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Abstract: Conventional maps of soil parent material (SPM) types obtained by field survey and manual
mapping or predictions from other map data have limited accuracy. Digital soil mapping of SPM
types necessitates accurate acquisition of SPM distribution information, which is still a challenge in
hilly areas. This study developed a high-accuracy method for SPM identification in hilly areas at
the county scale. Based on geographic information system technology, seven feature variables were
extracted from the geological map, geomorphic map, digital elevation model, and remote sensing
image data of Shanggao County, Jiangxi Province, China. Different feature combination schemes were
designed to develop SPM identification models based on random forest (RF), support vector machine
(SVM), and maximum likelihood classification (MLC) algorithms. The best SPM identification results
were obtained from the RF algorithm using the combination of geological type, geomorphic type,
elevation, and slope. Confusion matrices were constructed based on a field survey of 586 validation
samples, and the results were evaluated in terms of overall accuracy, precision, recall, F1 score, and
Kappa coefficient. The overall accuracy and Kappa coefficient of the results from the optimal RF
model were 83.11% and 0.79, respectively, which were 26.11% and 0.31 higher than those of the
conventional map, respectively. Its precision and recall for various SPM types were greater than
75%. A comprehensive comparison of the accuracy, uncertainty, and plotting performance of the
SPM recognition results reveals that the RF algorithm outperforms the SVM algorithm and the MLC
algorithm. Geological type was the largest contributor to SPM identification, followed by geomorphic
type, elevation, and slope. The importance of different feature variables varied for distinct SPM
types. The accuracy of SPM identification was not improved by selecting more feature variables,
such as land use type, normalised difference vegetation index, and topographic wetness index.
This study demonstrates the feasibility of high-accuracy county-level SPM mapping in hilly areas
based on the RF algorithm using geological type, geomorphic type, elevation, and slope as feature
variables. As hilly areas have typical topographic features and SPM types, the proposed method
of SPM mapping can be useful for application in other similar areas. There are a few limitations
in this study with regard to data quality and resolution, feature variable selection, classification
algorithm generalisation, and study area representativeness, which may affect the outcomes and
need to be solved.

Keywords: soil parent material; machine learning; random forest; support vector machine; maximum
likelihood classification; digital soil mapping

1. Introduction

As a fundamental natural resource on the Earth’s surface, soil plays a crucial role in
human production and living activities. It is accepted that soil results from the combined
action of five factors—parent material, climate, biology, topography, and time [1]. Soil
parent material (SPM), which provides the material basis for soil formation, often relates to
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soil type and physicochemical properties. Thus, soil properties, such as texture, thickness,
and rock content, can be characterised using SPM types [2]. Creating SPM-type maps with
higher accuracy is a crucial step in digital soil mapping [3].

Conventional SPM-type maps are usually coarse in scale, and high-resolution digital
maps of SPM types are rare [2,4]. For example, China only has a 1:14,000,000 SPM-type
map and a 1:6,000,000 soil parent rock/material map at a nationwide scale. Heung et al. [5]
obtained a 100 m resolution SPM-type map for British Columbia based on multiple envi-
ronmental covariates. Mello et al. [6] obtained a SPM-type map for the Sipaulista Plateau
in Brazil by multi-spectral analyses of satellite images. These digital maps can meet the
application requirements of provincial and higher levels, but their accuracy is still insuffi-
cient at the county and lower levels. Therefore, it is important to decipher how to create
high-accuracy county-level SPM-type maps by digital mapping techniques [7], especially
in hilly areas with complicated distribution of SPM types.

SPM information is usually obtained by field surveys and manual mapping of SPM
types, prediction from soil type maps, or replacing SPM distribution maps with geological
maps [5–10]. Based on the field survey, soil profiles are obtained to determine SPM types;
then, the boundaries of SPM types are delineated through a combination of topography,
geology, and remote sensing images. While requiring high costs, this conventional method
cannot guarantee map accuracy. Predicting SPM types from soil type maps is currently
the most popular method in soil research. However, the resulting maps usually contain
many multi-component units and lack spatially explicit representations of soil classes
and their properties [9,11]. As far as China is concerned, the soil type maps in use are
mainly based on the Second National Soil Survey conducted during the 1980s, and land
use change would lead to variation in soil types in some areas [12]. Additionally, most of
the soil-type maps were delineated manually with insufficient accuracy [13]. The use of
geological maps instead of SPM maps is relatively convenient [14], but the relationship
between geological types and SPM types is not a one-to-one correspondence [15,16]. There
are cases where the same geological type corresponds to multiple SPM types in different
topographic environments. Therefore, none of these methods can achieve comprehensive
and accurate acquisition of SPM information, and the SPM information obtained by the
different methods is partially inconsistent. In addition, the hilly areas have greater changes
in topographic relief and complex environments, with greater differences in the spatial
distribution of SPM types, as well as a greater variety of SPM causes, including residual
sediment parent material, slope sediment parent material, and river transported material
parent material, etc. [17,18], which makes the method of soil parent material type mapping
more difficult than that of other areas, so it is necessary to explore a method applicable to
the mapping of SPM types in the hilly areas.

Machine learning is the process by which computers automatically learn patterns from
data and make predictions and decisions based on those patterns, which is an algorithmic
method commonly used in soil classification and prediction research [19,20]. In contrast
with conventional analytical techniques, machine learning is able to capture higher-order
nonlinear relationships between variables from data iterations and avoid the omission of
latent information [21,22]. This method has been widely used in high-accuracy classification
and mapping, such as land cover classification [23], remote sensing image classification [24],
and soil property mapping [25]. However, machine learning algorithms exemplified by
random forest (RF) are rarely used in county-level identification of SPM types in hilly
areas [5,26]. SPM formation is closely associated with topography, geomorphology, and
geological type [11]. Topography has a prominent influence on ecological factors, including
vegetation, which in turn reflects SPM characteristics. Although conventional soil type
maps and topographic data have been used to extract SPM information and then identify
SPM types, there are still limited studies that extract SPM information from a combination
of other data sources [27–29], and it remains unclear which environmental feature variables
are useful for SPM identification (Identification of different types of soil parent material).
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The RF algorithm consists of multiple decision trees, and its training speed is faster
compared with other machine learning algorithms, such as support vector machine (SVM)
and maximum likelihood classification (MLC) [30]. It can work for missing values and
deal with high-dimensional data [31]. SVM is a simple algorithm that can automatically
find those support vectors with a high discriminatory ability for classification and, as such,
maximise the class-to-class intervals. This algorithm shows excellent performance with
few sample data [32]. The MLC algorithm determines the classification function by the
mean and variance of each class, which allows the class of each object to be classified. It
is particularly advantageous in terms of operation speed [33]. Despite their advantages,
these machine learning algorithms require a certain number of training samples to proceed.
Given the difficulty in the acquisition of SPM-type information [31], it is still challenging to
use machine learning algorithms in SPM identification.

The aim of this study was to select the optimal feature combination scheme and classi-
fication algorithm for high-accuracy SPM identification in hilly areas at the county scale.
The study area is in a typical hilly area in Jiangxi Province, southern China, with diverse
soil types with complex SPM distribution. Therefore, the mapping results of this hilly area
could be more representative than that of plain areas. A total of seven feature variables
were extracted from four data sources: geological type map (1: 50,000), geomorphic type
map (30 m), digital elevation model (DEM, 30 m), and remote sensing image (30 m). The
feature variables were sequentially selected to obtain different combination schemes, which
were used for SPM classification based on RF, SVM, and MLC algorithms. The feature
combination scheme with the highest precision and the model with the best validation
accuracy and mapping results were selected. This study provides guidance for county-level
mapping of SPM types in hilly areas and contributes to the development of high-accuracy
digital soil mapping.

2. Materials and Methods
2.1. Study Area

The study was carried out in Shanggao County, a typical hilly area of southern China
(Figure 1A). Its geographic coordinates are 114◦28′–115◦10′E and 28◦02′–28◦25′N, with a
total area of 1341 km2. This county is part of the hilly and mountainous agroforestry zone
located in the lower and middle reaches of the Yangtze River Basin. The major landforms
are hills and low mountains with large undulations and no distinct ranges. The study area
has a mid-subtropical monsoon climate, which climate is humid and warm, with abundant
rainfall, and the average annual precipitation is about 1800 mm with plenty of sunshine,
a long frost-free period, and four distinct seasons. The major soil types here are red soil,
limestone soil, paddy soil, yellow soil, and fluvo-aquic soil, according to the Genetic Soil
Classification of China.

There are no SPM-type maps of Shanggao County that had been created previously.
In this study, a conventional SPM-type map of Shanggao County was derived from a
soil-type map (1:50,000) based on the Second National Soil Survey and the Soil Records of
Shanggao County (Figure 1B). The major SPM types in the study area were identified as
river alluvium (RA), quaternary red clay (QRC), limestone weathered material (LWM), red
sandstone weathered material (RSWM), granite weathered material (GWM), and mudstone
weathered material (MWM). The conventional SPM-type map was coarse, and it only
showed the approximate distribution of SPM types with no further details.

2.2. Research Framework

To obtain the optimal model and feature variable combination for county-level SPM
identification in hilly areas, three machine learning algorithms (i.e., RF, SVM, MLC) are
applied with different feature variable combination schemes. Then, field validation samples
are used to assess the accuracy of SPM identification results. Considering the uncertainties
in data sources, assumptions in feature extraction, and biases in the training or validation
samples, the classification results may not fully reflect the actual distribution of SPM types.
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Therefore, a comparative and selective approach is adopted to choose the model with the
optimal accuracy and mapping performance. Additionally, Shapley additive explanations
(SHAP) are used to analyse feature importance (Figure 2).
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The feature combination schemes include single feature variables (e.g., geological type,
geomorphic type) and combinations of two feature variables (e.g., geological
type + geomorphic type, geology type + elevation), three feature variables (e.g., geological
type + geomorphic type + elevation, geological type + geomorphic type + slope, geomor-
phic type + slope + land use type), and more feature variables. The schemes are first
obtained as exhaustive combinations of two feature variables and used for modelling and
SPM identification; those combinations with lower accuracy are eliminated. Then, the
combinations of three or more feature variables are filtered following the same procedure.

2.3. Data Sources and Feature Extraction

As SPM results from in situ deposition or transport and accumulation of residuals after
rock weathering, SPM formation is influenced by geological lithology, topography, and
geomorphology [13]. In this study, geological type was extracted from the geological-type
map of Shanggao County (provided by the Jiangxi Provincial Bureau of Geology, 1:50,000)
and used as a geological variable; the main extraction method is classifying maps of the
same lithology into one group, such as serpentine green mud kilomagnetite, metamorphic
siltstone, and kilomagnetite-intercalated metamorphic sandstone into the metamorphic
rock category. Elevation, slope, and topographic wetness index (TWI) [34] were extracted
from DEM data (30 m) [35] as topographic variables, elevation and slope are both calculated
by the spatial analysis tool in ArcGIS v10.2 software, while TWI is calculated from the unit
contour length catchment area and slope, which is given by equation 1. The geomorphic
type was obtained from the global basic geomorphic-type unit dataset (30 m) [36] as a
geomorphic variable. The geomorphic types of Shanggao County were finally obtained
as large undulating mountains, medium undulating mountains, medium undulating low
mountains, low undulating low mountains, small undulating low mountains, low elevation
hills, and low elevation plains.

TWI = ln(
a

tan β
) (1)

where TWI is the topographic wetness index, a is the unit contour length catchment area,
and β is the slope.

The presence of various SPM types leads to the development of diverse soil types,
which relate to different land use types and vegetation coverage [37]. For example, SPMs
of RA and sedimentary types are mainly distributed on the banks of rivers and lakes,
which are suitable for agricultural cultivation and generally used as cropland. SPMs of
slope and residual types are generally found in mountainous areas, dominated by forest
land with high vegetation coverage. Therefore, normalised difference vegetation index
(NDVI) [38] was extracted from single-phase Landsat-8 remote sensing image (30 m) [39] of
June 2021 (LC08_L2SP_122040_20210119_20210307_02_T1 & LC08_L2SP_122041_20210119_
20210307_02_T1) with luxuriant vegetation (Equation (2)). The RF classification algorithm
was used to identify the land use types of Landsat-8 remote sensing images [40], and the
features in the study area were classified into forest land, arable land, grassland, water and
construction land, and the specific process was as follows: firstly, the training samples and
validation samples of the different land use types were selected by visual judgment, and
then the classification model was trained and the remote sensing images were classified
into the land use types, and finally the land use types map (Figure 1C) of the study area
was obtained (overall accuracy: 85.7%).

NDVI =
(NIR − R)
(NIR + R)

(2)

where NDVI is the normalised vegetation index, NIR is the near-infrared band (band 5) of
Landsat-8, and R is the red band (band 4) of Landsat-8.

A total of seven feature variables (i.e., geological type, geomorphic type, elevation,
slope, TWI, NDVI, and land use type) were extracted from the data sources. All the feature
variables were converted to raster data with a resolution of 30 × 30 m and the same number
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of rows and columns. Data processing was implemented in ENVI v5.3 (Harris Geospatial
Solutions Inc., Broomfield, MA, USA) and ArcGIS v10.2 (Environment System Research
Institute Inc., Redlands, CA, USA).

2.4. Training Sample Selection

Extracting a training sample set from the source soil map is a key step in digital soil
mapping. The training sample set can be used to identify the soil–environment relation-
ship and build prediction models for updating the soil map or predictive mapping of
other factors [5]. The quality of training samples affects the accuracy of the updated soil
map [41–43]. To select training samples, the SPM information of all soil survey points was
extracted from the data of the Second National Soil Survey. Due to limited techniques
at the time of the survey, there may be some sample points with inaccurate information.
Therefore, the sample points with incomplete or vaguely defined information on SPM were
excluded, such as those with incorrectly documented information, incorrect coordinates,
and changes in land use types, and to ensure that the final number of training samples
obtained for the different types is similar to the proportion of the area of the SPM types in
the historical SPM-type map. A total of 1303 training samples were obtained. The numbers
of training samples for RA, QRC, RSWM, GWM, LWM, and MWM were 108, 420, 264, 323,
90, and 98, respectively (Figure 1A).

2.5. Machine Learning Algorithms for Parent Material Classification

RF is a powerful and flexible integrated machine-learning algorithm. It combines the
predictions of multiple decision trees by voting to improve the accuracy and stability of the
model [30]. The core idea of RF is to randomly select training samples and feature variables
for classification. RF uses each decision tree voting to produce results (Equation (3)):

A(a) = B argx max
C

∑
y−1

dx
y(a) (3)

where A(a) is the model based on the RF extractive algorithm; Bargx is the x-labeling of the
extracted class; C is the number of voting decision trees in the forest of the RF extractive
algorithm; and dy is the y-th voting decision tree in the forest of the RF extractive algorithm.

SVM is a machine learning algorithm based on statistical learning theory to implement
the structural risk minimisation criterion. It is characterised by small training samples,
high noise immunity, and support for high dimensional data [32]. This method also has
strong stability and fast classification speed. However, it needs a large number of suitable
feature variables to ensure classification accuracy, which limits its application. SVM is
proposed as a classifier, which has an outstanding generalisation ability by introducing a
kernel function to transform a nonlinear problem into a linear problem. In this study, the
radial basis function was used for SVM (Equation (4)):

exp(− 1
2σ2 ||x − xi||2) (4)

where the inner product kernel K (x, xi) with width σ2 is the same for all kernels. Radial
basis functions can transform a nonlinear problem into a linear one, improving the accuracy
of the classifier and obtaining more accurate classification results [44].

MLC is a nonlinear classification algorithm based on the Bayesian verdict criterion [33].
It assumes that the training samples obey the normal distribution. After training, it cal-
culates the probability of the class corresponding to the grid cell to be classified and then
performs the classification. The implementation of MLC is convenient and fast. When
combined with the Bayesian theory, this method can effectively classify the object. The
discriminant formula of MLC is as follows (Equation (5)):
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gi(x) = ln[p(wi)]−
1
2
(x − ui)

T
−1

∑
i
(x − ui) (5)

where P(wi) is the prior probability of the class; wi is the conditional probability of observing
from the class to the raster cell x; i is the number of features; gi(x) is the likelihood of
belonging to the class wi in x; ui is the mean vector of class i; and ∑i is the variance-
covariance matrix for class i.

All machine learning algorithms were run with code written in Python v3.7.3 (https:
//www.python.org/, accessed on 21 June 2023) and implemented by calling machine
learning modules in the Sklearn library [45]. During the training process, the training
sample set was divided into a training set and a test set (7:3). The optimal parameters of
each training model were obtained by grid search. The main parameters to be adjusted for
the RF algorithm were n_estimators and max_features; the main parameters to be adjusted for
the SVM algorithm were class_weight and max_iter; and the main parameters to be adjusted
for the MLC algorithm were probability_threshold (See Appendix A Table A1 for specific
parameter settings).

2.6. Accuracy and Uncertainty Assessment of Parent Material Classification

A validation sample set was obtained by stratification to assess the accuracy of SPM
classification results. First, a map of soil sampling points was designed based on the
historical maps of soil type, land use type, geological type, elevation distribution, and
geomorphic type. (i) There were sampling points distributed in each soil type, land use
type, geological type, elevation interval (100 m), and geomorphic type. (ii) The sampling
points were designed in equal proportions based on the area ratios of different soil types,
land use types, geological types, elevation intervals, and geomorphologic types. (iii) The
sampling points were generally located at the centre of patches of various SPM types, with
no points on patch boundaries. Then, SPM types were surveyed in the field. At each
sampling point, the soil profile was dug into the SPM layer using a soil extractor or shovel
and used by a soil scientist to determine the SPM type. At the same time, information
on elevation, slope, land use type, soil type, etc., of the survey sample site location was
calibrated. A total of 586 validation sampling points were surveyed. The numbers of
validation samples for RA, QRC, LWM, RSWM, GWM, and MWM were 84, 181, 107, 137,
49, and 28, respectively (Figure 1A). In Shanggao County, there are field validation sample
points in most areas, of which the southern mountainous area is larger, and the sample
points are more densely distributed, and the central and northern parts of the county are
mostly plains and hills, and the distribution of sample points is more dispersed.

The validation sample set was used to assess the accuracy of the conventional SPM-
type map derived from historical soil maps and the digital SPM-type maps obtained
by different classification methods. Confusion matrices were constructed based on the
586 validation samples. The overall accuracy (OA), precision (P), recall (R), F1 score (F1),
and Kappa coefficient were calculated based on Equations (6)–(10) [46]:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Rrcall =
TP

TP + FN
(8)

F1score =
2Precision × Recall
Precision + Recall

(9)

Kappa coe f f icient =
P0 − Pe

1 − Pe
(10)

https://www.python.org/
https://www.python.org/
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where TP is the true positive rate, i.e., the number of validation samples correctly identified
as a certain SPM type; FP is the false positive rate, i.e., the number of validation samples
incorrectly identified as a certain SPM type; TN is the true negative rate, i.e., the number
of validation samples correctly identified as other SPM types; FN is the false negative,
i.e., the number of validation samples incorrectly identified as other SPM types; F1 score
is a weighted average of precision and recall; P0 is the proportion of correctly classified
sampling points; and Pe is the probability of random consensus.

The OA values fall in the range of [0, 1], and values closer to 1 indicate higher overall
accuracy of the classification results. The P and R values are in the interval of [0, 1], and
values closer to 1 indicate a higher probability of correctly classifying a certain type of
matrices and a lower probability of incorrectly identifying other types of matrices. The F1
values, which are the harmonic mean of P and R, are in the range of [0, 1]; values closer to 1
indicate a smaller conflict between P and R, which means better classification results. The
Kappa coefficients are between [−1, 1], and values closer to 1 indicate higher consistency
of the classification results for all SPM types.

In order to determine the stability of the final soil matrices classification results, the
uncertainty of the selected best soil matrices classification results was assessed using the
bootstrap algorithm [47]; this algorithm is a robust test without preconditions, which allows
the stability of the classification results to be visually assessed by various statistics [48]. The
training samples were retrained 100 times by randomly dividing them into a training set
and a test set in a ratio of 7:3, and then the field validation samples were used to calculate
the mean, standard deviation, maximum and minimum values of the overall accuracy
and Kappa coefficients of the obtained classification results of these soil matrices in order
to assess the uncertainty of the best classification results. If the standard deviation, the
difference between the maximum and minimum values and the difference between the
mean value and the best classification results are smaller, the uncertainty of the classification
result is lower; otherwise, the uncertainty is higher.

2.7. Evaluation of Feature Importance

SHAP provides a unified explanatory framework for all complex machine-learning
models [49]. This method links classical Shapley values from game theory to local expla-
nations to quantify the marginal contribution of each input feature to individual sample
predictions. It is expressed by the following (Equation (11):

g(z′) = ϕ0 +
M

∑
i=1

ϕizi
′ (11)

where z′ ∈ {0, 1}M represents the presence or absence of feature variables; M is the number
of feature variables in the model; ϕ0 is the constant when all inputs are missing; and ϕi is
the marginal contribution of variable i, i.e., the Shapley value.

The SHAP method starts from individual sample predictions. It can assess not only the
global importance but also the local importance of feature variables, providing sufficient
details for model interpretation. The feature importance in SPM identification models
was calculated using the SHAP package in Python v3.7.3 (https://www.python.org/,
accessed on 13 August 2023). A larger importance value indicates that the feature variable
contributes more to the classification results.

3. Results
3.1. Accuracy of Classification Models with Different Feature Combination Schemes

SPM classification models were developed using the training sample set based on RF,
SVM, and MLC algorithms with different feature combination schemes. The accuracy of
SPM identification results based on different methods was compared in Figure 3. MLC
showed the lowest performance in identifying SPM types, as indicated by its overall
accuracy, Kappa coefficient, and F1 score (no higher than 36%, 0.22, and 0.40, respectively).

https://www.python.org/
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The accuracy of MLC-based results did not improve with an increasing number of feature
variables, indicating that this algorithm was not applicable to the identification of SPM
types in the study area.
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Figure 3. Comparison of the (A) overall accuracy, (B) Kappa coefficient, and (C) F1 score of random
forest (RF), support vector machine (SVM), and maximum likelihood classification (MLC) models
based on different feature combination schemes for the identification of soil parent maternal types.
Gl—geological type, Gm—geomorphic type, E—elevation, S—slope, T—topographic wetness index,
N—normalised difference vegetation index, and L—land use type. For example, GlGmES represents
the geological type + geomorphic type + elevation + slope scheme.

The accuracy of the results based on RF and SVM algorithms using different feature
combination schemes showed consistent trends. Overall, the RF- and SVM-based results
obtained with the GlGmDS scheme showed the highest accuracy in terms of overall accuracy
(83.11% and 80.20%), Kappa coefficient (0.79 and 0.75), and F1 score (0.82 and 0.79). When
using single feature variables to identify SPM types, the highest accuracy was obtained
with geological type, followed by geomorphic type and elevation. When using two-
feature combinations, the identification accuracy obtained with the schemes, including the
geological type or geomorphic type, was higher than that obtained with other schemes.
The highest accuracy of RF- and SVM-based results was obtained using the GlGm scheme,
with overall accuracy of 73.72% and 74.57%, Kappa coefficients of 0.67 and 0.68, and F1
scores of 0.75 and 0.75, respectively.

On the basis of GlGm, more feature variables were added to obtain multi-feature com-
binations. The identification accuracy of SPM types with three-feature combinations was
considerably higher than that with single-feature variables and two-feature combinations.
Among the three feature combinations, the overall accuracy of the results obtained with
the GlGmE scheme was the highest. Therefore, more feature variables were continuously
selected for integration with GlGmE. When using the four-feature combinations, the best
results were obtained with the GlGmES scheme. Further selection of more feature variables
did not improve the identification accuracy and even compromised the accuracy compared
with GlGmES, which suggests that selecting too many feature variables would lead to
information redundancy.

The precision and recall of the results obtained by RF and SVM algorithms with differ-
ent feature combination schemes are compared in Figure 4. MLC was not considered here
because of its low overall accuracy. With respect to individual SPM types, the identification
results of RA, QRC, and RSWM based on the GlGmES-RF model showed the highest
precision and recall compared with the results obtained using other feature combination
schemes. Although several models had higher precision (recall) for LWM, MWM, and
GWM, their recall (precision) was lower than that of the GlGmES-RF model. In terms of
precision and recall, GlGmES was superior to other schemes in identifying various SPM
types. This confirmed that GlGmES was the optimal feature combination scheme for SPM
identification in the study area.



Remote Sens. 2024, 16, 91 10 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW  10  of  22 
 

 

feature combinations,  the  identification accuracy obtained with  the schemes,  including 

the  geological  type  or  geomorphic  type,  was  higher  than  that  obtained  with  other 

schemes. The highest  accuracy of RF-  and SVM-based  results was obtained using  the 

GlGm scheme, with overall accuracy of 73.72% and 74.57%, Kappa coefficients of 0.67 and 

0.68, and F1 scores of 0.75 and 0.75, respectively. 

On the basis of GlGm, more feature variables were added to obtain multi-feature com-

binations. The identification accuracy of SPM types with three-feature combinations was 

considerably higher than that with single-feature variables and two-feature combinations. 

Among the three feature combinations, the overall accuracy of the results obtained with 

the GlGmE scheme was the highest. Therefore, more feature variables were continuously 

selected for integration with GlGmE. When using the four-feature combinations, the best 

results were obtained with the GlGmES scheme. Further selection of more feature varia-

bles did not improve the identification accuracy and even compromised the accuracy com-

pared with GlGmES, which suggests that selecting too many feature variables would lead 

to information redundancy. 

The precision and recall of the results obtained by RF and SVM algorithms with dif-

ferent feature combination schemes are compared in Figure 4. MLC was not considered 

here because of its low overall accuracy. With respect to individual SPM types, the iden-

tification results of RA, QRC, and RSWM based on the GlGmES-RF model showed the 

highest precision and recall compared with the results obtained using other feature com-

bination schemes. Although several models had higher precision (recall) for LWM, MWM, 

and GWM, their recall (precision) was lower than that of the GlGmES-RF model. In terms 

of precision and recall, GlGmES was superior to other schemes in identifying various SPM 

types. This confirmed that GlGmES was the optimal feature combination scheme for SPM 

identification in the study area. 

 

Figure 4. Comparison of the precision and recall of random forest (RF) and support vector machine 

(SVM) models based on different feature combination schemes. (A–F) show the identification results 

of RA, QRC, RSWM, LWM, MWM, and GWM, respectively. 

While most models with different feature combinations were able to identify each of 

the six SPM types, a few models failed to identify all the six SPM types. For example, the 

Gl-RF model did not perform well in identifying RA at any validation sampling points. 

Similarly, the Gm-RF and Gm-SVM models failed to identify MWM, whereas the N-RF 

and N-SVM models were unable to identify RA, MWM, and GWM. Additionally, the GlL-

Figure 4. Comparison of the precision and recall of random forest (RF) and support vector machine
(SVM) models based on different feature combination schemes. (A–F) show the identification results
of RA, QRC, RSWM, LWM, MWM, and GWM, respectively.

While most models with different feature combinations were able to identify each of
the six SPM types, a few models failed to identify all the six SPM types. For example, the
Gl-RF model did not perform well in identifying RA at any validation sampling points.
Similarly, the Gm-RF and Gm-SVM models failed to identify MWM, whereas the N-RF and
N-SVM models were unable to identify RA, MWM, and GWM. Additionally, the GlL-RF
and GmL-RF models could not identify RA, MWM, and GWM. All these models used
single- or two-feature combination schemes, indicating that only specific SPM types can be
identified by integrating a small number of feature variables.

The performance of the three machine learning algorithms in SPM identification was
ranked as follows: RF > SVM > MLC. The MLC algorithm produced poor results with low
accuracy, whereas the SVM algorithm achieved higher accuracy than RF based on specific
feature combination schemes, such as GlGm. In other cases, the RF algorithm obtained
higher accuracy than the SVM algorithm, and the consistency of RF-based results for various
SPM types was higher than that of SVM-based results, indicating that the RF algorithm
had better applicability in SPM identification. Specifically, the mean values of overall
accuracy, Kappa coefficient, and F1 score for all SPM classification results obtained by RF
were 54.84%, 0.43, and 0.53, respectively; the mean values of the three SPM classification
results obtained by SVM were 52.28%, 0.41, and 0.52, respectively, and those of MLC were
27.01%, 0.15, and 0.26. The mean values of overall accuracy, Kappa coefficient, and F1
score obtained by GlGmES-RF were 83.11%, 0.79, and 0.82, and all three accuracy ratings
were greater than those of the other models. Comparing the precision and recall of the
recognition results of each matrix type, the three machine-learning models also present the
trend of RF > SVM > MLC.

So, comparing the results of 78 models based on 39 feature combination schemes
revealed that GlGmES was the optimal feature combination scheme for SPM identification,
with the GlGmES-RF model achieving the highest accuracy.
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Table 1 shows the training samples of GlGmES-RF and GlGmES-SVM were re-divided
randomly into training and testing sets in the ratio of 7:3, and the mean, standard deviation,
maxima and minima of overall accuracy and Kappa coefficients of the SPM classification
results were obtained after 100 times of training. From Table 1, we can learn that the
mean values of the overall accuracy of the classification results obtained by retraining
GlGmES-RF and GlGmES-SVM 100 times are 82.97% and 80.02%, which are 0.13% and
0.18% different from the original overall accuracy of the classification results obtained,
while the difference between the mean values of Kappa is 0.01. The standard deviation,
maximum and minimum values of overall accuracy for the classification results obtained
by retraining GlGmES-RF 100 times are 0.047%, 83.67% and 82.14%, and the standard
deviation, maximum and minimum values of Kappa are 0.019, 0.83, and 0.77, and the
difference between the standard deviation and the maximum and minimum values are all
smaller than the values in GlGmES-SVM. This indicates that the SPM classification results
obtained by GlGmES-RF show a lower level of uncertainty, and their stability is better than
that of the GlGmES-RF matrices classification results. It also indicates that the SPM types
mapping and validation utilizing these training and validation samples have a certain level
of representativeness and stability.

Table 1. Comparison of uncertainty assessment values of soil parent material (SPM) classification
results from GlGmES-RF and GlGmES-SVM.

Assessed Value
GlGmES-RF GlGmES-SVM

OA/% Kappa OA/% Kappa

Mean value 82.97 0.78 80.02 0.74
Standard deviation 0.047 0.019 0.053 0.023

Maximum value 83.67 0.83 81.13 0.71
Minimum value 82.14 0.77 79.12 0.78

3.2. Comparison of Conventional and Digital Maps of Parent Material Types

Given the poor accuracy of the MLC algorithm in identifying SPM types, only the
results based on RF and SVM algorithms with the GlGmES scheme were compared with the
conventional SPM-type map. Confusion matrices constructed based on the 586 validation
samples are shown in Figure 5. The overall accuracy of the conventional map was 57.00%,
and its Kappa coefficient was 0.47. The GlGmES-RF model obtained markedly improved
results in terms of overall accuracy (by 26%) and Kappa coefficient (by 0.31). The boundaries
of QRC, RSWM, MWM, and LWM were indistinct in the conventional map, with large
areas of confusion (Figure 5A). The GlGmES scheme supported the identification of SPM
types well. The GlGmES-RF model did not perform as well as the GlGmES-SVM model
in determining the fuzzy areas of QRC and LWM. In all other areas, the GlGmES-RF
model showed better performance in SPM identification compared with the GlGmES-SVM
model (Figure 5B,C).

As the conventional map (Figure 1B) was limited by mapping scale and manual
mapping technique, it could not display small patches or provide detailed information on
SPM types. Compared with the conventional map, the digital maps produced based on
the GlGmES-RF (Figure 6A) and GlGmES-SVM (Figure 6B) models had a finer resolution.
Both digital maps showed a reasonable number and distribution of patches, with clear
boundaries between patches of different SPM types. Comparing the two digital maps
revealed indistinct differences in the distribution of SPM types. Nevertheless, in the
map based on GlGmES-SVM, more patches were finely fragmented in some areas, and
this phenomenon was not prominent in the map based on GlGmES-RF. Moreover, the
accuracy of the GlGmES-RF model was slightly better than that of the GlGmES-SVM model.
Therefore, GlGmES-RF was selected as the optimal model for the identification of SPM
types in the study area. The key parameters of the GlGmES-RF model were as follows:
max_features = 4 and n_estimators = 500.
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Figure 6. Comparison of the distribution of soil parent material types in two digital maps based on
(A) GlGmES-RF and (B) GlGmES-SVM models.

Table 2 compares the area of different SPM types between the conventional map
based on a field survey and two digital maps based on machine learning models. Based
on the results obtained by the optimal GlGmES-RF model, the most widely distributed
SPM type was QRC, followed by RSWM, and the least distributed SPM type was GWM.
Specifically, QRC was found from west to east across the central part of the study area, and
RSWM mainly occurred in the northern part. LWM was primarily located in the southern
and central parts of the study area, with MWM only found in the central part. RA was
chiefly distributed near the banks of the Jinjiang River and its tributaries, whereas GWM
only existed in the highest peak area of southern Shanggao County. The area ratios of
various SPM types identified by the GlGmES-RF and GlGmES-SVM models did not differ
substantially. However, with regard to QRC and LWM, there were large discrepancies in
the conventional map compared with the two digital maps. Compared to GlGmES-RF,
the QRC changed from 17.85% to 29.10% and 34.57%, and LWM changed from 36.84%
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to 17.68% and 18.57%. This suggests there were large confusion areas of QRC and LWM
distribution in the conventional map, consistent with the pattern observed in Figure 5.

Table 2. Areas and ratios of different soil parent material (SPM) types in the study area based on
digital and conventional mapping.

SPM Type
GlGmES-RF GlGmES-SVM Conventional Map

Area/hm2 Ratio/% Area/hm2 Ratio/% Area/hm2 Ratio/%

River alluvium 12,608.64 9.35 11,485.53 8.52 9833.27 7.29
Quaternary red clay 39,238.11 29.10 46,607.40 34.57 24,062.67 17.85

Red sandstone weathered
material 36,601.29 27.15 36,410.31 27.01 30,928.41 22.94

Limestone weathered material 23,836.50 17.68 25,039.08 18.57 49,662.79 36.83
Weathered mudstone material 18,467.91 13.70 12,087.27 8.97 17,192.53 12.75

Granite weathered material 4074.21 3.02 3197.07 2.37 3147.00 2.33

3.3. Feature Importance for Parent Material Identification

The distribution of feature importance for SPM identification was obtained using
SHAP (Figure 7). In the GlGmES-RF model with the optimal feature combination, the
relative importance scores of feature variables for the overall performance of SPM identifi-
cation were ordered as geological type (100%) > geomorphic type (78%) > elevation (67%) >
slope (54%). However, these feature variables did not contribute greatly to the identifica-
tion of all SPM types. RSWM, LWM, MWM, and GWM identification were prominently
influenced by geological type. Elevation mainly contributed to GWM identification, and
geomorphic type played a leading role in RA identification. Although QRC identification
was strongly influenced by the geological type, elevation and slope also contributed to this
identification process.
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In the GlGmESTNL-RF model with the full feature combination, the relative impor-
tance scores of feature variables to the overall performance of SPM identification were
ordered as geological type (100%) > geomorphic type (74%) > elevation (60%) > slope
(49%) > land use type (30%) > NDVI (25%) > TWI (21%; Figure 7B). The first four feature
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variables showed consistent contribution to SPM identification as observed in the GlGmES-
RF model. The relative importance scores of land use type, NDVI, and TWI were more
than 30% each, indicating their non-significant role in identifying various SPM types in the
study area.

4. Discussion
4.1. Contribution of Feature Variables to Soil Parent Material Classification

In this study, the selected feature variables made different contributions to county-level
SPM identification in a hilly area based on machine learning algorithms, mainly because of
the differences in the formation process of various SPM types [50]. RSWM, LWM, MWM,
and GWM are residual parent materials derived from in situ rock weathering without
transport, which means that rock type determines these SPM types [31]. Consequently,
these SPM types are tied closely to the lithology information contained in geological
type [51]. Additionally, GWM mainly occurs in mountainous areas with an elevation above
800 m, where elevation has a prominent effect on SPM identification. RA is principally
formed in alluvial plains and larger gully basins, with the geomorphic type having a
strong influence on SPM formation [52]. QRC consists of ancient residual and alluvial
deposits formed in the Quaternary–Pliocene period. The distribution of residual material
can be directly indicated by geological type, whereas alluvial material is transported from
other areas and usually distributed in low hills and gentle slopes [53,54]. Therefore, QRC
identification is in closely association with geological type, elevation, and slope.

Among the seven feature variables extracted from different data sources, geological
type, geomorphic type, elevation, and slope could well explain the distribution patterns of
SPM types in the study area. The major rock type in Shanggao County is red sandy shale,
which is responsible for RSWM formation. The landform here is dominated by hills, and
red clay is likely to accumulate on gentle slopes, leading to QRC formation. Due to the
influence of water flow, the Jinjiang River and its tributaries form alluvial plains, which
support RA development. High mountains with an elevation of more than 800 m are only
found in the southern part of Shanggao County, where GWM results from the dominant
rock type—granite. Deciphering the relationship between these feature variables and SPM
types is essential for the sustainable exploitation of soil resources. In the case of Shanggao
County, the distribution area of RA provides favourable soil water and fertility conditions
for planting major crops such as rice, whereas other SPM types, including RSWM and
GWM, are mainly distributed in mountainous and hilly areas suitable for tree planting.

There are possible differences in TWI, NDVI, and land use type with various SPM
types. However, TWI only changes at large scales, whereas in small regions (especially
hilly areas), the difference in topography is more evident. While the present study only
used a single-phase remote sensing image to obtain NDVI, multi-phase remote sensing
images are often required to link this variable to SPM types [55–57]. Land use types vary in
many areas as a result of anthropogenic activities, with SPM having a limited impact. This
study was conducted in a county where TWI, NDVI, and land use type did not characterise
the differences among various SPM types well. Consequently, the identification accuracy
of SPM types did not improve and was even compromised by continuously adding more
feature variables to the GlGmES scheme. Our findings are in agreement with the results of
Mello et al. [6], which used the RF algorithm with remotely sensed and topographic factors
(elevation, slope, and TWI) for SPM classification. Among them, elevation was the most
important topographic variable [5], whereas TWI contributed the least to SPM classification.

RA is associated with long-term water scouring and sediment transport in rivers. These
processes need to be monitored over a long time span. Due to limited data availability,
feature variables related to river hydrology were not selected in this study. Additionally, a
growing number of studies have used multi-spectral or hyper-spectral remote sensing data
for SPM identification [58,59]. This study only used a single-phase remote sensing image
for the extraction of NDVI and land use type. Future studies should extract relevant feature
variables from multi-source and multi-phase remote sensing images combined with other
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data sources [60]. In this study, the feature variables were obtained and screened from
topography hydrology and combined with the SPM-type characteristics of the study area,
were screened using the SEaTH (Separability and thresholds) algorithm [61], which is more
effective in classifying SPM, were retained for the study. Other feature variables, such as the
hydrological distance to the nearest stream and aspect, although they have a certain effect
on the identification of SPM, were not as effective as TWI and Slope in the context of the
present study area. Therefore, these two feature variables were not considered. In addition
to the seven feature variables examined in this study, there may be other relevant variables
for SPM identification, including land use type and NDVI. It may be helpful to add these
feature variables associated with SPM formation to the model in a reasonable manner to
improve the accuracy of SPM identification. Further exploration of feature selection can
enable more accurate mapping of SPM types.

4.2. Comparison of Different Methods for Mapping of Soil Parent Material Types

In this study, the RF algorithm outperformed SVM and MLC algorithms in the county-
level identification of SPM types in a hilly area, consistent with previous studies [58,59].
Since RF-based prediction is the sum of per-tree predictions, this model fully depicts the
relationship between each SPM type and feature variables. The RF model takes advantage
of this modelling structure to achieve accurate identification of SPM types [62]. Compared
with RF, SVM is more sensitive to data scaling [63]. Both geological type and geomorphic
types are discontinuous data with data jumps even after normalisation. When the dataset
contains an unbalanced number of samples of different types, SVM is likely to predict the
SPM type with a higher sample number [64]. Since the number of our training samples for
various SPM types was markedly different, SVM cannot reach the same accuracy as RF for
SPM identification.

The running time of all the models was considerably different during model training.
The training time of RF-based models was between 37–421 s, with a mean of 128 s. The
training time of SVM-based models was between 86–1824 s, with a mean of 537 s. Although
some models were run for too long, possibly due to other factors of the workstation, SVM-
based models generally required longer time for training than RF-based models. If two
SPM types are scattered in space, it would be difficult to distinguish between them based
on the SVM classification hyperplane [65], and a fragmented map of SPM types would be
easily produced during the identification process. This explains why the results from the
GlGmES-SVM model contained fragmented patches, in contrast with the results from the
GlGmES-RF model. MLC has limited ability for deep data mining since it can only classify
SPM types with high probability based on the information of training samples [66,67].
Thus, the performance of MLC in identifying SPM types is extremely poor. Furthermore,
this study attempted to identify SPM types using a convolutional neural network, a deep
learning method [68]. The results were even inferior to MLC-based results due to factors
such as an insufficient number of training samples.

This study predicted and mapped SPM types in a hilly area based on the principle of
digital soil mapping [3]. The relationship between SPM types and environmental feature
variables was explored by modelling coupled with spatial and mathematical analyses. This
represents a modern technological system that is different from the conventional mapping
of SPM types. Feature variables related to the formation of SPM types or indicative of
SPM differences were used to construct models based on machine learning algorithms and
then generate digital raster maps. The obtained results can characterise spatial variation
in the distribution of SPM types in a precise and detailed way. Moreover, the proposed
method for high-accuracy county-level SPM mapping inherits the advantages of digital soil
mapping, such as its low cost, high recordability, ease of updating, outstanding efficiency,
objective consistency, and reliable mapping results [69,70].
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4.3. Error Sources and Study Limitations

The accuracy of automatic SPM identification using machine learning algorithms is
highly dependent on the quality and resolution of the input data, including geological
maps, geomorphic maps, DEMs, and remote sensing imageries. Errors or uncertainties in
these datasets can propagate into the SPM identification process, thus affecting the accuracy
of the outcomes. Using alternatives of data sources with higher accuracy or lower error is a
way to improve the accuracy of the mapping; for example, DEMs from different sources
are not equally accurate in different areas. The DEM data used in this study was ASTER
GDEM, and future studies may consider using AW3D30, which has a higher accuracy in
hilly areas [71] and may improve the accuracy of the results of SPM-type identification.

Selecting representative sampling points has always been a major difficulty in soil
mapping [72]. This study collected 586 field validation samples based on stratified random
sampling. Despite considering each soil type, land use type, geological type, elevation
interval, and geomorphic type, the distribution of validation sampling points still cannot
fully represent the change of SPM types throughout the whole study area. This would also
lead to the deviation of the validation results from the actual results [8]. How to set up a
better representative sample distribution map is worth exploring in depth.

This study compared three machine learning algorithms (RF, SVM, and MLC) for SPM
identification and found that RF outperformed the other two algorithms. However, the
performance of different algorithms would vary depending on the specific characteristics
of the study area and data sources. Choosing other algorithms or combining methods may
produce inconsistent results. For example, the convolutional neural network (CNN), which
has good applications in remote sensing, ecology, and soil [68,73,74], can be considered for
SPM identification in the future.

Shanggao County is a typical hilly area in southern China, with both plains and
low hills. Its SPM types include impact matrices, residual matrices, and slope matrices.
The method described in this study (i.e., GlGmES-RF) is applicable to counties with a
similar SPM genesis as Shanggao County. However, for other counties, there may be
more appropriate feature variables and better classification algorithms. Therefore, more
universal and applicable methods for county-level SPM mapping still need to be developed
in future research.

5. Conclusions

This study established an accurate county-level method for SPM mapping in hilly
areas using machine learning and optimised feature combinations. The GlGmES-RF model
achieved >83% accuracy in SPM identification and outperformed conventional mapping.
Geological type, geomorphic type, elevation, and slope were identified as key explanatory
variables related to SPM formation processes.

The RF algorithm proved superior to SVM and MLC for detailed and consistent
SPM identification. Optimisation of feature selection prevented information redundancy
from declining model performance. The digital SPM maps generated at fine resolutions
captured spatial variability in the distribution of SPM types more effectively than the
conventional map.

This research contributes a robust framework transferring the principles of digital soil
mapping to SPM-type mapping. Practically, the findings are helpful to rational land use
planning by elucidating soil–terrain relationships. The digital datasets can also enable more
precise agriculture and ecological monitoring.

Future work should integrate multi-phase remote sensing images and in situ soil
property data to strengthen multi-variate modelling. Advancing feature engineering feature
selection with topographic wetness indices or colour ratios may enhance SPM classification.
Applying the proposed method across larger regions could validate its generalizability.

Overall, the machine learning method developed in this study presents an accurate
and efficient solution to address SPM classification challenges in hilly areas. As digital
soil information becomes increasingly important, this research provides the foundation for
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producing standardised large-area SPM maps that support sustainable land management.
Continued methodological refinement will realise the full potential of digital soil mapping
for precision agriculture and environmental applications.

Author Contributions: Writing—original draft, X.Z.; Writing—review & editing, X.Z., Y.J., W.L., J.G.,
Q.Z. and H.Z.; Project administration, X.G.; Funding acquisition, X.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the National Key Research and Development Program of
China Project (grant number: 2022YFD1900601-4).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

NDVI—Normalised difference vegetation index; MLC—Maximum likelihood classification;
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Appendix A

Table A1. Soil parent material (SPM) classification model training parameter information.

Feature
Combination

RF SVM MLC

n_estimators max_features class_weight max_iter probability_threshold

Gl 565 6 1 1200 0.59
Gm 586 4 1 1200 0.68
E 475 5 1 1200 0.55
S 507 4 1 1200 0.68
T 519 4 1 1200 0.59
N 583 6 1 1200 0.66
L 440 6 1 1200 0.59

GlT 513 6 1 1300 0.70
GlE 551 7 1 1300 0.70
GlS 560 3 1 1300 0.66
GlT 482 4 1 1300 0.62
GlN 477 6 1 1300 0.67
GlL 532 3 1 1300 0.64

GmE 476 3 1 1300 0.63
GmS 474 5 1 1300 0.62
GmT 446 4 1 1300 0.54
GmN 479 3 1 1300 0.55
GmL 563 6 1 1300 0.58
ES 465 6 1 1300 0.53
ET 470 5 1 1300 0.56
EN 401 4 1 1300 0.67
EL 488 7 1 1300 0.76
ST 558 5 1 1300 0.71
SN 595 7 1 1300 0.75
SL 479 7 1 1300 0.65
TN 414 6 1 1300 0.75
TL 595 7 1 1300 0.70
NL 413 5 1 1300 0.72

GlGmE 469 3 1 1400 0.77
GlGmS 586 3 1 1400 0.67
GlGmT 491 4 1 1400 0.66
GlGmN 528 6 1 1400 0.68
GlGmL 556 5 1 1400 0.69

GlGmES 500 4 1 1400 0.70
GlGmEN 422 4 1 1400 0.68
GlGmEL 504 5 1 1400 0.65

GlGmESN 479 3 1 1300 0.70
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Table A1. Cont.

Feature
Combination

RF SVM MLC

n_estimators max_features class_weight max_iter probability_threshold

GlGmESL 488 4 1 1300 0.72
GlGmESTNL 493 5 1 1300 0.75

Gl—geological type, Gm—geomorphic type, E—elevation, S—slope, T—topographic wetness index,
N—normalised difference vegetation index, and L—land use type. For example, GlGmES represents the geo-
logical type + geomorphic type + elevation + slope scheme.
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