Temporal and Spatial Evolution Analysis and Correlation Measurement of Urban–Rural Fringes Based on Nighttime Light Data
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
3. Methods
3.1. Research Route
3.2. Formulation of a Model for Urban–Rural Fringe Identification
3.2.1. Quantification of Standardized Light Intensity Fluctuations
3.2.2. Constructing the Formula for the Composite Light Characteristics Value
3.2.3. Determination of Boundary Range through Adjusted Mann–Kendall Threshold Test
3.3. Spatial Correlation Measurement of Urban–Rural Fringe
4. Results
4.1. Analysis of Light Intensity, Degree of Light Intensity Fluctuation, and the Characteristic Combination Value
4.2. Spatiotemporal Pattern of Urban–Rural Fringe Areas
4.3. Spatial Correlation Intensity in Urban–Rural Fringe Areas
5. Discussion
5.1. Error Analysis
5.2. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lang, W.; Chen, T.; Li, X. A new style of urbanization in China: Transformation of urban rural communities. Habitat Int. 2016, 55, 1–9. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, J.; Wang, L. Village classification in metropolitan suburbs from the perspective of urban-rural integration and improvement strategies: A case study of Wuhan, central China. Land Use Policy 2021, 111, 105748. [Google Scholar] [CrossRef]
- Ding, W.; Chen, H. Urban-rural fringe identification and spatial form transformation during rapid urbanization: A case study in Wuhan, China. Build. Environ. 2022, 226, 109697. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Wang, Y.; Liu, Y. Measurement of urban-rural integration level and its spatial differentiation in China in the new century. Habitat Int. 2021, 117, 102420. [Google Scholar] [CrossRef]
- Zhu, J.; Lang, Z.; Yang, J.; Wang, M.; Zheng, J.; Na, J. Integrating spatial heterogeneity to identify the urban fringe area based on NPP/VIIRS nighttime light data and dual spatial clustering. Remote Sens. 2022, 14, 6126. [Google Scholar] [CrossRef]
- Lopez-Goyburu, P.; García-Montero, L. The urban-rural interface as an area with characteristics of its own in urban planning: A review. Sustain. Cities Soc. 2018, 43, 157–165. [Google Scholar] [CrossRef]
- Thwaites, K.; Simpson, J.; Simkins, I. Transitional edges: A conceptual framework for socio-spatial understanding of urban street edges. Urban Des. Int. 2020, 25, 295–309. [Google Scholar] [CrossRef]
- Ann, T.; Wu, Y.; Zheng, B.; Zhang, X.; Shen, L. Identifying risk factors of urban-rural conflict in urbanization: A case of China. Habitat Int. 2014, 44, 177–185. [Google Scholar]
- Amirinejad, G.; Donehue, P.; Baker, D. Ambiguity at the peri-urban interface in Australia. Land Use Policy 2018, 78, 472–480. [Google Scholar] [CrossRef]
- Banu, N.; Fazal, S. Development of infrastructural facilities in public sector on the urban fringe of Aligarh city: A regional perspective from north India. J. Infrastruct. Dev. 2013, 5, 151–168. [Google Scholar] [CrossRef]
- Gizelis, T.; Pickering, S.; Urdal, H. Conflict on the urban fringe: Urbanization, environmental stress, and urban unrest in Africa. Polit. Geogr. 2021, 86, 102357. [Google Scholar] [CrossRef]
- Fei, W.; Zhao, S. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total Environ. 2019, 664, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.; Wang, M.; Xu, Z.; Wu, J. Integrating land development size, pattern, and density to identify urban-rural fringe in a metropolitan region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; He, Z.; He, J.; Wang, J.; Fang, X. Understanding the diversity of urban-rural fringe development in a fast urbanizing region of China. Remote Sens. 2021, 13, 2373. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A new approach for urban-rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, S.; You, X.; Yang, C.; Wang, C.; Lin, J.; Wu, W.; Yu, B. New nighttime light landscape metrics for analyzing urban-rural differentiation in economic development at township: A case study of Fujian province, China. Appl. Geogr. 2023, 150, 102841. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.; Portnov, A.; Ujoh, F.; Musakwae, W.; Manla, P. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2021, 24, 241–255. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A constraint-based approach for identifying the urban-rural fringe of polycentric cities using multi-sourced data. Int. J. Geogr. Inf. Sci. 2022, 36, 114–136. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Lu, J.; Gao, W.; Jin, X. Identifying and tracking the urban-rural fringe evolution in the urban-rural transformation period: Evidence from a rapidly urbanized rust belt city in China. Ecol. Indic. 2023, 146, 109856. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Wu, Z. Delineating urban fringe area by land cover information entropy-An empirical study of Guangzhou-Foshan metropolitan area, China. ISPRS Int. J. Geoinf. 2016, 5, 59. [Google Scholar] [CrossRef]
- Ma, Y.; Qiao, J.; Han, D. Interpreting the humanistic space of urban-rural interface using consumption behaviors. J. Rural Stud. 2022, 93, 513–521. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Pu, L.; Jiang, B.; Yuan, S.; Xu, Y. A novel model for detecting urban fringe and its expanding patterns: An application in Harbin City, China. Land 2021, 10, 876. [Google Scholar] [CrossRef]
- Long, Y.; Luo, S.; Liu, X.; Luo, T.; Liu, X. Research on the dynamic evolution of the landscape pattern in the urban fringe area of Wuhan from 2000 to 2020. ISPRS Int. J. Geoinf. 2022, 11, 483. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Tan, C.; Li, W. Spatial recognition of the urban-rural fringe of Beijing using DMSP/OLS nighttime light data. Remote Sens. 2017, 9, 1141. [Google Scholar] [CrossRef]
- Dong, Q.; Qu, S.; Qin, J.; Yi, D.; Liu, Y.; Zhang, J. A method to identify urban fringe area based on the industry density of POI. ISPRS Int. J. Geoinf. 2022, 11, 128. [Google Scholar] [CrossRef]
- Surya, B.; Ahmad, D.; Sakti, H.; Sahban, H. Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, South Sulawesi Province, Indonesia. Land 2020, 9, 95. [Google Scholar] [CrossRef]
- Karagoz, K.; Saray, M. Trade potential of Turkey with Asia-Pacific countries: Evidence from panel gravity model. Int. Econ. Stud. 2022, 36, 19–26. [Google Scholar]
- Ulucak, R.; Yucel, A.G.; Ilkay, S.C. Dynamics of tourism demand in Turkey: Panel data analysis using gravity model. Tour. Econ. 2020, 26, 1394–1414. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Li, K.; Song, M. A gravity model and exploratory spatial data analysis of prefecture-scale pollutant and CO2 emissions in China. Ecol. Indic. 2018, 90, 554–563. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, Z.; Li, J. Analysis of the China’s interprovincial innovation connection network based on modified gravity model. Land 2023, 12, 1091. [Google Scholar] [CrossRef]
- Xia, N.; Cheng, L.; Chen, S.; Wei, X.; Zong, W.; Li, M. Accessibility based on gravity-radiation model and Google Maps API: A case study in Australia. J. Transp. Geogr. 2018, 72, 178–190. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS nighttime light data and K-means method to identify urban-rural fringe of megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Xiang, J.; Ning, L.; Yu, Y. Modelling spatiotemporal carbon dioxide emission at the urban scale based on DMSP-OLS and NPP-VIIRS data: A case study in China. Urban Clim. 2022, 46, 101326. [Google Scholar] [CrossRef]
- Ortakavak, Z.; Cabuk, S.N.; Cetin, M.; Kurkcuoglu, M.A.S.; Cabuk, A. Determination of the nighttime light imagery for urban city population using DMSP-OLS methods in Istanbul. Environ. Monit. Assess. 2020, 192, 790. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Shao, Z.; Huang, X.; Cai, B. GDP forecasting model for China’s provinces using nighttime light remote sensing data. Remote Sens. 2022, 14, 3671. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Chen, M.; Wu, C.; Ren, H.; Liu, Y. An approach for retrieving consistent time Series “Urban core—Suburban-rural” (USR) structure using nighttime light data from DMSP/OLS and NPP/VIIRS. Remote Sens. 2022, 14, 3642. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Tao, G.; Zhu, Y.; Wu, Y.; Li, X.; Liu, J. DMSP/OLS night-time light intensity as an innovative indicator of regional sustainable development. Int. J. Remote Sens. 2019, 40, 1594–1602. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, H.; Wang, J.; Liu, H.; Shang, Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci. Total Environ. 2020, 703, 134394. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. VIIRS nighttime lights in the estimation of cross-sectional and time-series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef]
- Zhang, X.; Gibson, J. Using multi-source nighttime lights data to proxy for county-level economic activity in China from 2012 to 2019. Remote Sens. 2022, 14, 1282. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Li, X.; Chen, X. Long-term resilience curve analysis of wenchuan earthquake-affected counties using dmsp-ols nighttime light images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10854–10874. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Tan, X.; Huang, B.; Batty, M.; Li, J. Urban spatial organization, multifractals, and evolutionary patterns in large cities. Ann. Am. Assoc. Geogr. 2021, 111, 1539–1558. [Google Scholar] [CrossRef]
- Hu, X.; Qian, Y.; Pickett, S.; Zhou, W. Urban mapping needs up-to-date approaches to provide diverse perspectives of current urbanization: A novel attempt to map urban areas with nighttime light data. Landsc. Urban Plan 2020, 195, 103709. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Zheng, W.; Rong, Y.; Liu, W. Identification of urban shrinkage using NPP-VIIRS nighttime light data at the county level in China. Cities 2021, 118, 103373. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: A novel approach based on time-series nighttime light data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Cao, R.; Tu, W.; Yang, C.; Li, Q.; Liu, J.; Zhu, J.; Zhang, Q.; Li, Q.; Qiu, G. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS J. Photogramm. 2020, 163, 82–97. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Skitmore, M.; Song, Y.; Hui, E. Industrial land price and its impact on urban growth: A Chinese case study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef]
- Tang, X.; Shen, C.; Shi, D.; Cheema, S.A.; Khan, M.I.; Zhang, C.; Chen, Y. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater. 2010, 173, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.; Baugh, K.; Zhizhin, M.; Hsu, F. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, R.; Yuan, T.; Cheng, L.; You, J. Evaluating perception of community resilience to typhoon disasters in China based on grey relational TOPSIS model. Int. J. Disast. Risk Re. 2023, 84, 103468. [Google Scholar] [CrossRef]
- Fienitz, M.; Siebert, R. Urban versus rural? Conflict lines in land use disputes in the urban–rural fringe region of Schwerin, Germany. Land 2021, 10, 726. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.; Zhang, Q. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, H.; Wu, J. Spatiotemporal association of carbon dioxide emissions in China’s urban agglomerations. J. Environ. Manag. 2022, 323, 116109. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, P.; Goswami, A. A spatio-temporal assessment and prediction of surface urban heat island intensity using multiple linear regression techniques over Ahmedabad City, Gujarat. J. Indian. Soc. Remote. 2021, 49, 1091–1108. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Luo, Y.; Zhao, L. Impact of urban expansion on vegetation: The case of China (2000–2018). J. Environ. Manag. 2021, 291, 112598. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing improved time-series DMSP-OLS-like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, L.; Wang, H. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean Prod. 2021, 328, 129488. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A Meta-Analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Martin, W.; Pham, C. Estimating the gravity model when zero trade flows are frequent and economically determined. Appl. Econ. 2020, 52, 2766–2779. [Google Scholar] [CrossRef]
- Kii, M.; Tamaki, T.; Suzuki, T.; Nonomura, A. Estimating urban spatial structure based on remote sensing data. Sci. Rep. 2023, 13, 8804. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Weng, Q.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Fu, Y.; Guo, B.; Zhao, Y.; Yu, H. A Novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1416–1425. [Google Scholar] [CrossRef]
- Li, D.; Cao, L.; Zhou, Z.; Zhao, K.; Du, Z.; Han, K. Coupling coordination degree and driving factors of new-type urbanization and low-carbon development in the Yangtze River Delta: Based on nighttime light data. Environ. Sci. Pollut. R. 2022, 29, 81636–81657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, S.; Wang, S.; Shen, Y. Monitoring evolving urban cluster systems using DMSP/OLS nighttime light data: A case study of the Yangtze River Delta region, China. J. Appl. Remote Sens. 2017, 11, 046029. [Google Scholar] [CrossRef]
- Xu, P.; Lin, M.; Jin, P. Spatio-temporal dynamics of urbanization in China using DMSP/OLS nighttime light data from 1992–2013. Chin. Geogr. Sci. 2021, 31, 70–80. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Wu, J. Decoupling relationship between urbanization and carbon sequestration in the Pearl River Delta from 2000 to 2020. Remote Sens. 2022, 14, 526. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Zheng, W.S.; Run, J.Y.; Zhuo, R.R.; Jiang, Y.P.; Wang, X.F. Evolution process of urban spatial pattern in Hubei province based on DMSP/OLS nighttime light data. Chin. Geogr. Sci. 2016, 26, 366–376. [Google Scholar] [CrossRef]
- Han, R.; Cao, H.; Liu, Z. Studying the urban hierarchical pattern and spatial structure of China using a synthesized gravity model. Sci. China Earth Sci. 2018, 61, 1818–1831. [Google Scholar] [CrossRef]
- Li, L.; Sun, Z.; Long, X. An empirical analysis of night-time light data based on the gravity model. Appl. Econ. 2019, 51, 797–814. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Xie, Z. Integration development of urban agglomeration in central Liaoning, China, by trajectory gravity model. ISPRS Int. J. Geoinf. 2021, 10, 698. [Google Scholar] [CrossRef]
- Chang, D.; Wang, Q.; Xie, J.; Yang, J.; Xu, W. Research on the extraction method of urban built-up areas with an improved night light index. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Petržala, J. On the influence of aerosol extinction vertical profile in modeling of night sky radiance. J. Quant. Spectrosc. Radiat. Transf. 2023, 307, 108676. [Google Scholar] [CrossRef]
- Puschnig, J.; Wallner, S.; Schwope, A.; Näslund, M. Long-term trends of light pollution assessed from SQM measurements and an empirical atmospheric model. Mon. Not. R. Astron. Soc. 2023, 518, 4449–4465. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kómar, L.; Lamphar, H.; Barentine, J.; Wallner, s. A systematic light pollution modelling bias in present night sky brightness predictions. Nat. Astron. 2023, 7, 269–279. [Google Scholar] [CrossRef]
- Kocifaj, M.; Bará, S. Diffuse light around cities: New perspectives in satellite remote sensing of nighttime aerosols. Atmos. Res. 2022, 266, 105969. [Google Scholar] [CrossRef]
- Van, D.; Hammer, M.; Bindle, L. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Zhang, L. Estimate of population density and diagnosis of main factors of spatial heterogeneity in the metropolitan scale, western China. Heliyon 2023, 9, 162855. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Guo, Z.; Wu, J.; Chen, Z. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Adv. Space Res. 2020, 65, 481–493. [Google Scholar] [CrossRef]
- Sakagawa, Y.; Nakajima, K.; Ohashi, G. Vision based nighttime vehicle detection using adaptive threshold and multi-class classification. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2019, 102, 1235–1245. [Google Scholar] [CrossRef]
- Casali, Y.; Aydin, N.; Comes, T. Machine learning for spatial analyses in urban areas: A scoping review. Sustain. Cities Soc. 2022, 85, 104050. [Google Scholar] [CrossRef]
- Fu, B.; Xiao, X.; Li, J. Big Data-Driven Measurement of the service capacity of public toilet facilities in China. Appl. Sci. 2022, 12, 4659. [Google Scholar] [CrossRef]
- Xue, B.; Xiao, X.; Li, J. Identification method and empirical study of urban industrial spatial relationship based on POI big data: A case of Shenyang City, China. Geogr. Sustain. 2020, 1, 152–162. [Google Scholar] [CrossRef]
- Xue, B.; Xiao, X.; Li, J.; Zhao, B.; Fu, B. Multi-source data-driven identification of urban functional areas: A case of Shenyang, China. Chin. Geogr. Sci. 2023, 33, 21–35. [Google Scholar] [CrossRef]
Point i | Qi_2010 | Qi_2015 | Qi_2020 | Point j | Qj_2010 | Qj_2015 | Qj_2020 | dij | Gij_2010 | Gij_2015 | Gij_2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Linhai | 10,595 | 16,284 | 8894 | Xianju | 3430 | 6880 | 2420 | 50 | 14,536.34 | 44,813.57 | 8609.39 |
Linhai | 10,595 | 16,284 | 8894 | Tiantai | 3647 | 8620 | 1968 | 58 | 11,486.32 | 41,726.54 | 5203.15 |
Linhai | 10,595 | 16,284 | 8894 | Sanmen | 2629 | 8357 | 1987 | 60 | 7737.29 | 37,801.50 | 4908.99 |
Huangyan | 3774 | 3761 | 2738 | Linhai | 10,595 | 16,284 | 8894 | 50 | 15,994.21 | 24,497.65 | 9740.71 |
Sanmen | 2629 | 8357 | 1987 | Tiantai | 3647 | 8620 | 1968 | 68 | 2073.52 | 15,579.01 | 845.68 |
Tiantai | 3647 | 8620 | 1968 | Xianju | 3430 | 6880 | 2420 | 82 | 1860.38 | 8819.99 | 708.29 |
Jiaojiang | 2989 | 1878 | 559 | Linhai | 10,595 | 16,284 | 8894 | 64 | 7731.56 | 7466.15 | 1213.81 |
Huangyan | 3774 | 3761 | 2738 | Sanmen | 2629 | 8357 | 1987 | 66 | 2277.74 | 7215.49 | 1248.95 |
Huangyan | 3774 | 3761 | 2738 | Tiantai | 3647 | 8620 | 1968 | 68 | 2976.60 | 7011.21 | 1165.31 |
Huangyan | 3774 | 3761 | 2738 | Jiaojiang | 2989 | 1878 | 559 | 34 | 9758.21 | 6110.00 | 1324.00 |
Linhai | 10,595 | 16,284 | 8894 | Wenling | 7807 | 2054 | 5484 | 75 | 14,704.92 | 5946.19 | 8671.06 |
Huangyan | 3774 | 3761 | 2738 | Xianju | 3430 | 6880 | 2420 | 67 | 2883.68 | 5764.24 | 1476.04 |
Huangyan | 3774 | 3761 | 2738 | Luqiao | 1965 | 830 | 118 | 25 | 11,865.46 | 4994.61 | 516.93 |
Sanmen | 2629 | 8357 | 1987 | Xianju | 3430 | 6880 | 2420 | 115 | 681.85 | 4347.54 | 363.59 |
Linhai | 10,595 | 16,284 | 8894 | Luqiao | 1965 | 830 | 118 | 57 | 6407.87 | 4159.96 | 323.02 |
Huangyan | 3774 | 3761 | 2738 | Wenling | 7807 | 2054 | 5484 | 53 | 10,489.01 | 2750.12 | 5345.39 |
Jiaojiang | 2989 | 1878 | 559 | Sanmen | 2629 | 8357 | 1987 | 80 | 1227.83 | 2452.26 | 173.55 |
Jiaojiang | 2989 | 1878 | 559 | Tiantai | 3647 | 8620 | 1968 | 87 | 1440.20 | 2138.77 | 145.34 |
Jiaojiang | 2989 | 1878 | 559 | Xianju | 3430 | 6880 | 2420 | 87 | 1354.51 | 1707.05 | 178.73 |
Tiantai | 3647 | 8620 | 1968 | Wenling | 7807 | 2054 | 5484 | 102 | 2736.65 | 1701.80 | 1037.34 |
Sanmen | 2629 | 8357 | 1987 | Wenling | 7807 | 2054 | 5484 | 104 | 1897.61 | 1587.03 | 1007.46 |
Jiaojiang | 2989 | 1878 | 559 | Wenling | 7807 | 2054 | 5484 | 50 | 9334.05 | 1542.96 | 1226.22 |
Luqiao | 1965 | 830 | 118 | Wenling | 7807 | 2054 | 5484 | 35 | 12,523.07 | 1391.69 | 528.25 |
Jiaojiang | 2989 | 1878 | 559 | Luqiao | 1965 | 830 | 118 | 35 | 4794.60 | 1272.44 | 53.85 |
Wenling | 7807 | 2054 | 5484 | Xianju | 3430 | 6880 | 2420 | 107 | 2338.90 | 1234.30 | 1159.16 |
Linhai | 10,595 | 16,284 | 8894 | Yuhuan | 3776 | 579 | 4841 | 90 | 4939.10 | 1164.00 | 5315.54 |
Luqiao | 1965 | 830 | 118 | Sanmen | 2629 | 8357 | 1987 | 84 | 732.14 | 983.04 | 33.23 |
Luqiao | 1965 | 830 | 118 | Tiantai | 3647 | 8620 | 1968 | 87 | 946.80 | 945.25 | 30.68 |
Luqiao | 1965 | 830 | 118 | Xianju | 3430 | 6880 | 2420 | 87 | 890.47 | 754.45 | 37.73 |
Wenling | 7807 | 2054 | 5484 | Yuhuan | 3776 | 579 | 4841 | 55 | 9745.20 | 393.15 | 8776.21 |
Huangyan | 3774 | 3761 | 2738 | Yuhuan | 3776 | 579 | 4841 | 75 | 2533.44 | 387.13 | 2356.38 |
Tiantai | 3647 | 8620 | 1968 | Yuhuan | 3776 | 579 | 4841 | 116 | 1023.41 | 370.91 | 708.02 |
Sanmen | 2629 | 8357 | 1987 | Yuhuan | 3776 | 579 | 4841 | 117 | 725.19 | 353.47 | 702.69 |
Xianju | 3430 | 6880 | 2420 | Yuhuan | 3776 | 579 | 4841 | 122 | 870.17 | 267.64 | 787.10 |
Jiaojiang | 2989 | 1878 | 559 | Yuhuan | 3776 | 579 | 4841 | 73 | 2117.93 | 204.05 | 507.81 |
Luqiao | 1965 | 830 | 118 | Yuhuan | 3776 | 579 | 4841 | 80 | 1159.35 | 75.09 | 89.26 |
Light Intensity (DN) | Light Intensity Fluctuation (DNW) | Combination Value (C) | |||||||
---|---|---|---|---|---|---|---|---|---|
Range | Std | Mean | Uc | Range | Std | Mean | Std | Mean | |
2010 | [0, 59] | 12.86 | 8.74 | 1.80% | [0, 38] | 6.65 | 4.77 | 0.33 | 0.84 |
2015 | [0, 63] | 19.30 | 13.79 | 8.40% | [0, 54] | 7.07 | 9.03 | 0.37 | 0.62 |
2020 | [0, 63] | 20.46 | 18.35 | 13.85% | [0, 52] | 7.09 | 6.53 | 0.29 | 0.83 |
2010 | 2015 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|
Urban | Fringe | Rural | Urban | Fringe | Rural | Urban | Fringe | Rural | |
Huangyan | 143 | 459 | 386 | 227 | 233 | 528 | 223 | 358 | 407 |
Jiaojiang | 113 | 142 | 109 | 212 | 55 | 97 | 198 | 72 | 94 |
Linhai | 125 | 1465 | 661 | 399 | 798 | 1054 | 432 | 1224 | 595 |
Luqiao | 171 | 155 | 2 | 297 | 14 | 17 | 289 | 39 | 0 |
Sanmen | 32 | 47 | 596 | 96 | 237 | 772 | 106 | 734 | 265 |
Tiantai | 40 | 598 | 794 | 179 | 314 | 939 | 108 | 603 | 721 |
Wenling | 288 | 774 | 12 | 672 | 290 | 112 | 903 | 162 | 9 |
Xianju | 31 | 586 | 1383 | 105 | 355 | 1540 | 70 | 601 | 1329 |
Yuhuan | 154 | 337 | 19 | 248 | 178 | 84 | 462 | 29 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, B.; Xue, B. Temporal and Spatial Evolution Analysis and Correlation Measurement of Urban–Rural Fringes Based on Nighttime Light Data. Remote Sens. 2024, 16, 88. https://doi.org/10.3390/rs16010088
Fu B, Xue B. Temporal and Spatial Evolution Analysis and Correlation Measurement of Urban–Rural Fringes Based on Nighttime Light Data. Remote Sensing. 2024; 16(1):88. https://doi.org/10.3390/rs16010088
Chicago/Turabian StyleFu, Bo, and Bing Xue. 2024. "Temporal and Spatial Evolution Analysis and Correlation Measurement of Urban–Rural Fringes Based on Nighttime Light Data" Remote Sensing 16, no. 1: 88. https://doi.org/10.3390/rs16010088
APA StyleFu, B., & Xue, B. (2024). Temporal and Spatial Evolution Analysis and Correlation Measurement of Urban–Rural Fringes Based on Nighttime Light Data. Remote Sensing, 16(1), 88. https://doi.org/10.3390/rs16010088