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Abstract: The joint use of hyperspectral image (HSI) and Light Detection And Ranging (LiDAR)
data has been widely applied for land cover classification because it can comprehensively represent
the urban structures and land material properties. However, existing methods fail to combine the
different image information effectively, which limits the semantic relevance of different data sources.
To solve this problem, in this paper, an Attention-guided Fusion and Classification framework based
on Convolutional Neural Network (AFC-CNN) is proposed to classify the land cover based on
the joint use of HSI and LiDAR data. In the feature extraction module, AFC-CNN employs the
three dimensional convolutional neural network (3D-CNN) combined with a multi-scale structure
to extract the spatial-spectral features of HSI, and uses a 2D-CNN to extract the spatial features
from LiDAR data. Simultaneously, the spectral attention mechanism is adopted to assign weights
to the spectral channels, and the cross attention mechanism is introduced to impart significant
spatial weights from LiDAR to HSI, which enhance the interaction between HSI and LiDAR data
and leverage the fusion information. Then two feature branches are concatenated and transferred
to the feature fusion module for higher-level feature extraction and fusion. In the fusion module,
AFC-CNN adopts the depth separable convolution connected through the residual structures to
obtain the advanced features, which can help reduce computational complexity and improve the
fitting ability of the model. Finally, the fused features are sent into the linear classification module for
final classification. Experimental results on three datasets, i.e., Houston, MUUFL and Trento datasets
show that the proposed AFC-CNN framework achieves better classification accuracy compared with
the state-of-the-art algorithms. The overall accuracy of AFC-CNN on Houston, MUUFL and Trento
datasets are 94.2% , 95.3% and 99.5%, respectively.

Keywords: hyperspectral images; Light Detection And Ranging (LiDAR) data; fusion and classification;
convolutional neural network; attention mechanism

1. Introduction

Land cover classification of remote sensing images is a fundamental task for earth
observation, which allows the accurate identification of materials on the surface. With the
rapid advancement of geospatial information technology, remote sensing images are char-
acterized with heterogeneous and multi-source data, which can provide complementary
information for land-cover observation [1–3]. Among various multi-source data, hyper-
spectral images (HSIs) contain rich spectral information of the land objects because of
their broad spectral dimension. However, the spatial resolution of HSIs is typically low,
making them less effective in distinguishing materials with similar spectral responses [4,5].
Different from HSIs, Light Detection And Ranging (LiDAR) data offers detailed elevation
information and is less affected by atmospheric interference and environmental changes.
Nevertheless, LiDAR data can not distinguish between materials of the same height [6].
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Given the different properties of HSI and LiDAR data, the joint use of HSI and LiDAR data
can be more effective in differentiating objects and urban structures compared to using
single-source data. This integration of HSI and LiDAR has found widespread application
in the field of land-cover classification for remote sensing images [7–10].

Due to the heterogeneous properties of HSI and LiDAR data, extracting sufficient
joint features and establishing complementary connections for accurate classification has
become a considerable challenge [11–13]. In the last decades, many attempts have been
made to improve the classification performance based on the fusion of HSI and LiDAR
data. To fully explore the information of HSI and LiDAR data, various strategies for
feature extraction have been adopted. A simple way is to stack elevation and intensity
features of LiDAR as additional channels to the spectral bands of HSI, thus forming an
extended feature vector for classification [14,15]. For example, in [16], Puttonena et al.
fused LiDAR-derived and hyperspectral features and employed support vector machine
(SVM) as a classifier for tree species classification. In [17], Pedergnana et al. employed
two extended attribute profiles (EAPs) to extract features for multispectral and LiDAR
images, respectively, realizing a fusion of the spectral, spatial and elevation information.
Then two EAPs were concatenated into one stacked vector and classified by random forest
and SVM classifiers. In [18], Ghamisi et al. utilized the extinction filter to extract spatial
and contextual information of both hyperspectral and LiDAR features, and then adopted
a random forest classifier to handle high feature redundancy. These approaches have
demonstrated better classification performance compared to the methods using single-
source datasets. However, the simple stacked-feature approach is not powerful enough to
interpret the inherent features of image data since it may contain redundant information [8].
Additionally, considering the classification techniques, traditional SVM-based and decision
tree-based classification techniques cannot handle complex multi-classification of terrain
materials effectively. This is because the SVM is not good at weighting heterogeneous
features since it regards all features equally and the decision tree is time-consuming [19].
These results limit the applicability of classification performance for HSI and LiDAR data.

Another feature extraction strategy is adopting a dual-branch architecture with a
deep learning-based framework. Deep learning-based methods have shown superior
performance in remote sensing image fusion and classification tasks due to the powerful
feature learning ability of the convolutional neural networks (CNNs) [20–22]. For the
dual-branch architecture, the features of HSI and LiDAR are first extracted in parallel of
each branch, then these features are concatenated and used as a fusion representation for
image data. Finally, the fused features are transferred to a classifier for further classification.
For example, Xu et al. [20] proposed a two-branch deep CNN framework for multisource
remote sensing data classification and achieved encouraging classification results. The
network adopted 2D and 1D convolution operators to extract features from surrounding
neighbors and to enhance the spectral information. Then a deep network including cascade
blocks is designed to extract features from data. Huang et al. [23] used a two-branch
CNN to extract both spatial and spectral features of high spatial resolution multispectral
images for land-use classification. Feng et al. [24] utilized a residual block in HSI branch
and a LiDAR branch to extract hierarchical, parallel, and multiscale features. Then an
adaptive-feature fusion module based on the squeeze-and-excitation network was used
to integrate the HSI and LiDAR features. However, the HSI feature extraction branch of
these methods often use 2D-CNNs, which can only capture spatial features of HSI and
ignore the spectral information from the original data, leading to poor feature fusion quality.
Although 3D-CNN was also employed to extract spectral features from HSI [25–27], the
classification results are still unsatisfactory. This is because the traditional 3D-CNNs can
only extract features within a fixed-size range around the same pixel, limiting its feature
extraction capability and hindering the classification performance [28]. Moreover, the
dual-branch CNNs only realize fusion by concatenating features and do not consider the
semantic relation between multisource data.
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To tackle this issue, multi-branch networks combined with attention mechanisms for
HSI-LiDAR data fusion have been developed to reduce the information loss in the fusion
process. For example, in [29], Mohla et al. introduced an attention-based multimodal
fusion network for land-cover classification to improve the classification performance,
named as FusAtNet. The framework used a self-attention mechanism to extract spectral
features in HSI and adopted a cross attention mechanism in LiDAR data to derive an
attention mask, which can enhance the spatial features of HSI modality. In [30], the authors
designed a dual-channel A3CLNN network which contains modules of spatial attention,
spectral attention, multiscale residual attention and a three-level fusion strategy. In [31],
Li et al. proposed a triplet semi-supervised deep network (TSDN) for fusion classification
of HSI and LiDAR, where a 3D cross attention block is designed for extracting spatial
complementarity of HSI and LiDAR. In [10], Wang et al. proposed a novel multi-attentive
hierarchical fusion net (MAHiDFNet) to realize the feature-level fusion and classification.
In this paper, a triple branch HSI-LiDAR CNN backbone was first developed to extract the
spatial features, spectral features and elevation features of the land-cover objects, and then a
modality attention module was designed for feature interaction and integration. The above
fusion classification algorithms demonstrate that the spatial or spectral attention models
can improve feature representation capability and classification performance. However,
the above frameworks often require massive parameters and a high computational burden.

To overcome the limitations of existing algorithms, in this paper, we propose a novel
Attention-guided Fusion and Classification framework based on Convolutional Neural
Network (AFC-CNN) for the land cover classification via the joint use of HSI and LiDAR
data. Unlike previous 2D-CNN and traditional 3D-CNN approaches, our proposed AFC-
CNN adopts an innovative 3D-CNN architecture that incorporates a multi-scale structure
to extract multiscale spatial-spectral features from HSI. Moreover, the spectral attention
mechanism and cross attention mechanism are introduced to enhance the inherent corre-
lation between HSI and LiDAR. In the feature fusion extraction module, we design six
layers of depth separable convolutional layers and connect them with residual structures
to minimize data loss during backward propagation. The depth separable convolution
can significantly reduce computational complexity compared with traditional 2D-CNNs,
making it more efficient while maintaining reasonable performance.

Collectively, the main contributions of this paper can be summarized as follows:

• We design a dual-branch CNN fusion classification network named as AFC-CNN,
which consists of a 2D-CNN for spatial features extraction in LiDAR data, and a novel
3D-CNN incorporated with a multi-scale structure for spatial-spectral features in HSI.

• AFC-CNN utilizes the spectral attention mechanism to strengthen the important
features from spectral channels of HSI. Additionally, a cross attention mechanism
module is introduced to enhance the inherent correlation between HSI and LiDAR.

• In the feature fusion module, AFC-CNN employs the depth separable convolutions
connected through residual structure to extract the advanced features of the fusion
information. Compared with the traditional 2D-CNN, the use of depth separable
convolutions reduces computational complexity while maintaining high performance.

• Experimental results demonstrate that, the proposed algorithm AFC-CNN is more
effective than the state-of-the-art methods in terms of the evaluation metrics and
visual effects.

The remainder of the paper is organized as follows. Section 2 describes the details
of the proposed classification framework. Section 3 shows the experimental results and
analyzes the performance of the proposed method. Section 4 concludes this paper.

2. Proposed Fusion and Classification Framework

The framework of the proposed AFC-CNN algorithm is shown in Figure 1, which
includes five main modules: HSI feature extraction module, LiDAR feature extraction
module, attention mechanism module, feature fusion module, and linear classification
module. In this section, we will introduce each module in detail.
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Figure 1. The framework of AFC-CNN.

2.1. HSI Feature Extraction Module

As previously stated, traditional 3D-CNN-based multimodal data fusion classification
models can extract the spatial-spectral feature information of HSI. However, the conven-
tional 3D-CNN can not extract enough global information of the image since it only extracts
information within a fixed-size range. In this paper, we employ a multi-scale structure to
improve the feature extraction capability of the 3D-CNN, which can help extract higher
level semantic features.

Given an HSI XH ∈ RSh×Sw×B, where Sh and Sw represent the height and width of
the image, respectively, and B is the number of spectral bands of the HSI. For a certain
point (x, y) of the HSI, we first crop a small cube centered around the point, denoted as
xH ∈ Rp×p×B. The cube size p is empirically set as 15 in this paper. After that, xH are
fed into a 3D convolutional layer to extract spatial-spectral features. Then, the extracted
features are connected with two consecutive multi-scale feature extraction structures for
more comprehensive feature extraction. As shown in Figure 2, the multi-scale structure
includes three convolutional kernel sizes: 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5, which can
sufficiently capture higher level spatial-spectral features of pixels. For each convolutional
layer, a Batch Normalization (BN) layer is incorporated to regularize and accelerate the
training process, and a Rectified Linear Unit (ReLU) is followed to learn a nonlinear
representation. Finally, the extracted spatial-spectral features are transferred into the
spectral attention mechanism module.

Figure 2. The framework of multi-scale structure.

2.2. LiDAR Feature Extraction Module

Given a LiDAR data XL ∈ RSh×Sw , similarly, we crop XL into image block xL ∈ Rp×p

and transfer it to the LiDAR feature extraction module. In the LiDAR feature extraction
module, three 2D-CNNs with a kernel size of 3× 3 are employed for feature extraction. The
extracted LiDAR features are then concatenated with an HSI feature extraction branch for
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the feature fusion module. The overall parameter configurations of the feature extraction
modules of HSI and LiDAR data are shown in Figure 3.

Figure 3. Overall parameter configurations of feature extraction modules of HSI and LiDAR data in
the designed AFC-CNN network.

2.3. Attention Mechanism Module

In previous multimodal data fusion classification networks, feature extraction was
performed independently on each data branch. These networks did not facilitate the
interactions to share high-level features between different modalities, leading to a low
quality of feature fusion and classification performance. Therefore, in this paper, we first
introduce the spectral attention mechanism module to allocate weights of spectral channels
in HSI. Then the cross attention mechanism is incorporated to enhance the correlation
between HSI and LiDAR data, which extracts attention masks from LiDAR data and
subsequently employs them to enhance the representation of HSI spatial features. The
whole framework of the attention mechanism module is depicted in Figure 4.

In the spectral attention mechanism module, the input feature F ∈ RH×W×D is the
spatial-spectral feature extracted from the HSI feature extraction module. We first perform
the global maximum pooling and the global average pooling operations to generate two
spatial context features: Fc

avg and Fc
max. Then the two feature vectors are transferred into a

shared multi-layer perceptron (MLP) layer, which conducts deep-level feature extraction
through a two-layer CNN. The outputs are aggregated and directed into a sigmoid clas-
sification unit to produce the spectral attention features Ms ∈ R1×1×D. The calculation
process of this module can be represented as follows [32]:

Ms(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
, (1)

where F is the input spatial-spectral feature and σ denotes the sigmoid function:
σ(x) = 1

1+exp(−x) , Fc
avg and Fc

max denote the data after global average pooling and global

maximum pooling, W0 ∈ RD/r×D and W1 ∈ RD×D/r represent the weights of the two con-
volutional layers in the shared MLP layer, where r is the reduction ratio. Ms(·) represents
spectral attention results.
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Figure 4. The framework of the attention mechanism module.

In the cross attention mechanism module, the input data is LiDAR image block xL. As
illustrated in Figure 4, this module consists of six 2D convolutional layers, of which the
convolutional layers are sequentially followed by a BN layer and a ReLU layer. These layers
adopt a dense connection strategy for backward propagation. The input LiDAR block is
transformed into weighted attention map and then multiplied with weighted HSI spectral
channels. Thus, the cross attention mechanism module can reinforce the interaction ability
of HSI and LiDAR and share the high-level features between them.

2.4. Feature Fusion Module

The feature fusion module can extract higher-level features from the fused data, and
enhance the correlation between different modalities. In this module, we replace the
traditional 2D-CNN with depthwise separable convolutions to reduce the computational
complexity and improve the nonlinear fitting ability of the model. Moreover, we design
six convolutional layers in the feature fusion module with residual connections between
them, which can reduce data loss via backward propagation and improve the quality of
data fusion. The framework of the feature fusion module is illustrated in Figure 5.

The sketch maps of standard convolution and depthwise separable convolution are
shown in Figure 6. In Figure 6b, we can observe that depthwise separable convolutions con-
sist of two key components: depthwise (DW) convolution and pointwise (PW) convolution.
The DW convolution is employed for each channel of the input feature map, with each
channel only convolved by one specific convolutional kernel. Subsequently, the outputs of
DW convolutional kernels go through the PW convolution to obtain the final output, which
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allows for flexibility in adjusting the number of output channels and facilitates the fusion
of channel results.

Figure 5. The framework of the feature fusion module.

Figure 6. The sketch map of standard convolutions and depthwise separable convolutions. (a) Stan-
dard convolution; (b) depthwise separable convolution.

Assuming that the size of input feature is K × K × N, the size of the convolution kernel
is DK × DK × N, the number of kernels is M and the stride is 1. So the number of the
floating point operations (FLOPs) of standard convolution is:

K × K × DK × DK × N × M. (2)

For depthwise separable convolution, the number of FLOPs is:

K × K × DK × DK × N + K × K × N × M. (3)

The ratio of computational complexity between standard convolution and depthwise
separable convolution is:

K × K × DK × DK × N + K × K × N × M
K × K × DK × DK × N × M

=
1
M

+
1

D2
K

. (4)

Thus, the computational complexity of the depthwise separable convolution is significantly
lower compared to the standard convolution.

2.5. Linear Classification Module

After the feature fusion module, the extracted high-level features are vectorized to
a one-dimensional vector and transferred to the linear classification module for the final
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classification. The framework of the linear classification module and the corresponding
parameters are shown in Figure 7. It can be observed that, the linear classification module
comprises three fully connected layers, which establishes the association between the input
data and the corresponding labels through feature mapping. To mitigate overfitting, a
dropout layer is employed with a dropout rate set to 0.5 in this module.

Figure 7. The framework of the linear classification module.

3. Experimental Results and Analysis

In this section, we conduct experiments on a variety of datasets to test the performance
of the proposed AFC-CNN algorithm for HSI and LiDAR data fusion and classification. We
first employ an ablation experiment to verify the effectiveness of the proposed AFC-CNN
framework. Then, we compare the AFC-CNN algorithm with the traditional SVM method,
an advanced CNN model FusAtNet [29] along with their corresponding model based on
HSI alone. The experimental datasets, parameters and results are presented in detail.

3.1. Datasets

In the experiment, three public datasets serve as benchmarks for evaluating the
performance: Houston2013, MUUFL, and Trento. The detailed information of these datasets
are listed in Table 1.

Table 1. Description of datasets used in the experiments.

Dataset Pixel No. Sample No. Class No. Sensor Type Wavelength Spatial
Resolution Band No.

Houston2013 664845 15209 15
HSI 0.38 µm–1.05 µm 2.5 m 144

LiDAR / 2.5 m 1

MUUFL 71500 53687 12
HSI 0.38 µm–1.05 µm 0.54 m × 1 m 64

LiDAR 1.06 0.6 m × 0.78 m 2

Trento 99600 30214 6
HSI 0.42 µm–0.99 µm 1 m 63

LiDAR / 1 m 1

(1) Houston Dataset: this dataset was acquired by ITRES CASI-1500 sensor over the
University of Houston campus and its neighboring urban area. The Houston2013 dataset
was provided to participants in the 2013 IEEE GRSS Data Fusion Contest [33]. It consists
of HSI and LiDAR data, both of which have a spatial size of 349 × 1905 (total 664,845)
pixels with a spatial resolution of 2.5 m. The HSI data contains a total of 144 spectral
bands. In total, 15,029 pixels of this dataset have been labeled as samples, including 15 land
cover classes, such as grassland, artificial turf, residential areas, commercial areas, etc. The
dataset presents significant challenges for classification tasks due to the large number of
unlabeled data points and the scattered distribution of labeled sample points throughout
the spatial domain.

(2) MUUFL Dataset: this dataset was captured by an airborne hyperspectral sensor
in the Gulfport National Park, located in the southern Mississippi Gulf Coast [34]. The
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spatial size of HSI and LiDAR data is 325 × 220 (total 71,500) pixels. The spatial resolution
of the HSI data and the LiDAR data are 0.54 m × 1 m, and 0.6 m × 0.78 m, respectively. The
initial HSI data consists of 72 spectral bands, but the first four and last four bands are with
noise contamination. So, in the experiment, the remaining 64 spectral bands of HSI data
are considered for the classification. The dataset consists of 12 land cover classes, including
trees, roads, sidewalks, etc.

(3) Trento Dataset: this dataset was collected over a rural area in the south of city of
Trento, Italy [35]. The LiDAR data was acquired by the Optech ALTM 3100EA sensor, and
the HSI data was acquired by the AISA Eagle sensor. Both of them have the spatial size
of 166 × 600 (total 99,600) pixels with a spatial resolution of 1m. The HSI data consists
of 63 bands covering the range from 0.42 µm to 0.99 µm. The dataset has 30,214 pixels
that are labeled as samples, including six land cover classes, such as apple trees, buildings,
roads, etc.

3.2. Evaluation Criteria

We analyze the classification performance of the proposed method and the comparison
algorithms according to four metrics: the overall accuracy (OA), the average accuracy
(AA), the Kappa coefficient (Kappa) and the per-class accuracy [36]. OA shows a global
perspective on accuracy, and it is derived by the ratio of correctly classified pixels to the
total number of pixels as follows:

OA =
∑C

i=1 xi,i

Ns
, (5)

where C is the number of samples classified correctly, Ns is the number of total samples, and
xi,i denotes diagonal elements of the confusion matrix, which are the correctly predicted
samples. AA denotes the average accuracy across all classes, and it can be calculated as:

AA =
1
C

C

∑
i=1

xi,i

Ni
, (6)

where Ni represents the total number of each class samples. Kappa measures the percentage
of agreement beyond chance, and ranges from 0 for agreement consistent with chance to 1
for perfect agreement with ground truth. The Kappa is computed as:

Kappa =
Ns ∑C

i=1 xi,i − ∑C
i=1(xi,+ × x+,i)

N2
s − ∑C

i=1(x+,i × xi,+)
, (7)

where xi,+ denotes the number of ground truth samples for each class, and x+,i means
the number of predicted samples for each class. The per-class accuracy assesses the per-
formance on individual classes. The higher OA, AA and Kappa value indicates a better
classification performance.

3.3. Experimental Setting

In the experiment, we select 10% of the data from the dataset as the training set, and
the remaining data as the test set to verify the effectiveness of the proposed AFC-CNN. For
FusAtNet, we also select 10% of the samples for training and the remaining samples for
testing. For SVM, we choose 30% of the data as the training set empirically. This is because
SVM is a traditional machine learning algorithm that requires a large number of training
samples to achieve a good classification accuracy.

In the training process, a different learning rate controls the convergence rate of the
objective function and the network performance. The learning process is implemented by
using the Adam optimizer for 100 epochs, and the initial learning rate is set as 0.005. The
parameters of the comparison methods are default. The detailed parameter settings of each
method are summarized in Table 2.
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Table 2. Detailed parameters setting of each methods.

Method Parameters Setting

AFC-CNN

Training set: 10% of the datasets,
Test set: 90% of the datasets,

Patch size: 15 × 15, learning rate: 0.005,
training epochs: 100

SVM Training set: 30% of the datasets,
Test set: 70% of the datasets

FusAtNet

Training set: 10% of the datasets,
Test set: 90% of the datasets,

Patch size: 11 × 11, learning rate: 0.000005,
training epochs: 1000

The experimental platform is based on Python 3.8 with the TensorFlow-GPU frame-
work. In the training process, the Adam [37] optimizer is utilized to optimize the model
training. All experiments are implemented on an Intel(R) Core(TM) i9-11900 @2.50 GHz
and an NVIDIA GeForce RTX 3090 with 128 GB memory.

3.4. Ablation Experiment

In this section, we conduct the ablation experiment to verify the effect of the multi-
scale structure in the HSI feature extraction module, the cross attention mechanism module,
the depthwise separable convolution and residual structure in the feature fusion module.
The experimental comparison results are shown in Table 3.

For multi-scale structure in the HSI feature extraction module, we compare the clas-
sification results by replacing the multi-scale structure with traditional 3D convolutional
layers. The kernel size of the traditional 3D convolution is set as 3 × 3 × 3. The kernel
sizes of the multi-scale structure are set as 1 × 1 × 1, 3 × 3 × 3 and 5 × 5 × 5, respectively.
As seen in Table 3, on the Houston dataset, the OA and Kappa values have increased,
but the OA metric has slightly decreased. This is because the Houston dataset is more
complex due to the smaller sample size and scattered distribution, limiting the ability for
multi-scale feature extraction structure to extract features. The OA, AA and Kappa metrics
have been improved on both the MUUFL and the Trento datasets which have more land
cover categories. These results demonstrate that the multi-scale structure can extract richer
features from HSI, enhancing the quality of multi-modal feature fusion and consequently
improving classification accuracy.

For the cross attention mechanism module, we can observe that, the introduction of
the cross attention mechanism contributes to an improvement in classification accuracy for
all three datasets. The cross attention mechanism combines the features of both HSI and
LiDAR, generating more enriched fusion features for the classification task. This validates
the effectiveness of the cross attention mechanism in the fusion and classification of HSI
and LiDAR data.

In the feature fusion module, we replace the traditional 2D-CNN by the depthwise
separable convolutions. As observed in Table 3, the classification results are degraded
when employing traditional convolutions across all three datasets. Conversely, through
the incorporation of depthwise separable convolutions, the proposed model can efficiently
learn spatial and channel-wise interactions independently, enabling the network to capture
complex hierarchical features of the data. Moreover, depthwise separable convolutions can
reduce the number of parameters and complexity compared to the traditional convolutions.
This result can mitigate the risk of overfitting and improve generalization performance
of the model, especially in situations with limited training data. A detailed complexity
comparison is discussed in Section 3.5.
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Table 3. The classification results of the ablation experiment. Bold values represent highest value of
three metrics in each column.

Method Metric
Classification Accuracy

Houston MUUFL Trento

No multiscale extraction
module

OA 0.943 0.934 0.988
AA 0.926 0.839 0.976
Kappa 0.936 0.912 0.982

No cross attention
mechanism

OA 0.927 0.939 0.992
AA 0.916 0.854 0.983
Kappa 0.924 0.923 0.986

No residual structure
OA 0.912 0.946 0.995
AA 0.907 0.852 0.986
Kappa 0.909 0.932 0.994

No depthwise separable
convolutions

OA 0.924 0.938 0.989
AA 0.937 0.825 0.972
Kappa 0.918 0.918 0.986

The proposed framework
OA 0.942 0.953 0.995
AA 0.938 0.862 0.987
Kappa 0.938 0.938 0.994

Additionally, in the fusion module, the CNN adopts the residual structure in the
process of backward propagation. To test the effect of the residual structure, we compare
the experimental results of the proposed model and the model without adding the residual
structure. As shown in Table 3, it is evident that the use of residual structures can help
improve classification accuracy for all three datasets. The enhancement effect is more
obvious on the Houston dataset since residual structures can better reduce data loss on
smaller feature samples. Thus, the residual structure can help improve feature fusion
quality and obtain higher classification accuracy.

In summary, each module in the architecture of our proposed AFC-CNN presents
necessity and effectiveness.

3.5. Complexity Analysis

In this section, we analyze the computational complexity of the proposed method.
Table 4 shows the parameters of six convolutional layers by using traditional 2D-CNN
and depthwise separable convolutions in the feature fusion module. It is obvious that the
parameter number of each convolutional layer employing 2D convolutions are significantly
larger than that utilizing depthwise separable convolutions. Specifically, the parameter
count for traditional 2D convolutions is 5,675,506 and for depthwise separable convolutions
is 478,976, yielding approximately a 10.8-times reduction in the number of parameters.
Thus, the proposed AFC-CNN can enhance training efficiency with less computation
complexity with depthwise separable convolutions.

Table 4. The parameter comparison of feature fusion module with traditional 2D-CNN and depthwise
separable convolutions.

Module Type/Stride Convolutional
Kernel Size Input Size Parameters No.

Feature fusion
module

Conv 2D/1 3 × 3 1152 × 11 × 11 3981746
Conv 2D/1 3 × 3 384 × 9 × 9 221248

(Conv 2D/1) × 4 3 × 3 64 × 7 × 7 368128



Remote Sens. 2024, 16, 94 12 of 18

Table 4. Cont.

Module Type/Stride Convolutional
Kernel Size Input Size Parameters No.

Feature fusion
module

Conv DW/1 3 × 3 1152 × 11 × 11 10368
Conv PW/1 1 × 1152 1152 × 9 × 9 442368
Conv DW/1 3 × 3 384 × 9 × 9 3456
Conv PW/1 1 × 64 384 × 7 × 7 4096

(Conv DW/1,
Conv PW/1) × 4

3 × 3 64 × 7 × 7 576
1 × 64 64 × 7 × 7 4096

3.6. Comparative Experiment

We compare the experimental results of AFC-CNN with the SVM and FusAtNet on
the fusion of HSI and LiDAR data and single HSI, respectively. HSI is expressed as H, the
LiDAR data is denoted as L, and H + L represents the HSI and LiDAR data are concatenated
together for classification.

Table 5 lists the OA, AA and Kappa results on the three datasets. The proposed
AFC-CNN is obviously superior to other methods in both single H and fusion H + L
classification framework. The AFC-CNN (H + L) achieves the highest classification accuracy
in terms of OA and Kappa metrics. For example, on the Houston dataset, the AFC-CNN
(H + L) achieves an OA of 0.942, yielding approximately 4.6% and 10.6% improvement
than FusAtNet (H + L) and SVM (H + L), respectively. The Kappa of the proposed AFC-
CNN (H + L) on the three datasets are 0.938, 0.938 and 0.9, which is the best among all the
classifiers. These results prove the effectiveness of the proposed algorithm.

Table 5. Classification performance on the three datasets. Bold values represent highest value of three
metrics in each column.

Dataset Metric
SVM FusAtNet AFC-CNN

H H + L H H + L H H + L

Houston

OA 0.802 0.842 0.857 0.899 0.922 0.942
AA 0.842 0.868 0.886 0.947 0.909 0.938
Kappa 0.783 0.829 0.845 0.891 0.915 0.938

NUUFL

OA 0.873 0.884 0.894 0.915 0.937 0.953
AA 0.585 0.603 0.707 0.786 0.828 0.862
Kappa 0.819 0.837 0.858 0.887 0.916 0.938

Trento

OA 0.906 0.924 0.985 0.991 0.987 0.995
AA 0.718 0.873 0.976 0.985 0.982 0.987
Kappa 0.861 0.876 0.979 0.988 0.982 0.994

Compared with single H branch framework, the two-branch H + L framework can
obtain better classification accuracy. The single H branch framework lacks detailed ele-
vation information of LiDAR data, resulting in poor classification quality. So it can be
concluded that the joint use of HSI and LiDAR can greatly improve the performance of
classification. The classification accuracy of SVM (H) is the lowest, which indicates that the
traditional machine learning methods still have deficiencies in classification tasks compared
with deep learning algorithms. This is primarily due to the fact that the performance of
the traditional machine learning algorithms depends highly on the handcrafted feature
design and prior information, the representation ability is limited. The FusAtNet performs
better than SVM since the deep learning methods utilize 2D-CNN to learn the high-level
features that have advantages over traditional machine learning algorithms. However, the
2D-CNN used for HSI feature extraction can not effectively extract the spectral features
of HSI and establish complementary connections between HSI and LiDAR data. Thus,
the classification performance of FusAtNet (H) and FusAtNet (H + L) decreases slightly
compared with AFC-CNN (H) and AFC-CNN (H + L).
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The good classification performance of AFC-CNN benefits from three main reasons:
(1) the 3D-CNN and a multi-scale structure in AFC-CNN can extract both spatial and
spectral feature information of HSI. (2) AFC-CNN utilizes the cross attention mechanism
module to enhance the inherent correlation between HSI and LiDAR by increasing the vari-
ance between different categories of samples. (3) In the feature fusion module, AFC-CNN
adopts the residual structure to reduce data loss and fully extract advanced features from
the data. Moreover, it replaces the traditional 2D convolution with depth-separable convo-
lution, improving the fitting ability of the model. This enhances its feature representation
ability of fusion data and better classification accuracy.

Tables 6–8 illustrate the per-class accuracy results on the Houston, MUUFL and Trento
datasets, respectively. We can see that the proposed method shows better classification
performance compared with other methods on almost all land-cover class. For example, in
Table 7, the classification accuracy of AFC-CNN on grass, mixed ground surface and dirt
and sand are 0.93, 0.95 and 0.91, yielding approximately 22.1%, 8.4% and 5.5% improve-
ments over FusAtNet and 22.3%, 16.8% and 7.69% over SVM. SVM even fails to distinguish
the terrain materials of water, building shadow and yellow curb in the MUUFL dataset.

Table 6. Classification accuracy of different methods on the Houston dataset. Bold values represent
highest value of three metrics in each column.

Class Name
SVM FusAtNet AFC-CNN

H H + L H H + L H H + L

Healthy grass 0.88 0.85 0.83 0.83 0.92 0.98
Stressed grass 0.86 0.92 0.85 0.96 0.98 0.99
Synthetic grass 0.99 0.99 1 1 0.97 1
Trees 0.98 0.99 0.92 0.93 0.95 0.98
Soil 0.98 0.96 0.97 0.99 0.98 0.99
Water 0.99 0.98 1 1 0.6 1
Residential 0.76 0.88 0.94 0.94 0.84 0.91
Commercial 0.62 0.72 0.76 0.92 0.94 0.97
Road 0.6 0.74 0.85 0.84 0.89 0.77
Highway 0.62 0.92 0.63 0.64 0.96 0.98
Railway 0.91 0.88 0.72 0.9 0.84 0.92
Parking Lot1 0.58 0.62 0.89 0.92 0.98 0.92
Parking Lot2 0.87 0.59 0.93 0.88 0.94 0.81
Tennis Court 0.99 0.99 1 1 0.97 1
Runing Track 1 0.99 1 0.99 0.98 1

Table 7. Classification accuracy of different methods on the MUUFL dataset. Bold values represent
highest value of three metrics in each column.

Class Name
SVM FusAtNet AFC-CNN

H H + L H H + L H H + L

Mostly grass 0.68 0.72 0.64 0.72 0.92 0.93
Mixed ground surface 0.77 0.79 0.86 0.87 0.87 0.95
Dirt and sand 0.81 0.84 0.87 0.86 0.86 0.91
Road 0.89 0.89 0.93 0.95 0.94 0.93
Water 0 0 0.25 0.91 0.87 0.88
Building shadow 0 0 0.73 0.74 0.91 0.93
Buildings 0.85 0.86 0.96 0.98 0.96 0.96
Sidewalk 0.56 0.62 0.56 0.6 0.82 0.85
Yellow curb 0 0 0.07 0.09 0.26 0.37
Cloth panels 0.91 0.94 0.92 0.93 0.87 0.74
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Table 8. Classification accuracy of different methods on the Trento dataset. Bold values represent
highest value of three metrics in each column.

Class Name
SVM FusAtNet AFC-CNN

H H + L H H + L H H + L

Buildings 0.8 0.81 0.97 0.98 0.98 0.99
Ground 0 1 1 0.99 0.99 1
Woods 0.99 0.99 1 1 1 1
Vineyard 0.87 0.76 0.99 0.99 0.98 1
Roads 0.82 0.86 0.89 0.93 0.94 0.97

Figures 8–10 depict the classification map obtained by different classification methods
on three datasets. It can be clearly seen that the proposed method achieves the most
accurate and noiseless classification maps, such as, the grass and mixed ground surface on
the MUUFL dataset, the vineyard class on Trento dataset. These visual results are consistent
with the per-class accuracy results shown in Tables 6–8.

Figure 8. Dataset visualization and classification maps of the Houston dataset obtained with different
models. From left to right: (a) HSI, (b) gray image for LiDAR, (c) label, (d) SVM (H), (e) SVM (H + L),
(f) FusAtNet (H), (g) FusAtNet (H + L), (h) ours (H), (i) ours (H + L), (j) legend.
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Figure 9. Dataset visualization and classification maps of the MUUFL dataset obtained with different
models. From left to right: (a) HSI, (b) gray image for LiDAR, (c) label, (d) SVM (H), (e) SVM (H + L),
(f) FusAtNet(H), (g) FusAtNet (H + L), (h) ours (H), (i) ours (H + L), (j) legend.

Figure 10. Dataset visualization and classification maps of the Trento dataset obtained with different
models. From left to right: (a) HSI, (b) gray image for LiDAR, (c) label, (d) SVM (H), (e) SVM (H + L),
(f) FusAtNet (H), (g) FusAtNet (H + L), (h) ours (H), (i) ours (H + L), (j) legend.
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4. Conclusions

In this paper, we propose a new fusion and classification framework named AFC-CNN
based on the joint use of HSI and LiDAR data. AFC-CNN applies 3D-CNN and a multi-
scale structure to extract more spatial-spectral features in the HSI feature extraction branch.
Moreover, the spectral attention mechanism is adopted to strengthen more important
features from the spectral channels while reducing interference from less relevant features.
To enhance the interaction between HSI and LiDAR data, AFC-CNN utilizes a cross
attention mechanism module to impart the spatial significance weights from LiDAR to HSI.
This integration harmoniously combines both data sources, leveraging more advanced
feature representation. In the feature fusion module, AFC-CNN adopts a deeper network
layer to augment the extraction of features from the fused data. The convolutional layers
of this module are connected through residual structures to minimize data loss during
backward propagation. Additionally, the depth-wise separable convolutions are used to
reduce computational complexity and improve the fitting ability.

Through ablation experiments, we demonstrate the effectiveness of each module in our
proposed framework. We evaluate the classification performance with traditional machine
learning algorithms, namely SVM, and an advanced dual-branch classification network,
namely FusAtNet. Extensive experimental results on three benchmark remote sensing
datasets show that the proposed AFC-CNN can significantly outperform the compared
methods in both single HSI branch and concatenated HSI and LiDAR branch frameworks.
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