DMCH: A Deep Metric and Category-Level Semantic Hashing Network for Retrieval in Remote Sensing
Abstract
:1. Introduction
- (1)
- We propose a deep metric and category-level semantic hashing network for remote sensing image retrieval. Our quantitative and qualitative experimental results conclusively demonstrate that the DMCH surpasses contemporary deep hashing retrieval methodologies in performance.
- (2)
- We propose a semantic-preserving loss function designed to enhance the conciseness and discriminatory capability of the generated hash codes and facilitate the extraction of distinct features from RSIs.
2. Related Work
2.1. Traditional Hash Learning Methods
2.2. Deep Hash Learning Methods
3. A Deep Metric and Category-Level Semantic Hashing Network
3.1. The Basic Idea of Deep Hashing-Based Remote Sensing Image Retrieval
3.2. System Architecture of Deep Hashing Model
3.3. The Construction of Triplets
3.4. Objective Function
Algorithm 1 DMCH Algorithm. |
Input: |
First stage: Remote sensing image set . |
Second stage: M triplet set , with the corresponding class label . |
Output: The weight parameters W of DMCH. |
(1) Initialize the weight of the hash layers randomly i; |
(2) Pick triplet construction image feature , . |
(3) Calculate the binary hash codes ) obtained by the output of the latent layer H by forward propagation. |
(4) Compute the overall objective function of the DMCH. |
(5) Optimize weight parameter W by Adam optimizer. |
Until: |
Convergence or a preset number of training iterations is satisfied. |
Return: W. |
3.5. Coarse-to-Fine Hash Code Ranking
4. Experimental Results and Analysis Results
4.1. Datasets
4.2. Metrics and Experimental Settings
4.3. Results and Analysis
4.3.1. Results of Ablation Experiments
4.3.2. Results on Benchmark Datasets
4.3.3. Visualization Results
4.3.4. Efficiency Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Yadav, S.K.; Borana, S.L.; Parihar, S.K. Application of Geospatial Technology for Disaster Management Preparedness in Jodhpur City. Int. J. Curr. Res. 2017, 9, 60397–60404. [Google Scholar]
- Ouyang, X.; Xu, Y.; Mao, Y.; Liu, Y.; Wang, Z.; Yan, Y. Blockchain-Assisted Verifiable and Secure Remote Sensing Image Retrieval in Cloud Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 1378–1389. [Google Scholar] [CrossRef]
- Shao, Z.; Zhou, W.; Deng, X.; Zhang, M.; Cheng, Q. Multilabel remote sensing image retrieval based on fully convolutional network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 318–328. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Wang, X.; Wang, L.; Zheng, F.; Wang, L.; Zhang, H. A Fusion Encoder with Multi-Task Guidance for Cross-Modal Text–Image Retrieval in Remote Sensing. Remote Sens. 2023, 15, 4637. [Google Scholar] [CrossRef]
- Har-Peled, S.; Kumar, N. Approximate nearest neighbor search for low-dimensional queries. SIAM J. Comput. 2013, 42, 138–159. [Google Scholar] [CrossRef]
- Weiss, Y.; Torralba, A.; Fergus, R. Spectral hashing. In Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008. [Google Scholar]
- Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2916–2929. [Google Scholar] [CrossRef]
- Liu, W.; Mu, C.; Kumar, S.; Chang, S.F. Discrete graph hashing. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 8–13 December 2014. [Google Scholar]
- Demir, B.; Bruzzone, L. Hashing-based scalable remote sensing image search and retrieval in large archives. IEEE Trans. Geosci. Remote Sens. 2015, 54, 892–904. [Google Scholar] [CrossRef]
- Li, P.; Ren, P. Partial randomness hashing for large-scale remote sensing image retrieval. IEEE Geosci. Remote Sens. Lett. 2017, 14, 464–468. [Google Scholar] [CrossRef]
- Reato, T.; Demir, B.; Bruzzone, L. An unsupervised multicode hashing method for accurate and scalable remote sensing image retrieval. IEEE Geosci. Remote Sens. Lett. 2018, 16, 276–280. [Google Scholar] [CrossRef]
- Wang, J.; Kumar, S.; Chang, S.F. Semi-supervised hashing for scalable image retrieval. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: New York, NY, USA; pp. 3424–3431. [Google Scholar]
- Kim, S.; Choi, S. Semi-supervised discriminant hashing. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Washington, DC, USA, 11–14 December 2011; pp. 1122–1127. [Google Scholar]
- Liu, W.; Wang, J.; Ji, R.; Jiang, Y.G.; Chang, S.F. Supervised hashing with kernels. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2074–2081. [Google Scholar]
- Norouzi, M.; Fleet, D. Minimal Loss Hashing for Compact Binary Codes. In Proceedings of the 28th International Conference on Machine Learning, Madison, WI, USA, 28 June–2 July 2011. [Google Scholar]
- Shen, F.; Shen, C.; Liu, W.; Tao Shen, H. Supervised discrete hashing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 37–45. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, J.; Tang, X.; Zhang, X.; Jiao, L. Adversarial hash-code learning for remote sensing image retrieval. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4324–4327. [Google Scholar]
- Li, P.; Han, L.; Tao, X.; Zhang, X.; Grecos, C.; Plaza, A.; Ren, P. Hashing nets for hashing: A quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7331–7345. [Google Scholar] [CrossRef]
- Xia, R.; Pan, Y.; Lai, H.; Liu, C.; Yan, S. Supervised hashing for image retrieval via image representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28. No. 1. [Google Scholar]
- Zhu, H.; Long, M.; Wang, J.; Cao, Y. Deep hashing network for efficient similarity retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. No. 1. [Google Scholar]
- Liu, P.; Liu, Z.; Shan, X.; Zhou, Q. Deep Hash Remote-Sensing Image Retrieval Assisted by Semantic Cues. Remote Sens. 2022, 14, 6358. [Google Scholar] [CrossRef]
- Chen, C.; Zou, H.; Shao, N.; Sun, J.; Qin, X. Deep semantic hashing retrieval of remotec sensing images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1124–1127. [Google Scholar]
- Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-scale remote sensing image retrieval by deep hashing neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 56, 950–965. [Google Scholar] [CrossRef]
- Han, L.; Li, P.; Bai, X.; Grecos, C.; Zhang, X.; Ren, P. Cohesion intensive deep hashing for remote sensing image retrieval. Remote Sens. 2019, 12, 101. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Benediktsson, J.A. Deep hashing learning for visual and semantic retrieval of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9661–9672. [Google Scholar] [CrossRef]
- Roy, S.; Sangineto, E.; Demir, B.; Sebe, N. Metric-learning-based deep hashing network for content-based retrieval of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 226–230. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, X. Deep category-level and regularized hashing with global semantic similarity learning. IEEE Trans. Cybern. 2020, 51, 6240–6252. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Zhou, Q.; Wang, Z. Deep hashing using proxy loss on remote sensing image retrieval. Remote Sens. 2021, 13, 2924. [Google Scholar]
- Zhang, X.; Zhang, L.; Shum, H.Y. QsRank: Query-sensitive hash code ranking for efficient ∊-neighbor search. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2058–2065. [Google Scholar]
- Jiang, Y.G.; Wang, J.; Chang, S.F. Lost in binarization: Query-adaptive ranking for similar image search with compact codes. In Proceedings of the 1st ACM International Conference on Multimedia Retrieval, Trento, Italy, 18–20 April 2011; pp. 1–8. [Google Scholar]
- Gordo, A.; Perronnin, F.; Gong, Y.; Lazebnik, S. Asymmetric distances for binary embeddings. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Ng, W.W.; Zeng, Z.; Yeung, D.S.; Chan, P.P. Asymmetric cyclical hashing for large scale image retrieval. IEEE Trans. Multimed. 2015, 17, 1225–1235. [Google Scholar] [CrossRef]
- Liu, C.; Ma, J.; Tang, X.; Liu, F.; Zhang, X.; Jiao, L. Deep hash learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3420–3443. [Google Scholar] [CrossRef]
- Song, W.; Gao, Z.; Dian, R.; Ghamisi, P.; Zhang, Y.; Benediktsson, J.A. Asymmetric hash code learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5617514. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Mou, L.; Jin, P.; Xiong, S.; Zhu, X.X. Deep Saliency Smoothing Hashing for Drone Image Retrieval. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4700913. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Alhudhaif, A.; Polat, K. Attention-based end-to-end CNN framework for content-based x-ray imageretrieval. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2680–2693. [Google Scholar] [CrossRef]
- Öztürk, Ş. Hash code generation using deep feature selection guided siamese network for content-based medical image retrieval. Gazi Univ. J. Sci. 2021, 34, 733–746. [Google Scholar] [CrossRef]
- Öztürk, Ş. Class-driven content-based medical image retrieval using hash codes of deep features. Biomed. Signal Process. Control. 2021, 68, 102601. [Google Scholar] [CrossRef]
- Lin, K.; Yang, H.F.; Hsiao, J.H.; Chen, C.S. Deep learning of binary hash codes for fast image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 27–35. [Google Scholar]
- Zhao, F.; Huang, Y.; Wang, L.; Tan, T. Deep semantic ranking based hashing for multi-label image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1556–1564. [Google Scholar]
- Fernandez-Beltran, R.; Demir, B.; Pla, F.; Plaza, A. Unsupervised remote sensing image retrieval using probabilistic latent semantic hashing. IEEE Geosci. Remote Sens. Lett. 2020, 18, 256–260. [Google Scholar] [CrossRef]
- Tang, X.; Yang, Y.; Ma, J.; Cheung, Y.M.; Liu, C.; Liu, F.; Zhang, X.; Jiao, L. Meta-hashing for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5615419. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, S.; Mou, L.; Zhu, X.X. Deep quadruple-based hashing for remote sensing image-sound retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4705814. [Google Scholar] [CrossRef]
- Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737. [Google Scholar]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
Constraint | K = 32 | K = 64 | K = 96 |
---|---|---|---|
DMCH-nTri | 0.8495 | 0.8532 | 0.8578 |
DMCH-nBatchAll-Tri | 0.9017 | 0.9110 | 0.9113 |
DMCH-nCat | 0.9065 | 0.9125 | 0.9099 |
DMCH-nPush | 0.9114 | 0.9206 | 0.9298 |
DMCH-nBal | 0.8703 | 0.8783 | 0.8865 |
DMCH | 0.9185 | 0.9266 | 0.9291 |
Constraint | K = 32 | K = 64 | K = 96 |
---|---|---|---|
DMCH-nTri | 0.9083 | 0.9167 | 0.9230 |
DMCH-nBatchAll-Tri | 0.9385 | 0.9484 | 0.9479 |
DMCH-nCat | 0.9363 | 0.9480 | 0.9490 |
DMCH-nPush | 0.9480 | 0.9525 | 0.9561 |
DMCH-nBal | 0.9449 | 0.9458 | 0.9477 |
DMCH | 0.9544 | 0.9570 | 0.9577 |
Constraint | K = 32 | K = 64 | K = 96 |
---|---|---|---|
DMCH-nTri | 0.7408 | 0.7691 | 0.7964 |
DMCH-nBatchAll-Tri | 0.7939 | 0.8123 | 0.8310 |
DMCH-nCat | 0.7411 | 0.7914 | 0.8010 |
DMCH-nPush | 0.7904 | 0.8216 | 0.8429 |
DMCH-nBal | 0.7468 | 0.7698 | 0.7917 |
DMCH | 0.7974 | 0.8287 | 0.8437 |
Methods | Description | K = 32 | K = 64 | K = 96 |
---|---|---|---|---|
PRH | Unsupervised/shallow | 0.1557 | 0.1744 | 0.1858 |
KSLSH | Supervised/shallow | 0.6307 | 0.6536 | 0.6680 |
DPSH | Supervised/deep | 0.7478 | 0.8174 | 0.8640 |
MiLaN | Supervised/deep | 0.9171 | 0.9176 | 0.9178 |
FAH | Supervised/deep | 0.9114 | 0.9122 | 0.9233 |
AHCL | Supervised/deep | 0.9121 | 0.9231 | 0.9237 |
DSSH | Supervised/deep | 0.9156 | 0.9248 | 0.9274 |
DMCH | Supervised/deep | 0.9185 | 0.9266 | 0.9291 |
DMCH+ | Supervised/deep | 0.9283 | 0.9302 | 0.9361 |
Methods | Description | K = 32 | K = 64 | K = 96 |
---|---|---|---|---|
PRH | Unsupervised/shallow | 0.1425 | 0.1624 | 0.1669 |
KSLSH | Supervised/shallow | 0.4953 | 0.5330 | 0.5589 |
DPSH | Supervised/deep | 0.3008 | 0.3394 | 0.3546 |
MiLaN | Supervised/deep | 0.9255 | 0.9378 | 0.9410 |
FAH | Supervised/deep | 0.9109 | 0.9168 | 0.9172 |
AHCL | Supervised/deep | 0.9436 | 0.9457 | 0.9501 |
DSSH | Supervised/deep | 0.9518 | 0.9533 | 0.9556 |
DMCH | Supervised/deep | 0.9544 | 0.9570 | 0.9577 |
DMCH+ | Supervised/deep | 0.9588 | 0.9610 | 0.9637 |
Methods | Description | K = 32 | K = 64 | K = 96 |
---|---|---|---|---|
PRH | Unsupervised/shallow | 0.1524 | 0.1726 | 0.1820 |
KSLSH | Supervised/shallow | 0.3815 | 0.3920 | 0.4012 |
DPSH | Supervised/deep | 0.6812 | 0.7524 | 0.7835 |
MiLaN | Supervised/deep | 0.7638 | 0.8039 | 0.8272 |
FAH | Supervised/deep | 0.6724 | 0.7149 | 0.7351 |
AHCL | Supervised/deep | 0.7740 | 0.7921 | 0.8323 |
DSSH | Supervised/deep | 0.7892 | 0.8256 | 0.8415 |
DMCH | Supervised/deep | 0.7974 | 0.8287 | 0.8437 |
DMCH+ | Supervised/deep | 0.8209 | 0.8427 | 0.8560 |
Datasets | Retrieval Time (ms) | ||
---|---|---|---|
K = 32 | K = 64 | K = 96 | |
UCMD | 85.55 | 96.01 | 104.25 |
AID | 112.83 | 119.99 | 125.07 |
NWPU-RESISC45 | 161.34 | 172.46 | 181.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Cheng, Q.; Shao, Z.; Huang, X.; Shao, L. DMCH: A Deep Metric and Category-Level Semantic Hashing Network for Retrieval in Remote Sensing. Remote Sens. 2024, 16, 90. https://doi.org/10.3390/rs16010090
Huang H, Cheng Q, Shao Z, Huang X, Shao L. DMCH: A Deep Metric and Category-Level Semantic Hashing Network for Retrieval in Remote Sensing. Remote Sensing. 2024; 16(1):90. https://doi.org/10.3390/rs16010090
Chicago/Turabian StyleHuang, Haiyan, Qimin Cheng, Zhenfeng Shao, Xiao Huang, and Liyuan Shao. 2024. "DMCH: A Deep Metric and Category-Level Semantic Hashing Network for Retrieval in Remote Sensing" Remote Sensing 16, no. 1: 90. https://doi.org/10.3390/rs16010090
APA StyleHuang, H., Cheng, Q., Shao, Z., Huang, X., & Shao, L. (2024). DMCH: A Deep Metric and Category-Level Semantic Hashing Network for Retrieval in Remote Sensing. Remote Sensing, 16(1), 90. https://doi.org/10.3390/rs16010090