-dimensional spectral
vector by the order of coordinate values, denoted as X = [1, 2, . . . , B, B + 1, . . . , N × B],
where B is the HSI spectral dimension. The spectral vector contains the local spatial
information and spectral information of HSI. X = [1, 2, . . . , B, B + 1, . . . , N × B] is defined
as the one-dimensional signal X = [x1, x2, · · · , xN ] ∈ RN . The appropriate window length
L(1 < L < N) is selected to arrange the signal with a lag to obtain the trajectory matrix,
and the window size is equal to the number of extracted components. The matrix X is
the trajectory matrix of the one-dimensional signal, where K = N − L + 1 and the column
vector ci of the trajectory matrix is the lag vector.

X =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

...
. . .

...
xL xL+1 · · · xN

 = (c1, c2, · · · , cK) (1)

Next, the SVD of the trajectory matrix X = (c1, c2, · · · cK) is performed. Let S = XXT ,
λ1, λ2, . . . , λL be the eigenvalues, λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0, and U1, U2, . . . , UL is the matrix
S corresponding to the standard orthogonal vector of these eigenvalues. Let d = rank(X) =
max{i, λi > 0} (note that in the actual sequence, there are usually d = L∗, L∗ = min{L, K})
and Vi = XTUi/

√
λi(i = 1, 2, . . . , d), in which case the SVD of the trajectory matrix can be

written as
X = X1 + . . . + Xd (2)
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where Xi =
√

λiUiVT
i is a primitive matrix of rank 1, and Ui and Vi are called the compo-

nents of the empirical orthogonal function and trajectory matrix, respectively. The matrix is
constructed as follows:

U = (U1, U2 · · ·UL) ∈ RL×L (3)

V = (V1, V2 · · ·VL) ∈ RL×L (4)

where λi/
L
∑

i=1
λi represents the contribution of the i eigenvalue to the matrix.

In order to separate the target signal components from the other signal components,
the set of subscripts {1, · · · , d} is divided into disjoint subsets I1, · · · , Im such that I =
{i1, i2, · · · , iP}, which corresponds to the synthesis matrix XI = Xi1 + Xi2 + · · ·+ XiP . After
the combination, the trajectory matrix X becomes

X = XI1 + XI2 + · · ·+ XIm (5)

Transform each matrix XIj in Equation (5) into a new length sequence N, thus obtaining
the decomposed sequence. Let Y be a matrix of L × K with elements yij, 1 ≤ i ≤ L, and
1 ≤ j ≤ K. Let L∗ = min(L, K), K∗ = max(L, K), and N = L + K − 1. If L < K, then
y∗ij = yij; otherwise, y∗ij = yji. Perform diagonal averaging using Equation (6) to transform
the matrix N into a sequence y1, y2, · · · , yN .

yk =



1
k

k
∑

m=1
y∗m, k − m + 1 f or 1 ≤ k ≤ L∗

1
L∗

L∗

∑
m=1

y∗m, k − m + 1 f or L∗ ≤ k ≤ K∗

1
N−k+1

N−K∗+1
∑

m=k−K∗+1
y∗m, k − m + 1 f or K∗ ≤ k ≤ N

(6)

The reconstructed feature sequence y1, y2, · · · , yN is separated into spectral vectors
according to the number of pixels and spectral dimensions contained within the superpixel
before reconstruction, and the separated spectral vectors are formed into a new superpixel
with the same size as the superpixel before feature extraction according to the position
coordinates recorded by S = {(x1, y1, bands), (x2, y2, bands), . . . , (xN , yN , bands)}. All the
small regions are decomposed and reconstructed by the WSA-SSA to form an HSI local
spatial–spectral feature image according to the label position of this superpixel, which
contains HSI spectral information and local spatial information.

3.3. Classifier

Due to the high spectral dimensionality of HSI, it is still difficult to obtain a large num-
ber of training samples based on existing techniques, leading to the Hughes phenomenon
in HSI. Due to the robustness of SVM to Hughes phenomenon [43], in the classification
stage, SVM with a quintuple cross-validated Gaussian kernel is selected for the final
implementation of classification.

4. Experiments and Analysis

To evaluate the extraction ability of the proposed method for the spatial–spectral spe-
cialization of HSIs, three basic HSI datasets—Indian Pines, Pavia University, and Salinas—
are selected for experiments in this paper. This section presents the three basic datasets,
experimental parameter settings, and comparative experimental results.

4.1. Data Set

The three base datasets of Indian Pines, Pavia University, and Salinas were acquired
by each mainstream sensor in different scenes with significant differences in the number
of bands, spectral resolution, and image size [44]. The detailed parameters are shown in
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Table 1, and the pseudo-color, Ground truth, and superpixel segmentation maps of the
three datasets are shown in Figures 3–5.

Table 1. Detailed parameters for the dataset.

Data Source Wavelength Range Size Classes

Indian Pines AVIRIS 0.4∼2.5 µm 145 × 145 × 200 16
Pavia University ROSIS-03 0.43∼0.86 µm 610 × 340 × 103 9

Salinas AVIRIS 0.4∼2.5 µm 512 × 217 × 204 16
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4.2. Parameter Sensitivity Analysis

Two main parameters of WSA-SSA affect the capability of extracting spectral–spatial
features, running time, and classification accuracy. To be able to extract rich spatial–spectral
features, the window size of WSA-SSA, which is the number of pixels contained in the
segmented superpixel, is an important parameter that directly affects the classification
accuracy and the running time. The proposed method is improved based on SSA to
extract spectral information and local spatial information simultaneously, and its EVG
value is fixed to 1. The scale L of SSA is also an important parameter that determines
the reconstruction accuracy of the spectral–spatial features of the lagging vector in the
trajectory matrix. If the scale is too large, which means the embedding window is too
large, it is easy to construct a larger trajectory matrix and increase the computational effort.
The scale should not be too small, because the smoothing ability of the data decreases
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and the noise-removal ability becomes weaker. The effects of these two parameters on the
classification accuracy of the HSI of the three datasets are shown in Figures 6 and 7.
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The value of the parameter N determines the size of the superpixel, the superpixel
area determines the window size of the proposed method, and the arrangement of pixels
in the superpixel determines the window shape of the proposed method. The experimental
results show that the larger the number of superpixels in a certain range, the higher the
classification accuracy obtained. This is because the smaller the segmented superpixel is,
the greater the possibility that neighboring pixels belong to the same class of features, and
the higher their pixel similarity. By using WSA-SSA to reconstruct the pixels in the area,
each pixel contains both its spectral information and the information of pixels with high
similarity in the domain, achieving the purpose of obtaining both spectral and local spatial
information. Meanwhile, a larger number of superpixels increases the processing times of
WSA-SSA but decreases the processing time of single WSA-SSA. The smaller the number
of superpixels, the larger the divided area is, the greater the possibility of containing
different classes of features in the same area, and the more easily are the reconstructed
hyperspectral pixels in its area mixed with information that do not belong to the same class
of pixels, which reduces the classification accuracy. At the same time, a smaller number of
superpixels reduces the amount of WSA-SSA processing but increases the running time of
one WSA-SSA.

The traditional SSA is mostly used to process time series, which only retains the overall
trend of the data and easily ignores the higher frequency peaks in the series, and is applied
to the processing of HSI spectral vectors, which easily loses the higher frequency peaks
in spectral vectors. The experimental results of the effect of scale L of WSA-SSA on the
classification accuracy and running time are shown in Figure 7. The variation of scale L
within a certain range has a small effect on the classification accuracy and a large effect
on the running time. Since the larger the scale L is, and the larger the dimension of the
trajectory matrix it constructs, the higher its decomposition is. The larger dimensionality
of the trajectory matrix increases the computation volume and prolongs the computation
time. The higher the degree of decomposition of the sequence data, the more complete
the retention of the components called high frequencies in the spectral vector, but too
high a degree of decomposition reduces the ability to eliminate noise. The proposed
method rearranges the spectral vectors with high similarity in the superpixel to form the
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approximate periodic sequence spectral data, which better exploit the processing capability
of the SSA for spectral vectors.
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4.3. Comparison Experiments

In this section, the proposed method is experimented on three widely used datasets—
Indian Pines, Pavia University, and Salinas—and the performance is compared with some
HSI classification methods. To verify the effectiveness of the proposed method, 8% of the
labeled samples are randomly selected in each feature type as the training set, and the
remaining 92% of the labeled samples are used as the test set. The main methods com-
pared are SVM for the classification of raw data; traditional 1DSSA and 2DSSA combined
with SVM, respectively; PCA combined with SVM; and classification methods that have
performed better in the last two years. In the experiments, the classifier is selected for the
classification method of SVM. The parameters of the Gaussian kernel are uniformly set to
γ = 0.125, C = 1000. For the PCA combined with the SVM classification method, the same
as the proposed method is chosen for the first 30 components of PCA for classification exper-
iments. For the feature extraction stage, the scale of SSA is L = 10 and the window size of
2DSSA is L × L = 5 × 5. The optimal parameters from their papers were used for MSF-PCs
(2020), SpaSSA (2022), NGNMF-E2DSSA (2022) [45], and 1.5D-SSA (2020). To avoid the
chance of experimental results, all experiments were performed 10 times with the same
equipment, and the results of all numerical indicators are the average of 10 experiments.
The effect plots of all the above classification methods are shown in Figures 8–10.

From the classification results, the proposed method achieves very good results on
all three datasets. Compared with the SVM, PCA followed by the classification method,
and SSA and 2DSSA for feature extraction followed by classification, there is a significant
improvement, indicating that the proposed method makes full use of the local spatial and
spectral information of HSI to achieve good classification results more easily than using
spatial or spectral information alone. Compared with the SpaSSA, NGNMF-E2DSSA, and
1.5D-SSA methods, the proposed method shows obvious advantages in classifying adjacent
features. This is because the first three methods use a fixed rectangular window for feature
extraction of HSI, followed by SVM for classification. When a fixed shape window is used
to traverse each pixel for feature extraction, if the window contains different kinds of feature
pixels, it will lead to poor reconstruction accuracy, thus affecting the classification results.
The proposed WSA-SSA algorithm, without a fixed shape window, can reconstruct every
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pixel in the region on an arbitrarily shaped superpixel, demonstrating good edge-retention
capability.
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To compare the classification performance of each algorithm more objectively, this pa-
per uses four metrics: overall accuracy (OA), average accuracy (AA), and Kappa coefficient
(Kappa) time consumed by classification (time) to measure the classification performance
of the algorithms. OA refers to the number of correctly classified samples in the total test
samples; AA represents the average of classification accuracy; Kappa provides information
about the ground truth and mutual information about the strong agreement between the
graph and the classification graph. The numerical results of the experiments on the three
datasets are shown in Tables 2–4.

Table 2. Classification accuracy (%) for the Indian Pines dataset.

Class
Samples

SVM PCA SSA 2DSSA MSF-
PCs

SpaSSA NGNMF-
E2DSSA

1.5D-
SSA

ProposedTrain
Set (%)

Test Set
(%)

C1 8 92 11.9048 30.9524 76.1905 71.4286 95.2381 78.5714 88.0952 83.3333 97.619
C2 8 92 76.4661 67.4029 80.5788 92.3839 96.9535 93.6024 93.8309 92.3077 94.3524
C3 8 92 63.6959 54.5216 76.0157 93.4469 99.3447 95.675 96.3303 87.5491 97.0169
C4 8 92 31.6514 33.0275 53.6697 86.2385 99.5413 97.2477 88.0734 75.6881 99.0909
C5 8 92 83.1081 89.1892 93.6937 97.5225 99.7748 97.7477 98.6486 93.4685 95.7684
C6 8 92 91.5052 85.693 90.9091 97.7645 99.7019 99.5529 98.6587 99.2548 99.8525
C7 8 92 72 76 84 88 96 100 92 84 96.1538
C8 8 92 99.0888 94.7608 99.3166 98.4055 100 100 100 97.2665 100
C9 8 92 33.3333 16.6667 55.5556 100 100 100 100 94.4444 100

C10 8 92 71.4765 53.5794 82.2148 92.5056 97.5391 94.519 93.6242 88.4787 96.3455
C11 8 92 81.9752 75.775 83.8795 95.6156 99.7786 98.4942 96.5456 92.6484 99.4306
C12 8 92 57.4312 34.8624 72.6606 92.1101 97.9817 95.7798 87.5229 81.2844 97.6407
C13 8 92 92.0213 90.4255 91.4894 98.9362 98.4043 99.4681 97.8723 98.4043 99.4737
C14 8 92 93.8091 94.411 94.8409 98.9682 100 99.742 98.7102 97.3345 96.2585
C15 8 92 53.5211 46.7606 46.4789 94.9296 100 99.7183 89.8592 80 98.8827
C16 8 92 78.8235 91.7647 89.4118 100 100 100 100 82.3529 97.6744

OA (%) 77.8049 70.9797 83.0167 95.0218 99.0128 97.2827 95.5949 91.5296 97.5638
AA (%) 68.2382 64.737 79.4316 93.641 98.7661 96.8824 94.9857 89.2385 97.8475

Kappa*100 74.5235 66.6872 80.6055 94.327 98.8738 96.901 94.9776 90.3257 97.2222
Time (s) 2.235637 0.687991 4.153211 10.52716 10.69787 24.74259 13.23079 11.63065 1.133012
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Table 3. Classification accuracy (%) for the Pavia University dataset.
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As can be seen from Table 2, on the Indian Pines dataset, the proposed method
has a significant improvement effect in extracting discriminative classification features
compared with the traditional SSA algorithm and the 2DSSA algorithm, which extends to
extract spatial information, and the overall classification accuracy, average classification
accuracy, and Kappa coefficient are higher than the SVM algorithm by about 20% and higher
than the traditional SSA algorithm by 14%. Above all, the proposed method achieved
excessive smoothing of the input spectral vector by the traditional SSA. Only the trend
of the spectral vector change can be retained, resulting in a lower classification effect.
The proposed method is slightly higher than the other algorithms except for MSF-PCs in
three measures of classification accuracy. In particular, it performs well in small-sample
feature classification, such as the classification of Alfalfa, which has only 48 samples and
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3–4 randomly selected samples in the training set, and the overall classification accuracy
reaches 97.62%, which is much higher than that of the other methods in the table, indicating
that the proposed method has excellent performance in small-sample classification tasks. In
addition, the proposed method has a significant advantage in terms of running time. The
NGNMF-E2DSSA algorithm, MSF-PCs algorithm, and 1.5D-SSA algorithm take more than
10 s to complete the classification on the Indian Pines dataset, and the SpaSSA algorithm
takes 24 s, while the proposed method takes only 1.13 s to complete the classification
with high accuracy. Since the WSA-SSA does not traverse every pixel operation with a
fixed rectangular window, it directly deals with irregularly shaped superpixels, extracts
spectral information and spatial structure information in the region, and reconstructs
the superpixels, which significantly reduces the computational effort and shortens the
running time.

Table 4. Classification accuracy (%) for the Salinas dataset.

Class
Samples

SVM PCA SSA 2DSSA MSF-
PCs

SpaSSA NGNMF-
E2DSSA

1.5D-
SSA

ProposedTrain
Set (%)

Test Set
(%)

C1 8 92 99.2965 99.2965 97.9978 100 100 100 99.5671 99.98918 100
C2 8 92 99.358 99.8249 99.358 99.8541 100 100 99.8249 99.9037 99.7666
C3 8 92 98.8442 99.0644 98.8442 99.8349 100 100 99.945 99.92845 100
C4 8 92 98.752 98.5179 98.2839 95.8658 97.5819 98.4399 99.22 99.39939 99.922
C5 8 92 99.6752 99.4316 99.7564 99.8782 100 99.8782 99.7158 99.25296 99.391
C6 8 92 99.7254 99.7529 99.6705 100 100 99.9725 99.8353 99.87369 99.9176
C7 8 92 99.9089 99.9696 99.9089 99.8177 100 99.9696 99.8785 99.76609 99.9089
C8 8 92 84.3572 87.7423 88.2149 99.4214 100 99.8264 95.2262 95.77392 100
C9 8 92 99.9299 99.9474 99.7897 100 100 100 100 99.7669 100

C10 8 92 96.9154 95.9536 97.0481 99.403 100 99.9005 98.5406 98.5373 99.1708
C11 8 92 98.0652 97.9633 98.4725 99.1853 100 99.8982 99.1853 99.18534 100
C12 8 92 99.5485 99.8871 99.5485 99.8307 100 100 100 99.98307 100
C13 8 92 99.6437 99.6437 99.2874 99.6437 100 97.1496 98.9311 99.12113 97.7435
C14 8 92 93.1911 97.1545 93.3943 99.8984 99.6951 97.8659 98.2724 98.32316 95.7317
C15 8 92 75.9198 70.4906 78.4026 99.2671 99.9701 99.8654 90.0688 93.4116 99.9103
C16 8 92 99.278 98.9771 99.278 99.1576 100 98.2551 98.8568 99.20578 100

OA (%) 92.9081 92.9342 93.9826 99.5461 99.9277 99.7389 97.393 97.94192 99.755
AA (%) 96.4006 96.4761 96.7035 99.4411 99.8279 99.4388 98.5667 98.83887 99.4664

Kappa*100 92.102 92.123 93.2961 99.4945 99.9195 99.7092 97.0958 97.7082 99.7271
Time (s) 15.05047 3.013788 24.47528 54.02874 80.92167 203.3935 69.76287 58.79197 2.714727

It can be visualized from Tables 3 and 4 that the overall classification accuracy of
the window shape adaptive SSA algorithm can reach 98.34% and 99.77% on the Pavia
University dataset and Salinas dataset; the average classification accuracy reaches 97.79%
and 99.46%, respectively; and the corresponding Kappa coefficients are high, showing good
performance. An accuracy of 100% can be achieved in the classification of some categories
of features. Similarly, it can be seen in Tables 3 and 4 that the proposed method can
achieve more than 99.5% accuracy in the classification of small sample feature categories.
In addition, due to the larger spatial dimensions of both the Pavia University dataset and
the Salinas dataset over the Indian Pines dataset, the computational effort of each algorithm
in the table increases and the running time becomes significantly longer. The running
time of the NGNMF-E2DSSA algorithm, SpaSSA algorithm, and MSF-PCs algorithm on
the Pavia University data set takes more than 100 s, while the proposed method in this
paper takes only 2.84 s. On the Salinas dataset, the WSA-SSA also takes only 2.71 s to finish
the classification, which is far ahead of the other algorithms. The advantage of WSA-SSA
in reducing the computational effort is more prominent in large-size images, where it
can achieve fast classification results. The proposed method has potential applications
in other fields, such as holographic displays [46,47], image compression [48,49], optical
imaging [50–52], etc.
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5. Conclusions

This paper analyzes the characteristics of hyperspectral images as a three-dimensional
data cube containing millions of pixels; the volume of data processing is substantial, leading
to an extended processing duration. Introducing the WSA-SSA algorithm, it is crafted to
simultaneously extract spectral features and local spatial features. The algorithm dynami-
cally adjusts to diverse window shapes, a pivotal capability for alleviating misclassification
at the boundaries of different species, particularly when dealing with irregular shapes
within feature regions. This results in better and more accurate classification of boundary
pixels. Importantly, the algorithm does not employ a fixed window for iterating over each
pixel, reducing computational complexity. Moreover, a classification algorithm based on
WSA-SSA is introduced. It partitions hyperspectral images based on spatial information;
employs the WSA-SSA algorithm for spectral and spatial feature extraction; and, finally,
combines SVM for feature classification. This approach achieves high-precision classifi-
cation on three benchmark datasets while significantly reducing the classification time.
Although WSA-SSA demonstrates excellent performance on these datasets, it focuses solely
on spectral and local spatial information during feature extraction, neglecting global spatial
information. In future work, the 2DSSA algorithm could be introduced to consider global
spatial information and enhance classification accuracy.
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