Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Fog-Top Entrainment Parameterization
2.2. Budget Contribution Analysis of LWC and
2.3. Data Sets
3. Numerical Experiments
3.1. Sea-Fog Case
3.2. Model Configuration
3.3. Experimental Design
4. Results
4.1. Assessment of Simulated Sea Fog
- Is the feature of “higher-E and lower-W” well captured?;
- Is the feature “fog-top LWC peak” evident?;
- Are the fog top heights appropriate?;
- Is the absence of unrealistic dissipation true?
4.2. Explanation for Unrealistic Dissipation
4.3. Modification of Fog-Top Entrainment
5. Conclusions and Discussion
- An assessment was performed utilizing the observed facts, which included satellite visible images for identifying the fog area and fog-top horizontal distribution characteristics, as well as the signals of the CALIPSO data for contrast information for fog-top and fog-bottom heights. The option ysu_topdown_pblmix should be enabled because it essentially facilitates the vertical development of sea fog. Otherwise, the fog-top height seriously deviates from the observation and the vertical structure of LWC is far from reasonable;
- However, enabling the option ysu_topdown_pblmix produces unrealistic dissipation. Sensitivity test results, the LWC, and the budget contribution analysis show that unrealistic dissipation is directly due to the negative tendency near the fog bottom resulting from evaporation in the microphysical process suppressing turbulent diffusion transport. This negative tendency is a result of the entrainment–mixing feedback, where drier and warmer air is carried to the fog bottom, thereby enhancing the evaporation process. Nevertheless, the entrainment rate in the entrainment–mixing feedback is overestimated, which is attributable to the minimum threshold term in the option ysu_topdown_pblmix;
- When modeling sea fog, the option ysu_topdown_pblmix can be significantly improved by removing the redundant term , as indicated by the results of the sensitivity tests. However, this modification strategy necessitates more instances of sea fog to validate its efficacy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B. Sea Fog; China Ocean Press: Beijing, China, 1985. [Google Scholar]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gao, S.; Lin, H.; Shen, B.; Fu, G. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Adv. Atmos. Sci. 2007, 24, 65–81. [Google Scholar] [CrossRef]
- Zhang, S.-P.; Xie, S.-P.; Liu, Q.-Y.; Yang, Y.-Q.; Wang, X.G.; Ren, Z.P. Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms. J. Clim. 2009, 22, 6758–6772. [Google Scholar] [CrossRef]
- Jin, G.; Gao, S.; Shi, H.; Lu, X.; Yang, Y.; Zheng, Q. Impacts of Sea–Land Breeze Circulation on the Formation and Development of Coastal Sea Fog along the Shandong Peninsula: A Case Study. Atmosphere 2022, 13, 165. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Varotsos, C.A.; Kaltsounides, N.A.; Petrakis, M.; Lalas, D.P. Atmospheric turbidity parameters in the highly polluted site of Athens basin. Renew. Energy 1994, 4, 465–470. [Google Scholar] [CrossRef]
- Nicholls, S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Q. J. R. Meteorol. Soc. 1984, 110, 783–820. [Google Scholar] [CrossRef]
- Findlater, J.; Roach, W.T.; McHugh, B.C. The haar of north-east Scotland. Q. J. R. Meteorol. Soc. 1989, 115, 581–608. [Google Scholar] [CrossRef]
- Gao, S.; Qi, Y.; Zhang, S.; Fu, G. Initial Conditions Improvement of Sea Fog Numerical Modeling over the Yellow Sea by Using Cycling 3DVAR Part I: WRF Numerical Experiments. J. Ocean Univ. China 2010, 40, 1–9. [Google Scholar]
- Wang, Y.; Gao, S.; Fu, G.; Sun, J.; Zhang, S. Assimilating MTSAT-Derived Humidity in Nowcasting Sea Fog over the Yellow Sea. Weather Forecast. 2014, 29, 205–225. [Google Scholar] [CrossRef]
- Gao, X.; Gao, S.; Li, Z.; Wang, Y. A revised method with a temperature constraint for assimilating satellite-derived humidity in forecasting sea fog over the Yellow Sea. Front. Earth Sci. 2023, 10, 992246. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. 2008, Volume 27, pp. 3–27. Available online: http://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 1 March 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3. 2021. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A588 (accessed on 1 March 2024).
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Chen, S.H.; Sun, W.Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Lu, X.; Gao, S.; Rao, L.; Wang, Y. Sensitivity Study of WRF Parameterization Schemes for the Spring Sea Fog in the Yellow Sea. J. Appl. Meteorolgical Sci. 2014, 25, 312–320. [Google Scholar]
- Yang, Y.; Hu, X.-M.; Gao, S.; Wang, Y. Sensitivity of WRF simulations with the YSU PBL scheme to the lowest model level height for a sea fog event over the Yellow Sea. Atmos. Res. 2019, 215, 253–267. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S. The Impact of Turbulent Diffusion Driven by Fog-Top Cooling on Sea Fog Development. J. Geophys. Res. Atmos. 2020, 125, e2019JD031562. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.P. Ocean tidal cooling effect on summer sea fog over the Okhotsk Sea. J. Geophys. Res. 2009, 114, D14102. [Google Scholar] [CrossRef]
- Wilson, T.H.; Fovell, R.G. Modeling the Evolution and Life Cycle of Radiative Cold Pools and Fog. Weather Forecast. 2018, 33, 203–220. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Prabhakaran, T.; Karipot, A.; Hazra, A.; Kulkarni, R.; Chowdhuri, S.; Resmi, E.A.; Konwar, M.; Murugavel, P.; et al. WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India. Theor. Appl. Climatol. 2019, 136, 1099–1113. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Lewis, J.M.; Koračin, D.; Redmond, K.T. Sea fog research in the United Kingdom and United States—A historical essay including outlook. Bull. Am. Meteorol. Soc. 2004, 85, 395–408. [Google Scholar] [CrossRef]
- Tardif, R.; Rasmussen, R.M. Event-Based Climatology and Typology of Fog in the New York City Region. J. Appl. Meteorol. Climatol. 2007, 46, 1141–1168. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S. Sensitivity study of vertical resolution in WRF numerical simulation for sea fog over the Yellow Sea. Acta Meteorol. Sin. 2016, 74, 974–988. [Google Scholar]
- Brown, R.; Roach, W.T. The physics of radiation fog: II—A numerical study. Q. J. R. Meteorol. Soc. 1976, 102, 335–354. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S. A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model. Bound.-Layer Meteorol. 2012, 143, 481–505. [Google Scholar] [CrossRef]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.-W.; Xie, S.-P.; Shen, S.S.P. Transition from Fog to Stratus over the Northwest Pacific Ocean: Large-Eddy Simulation. Mon. Weather Rev. 2021, 149, 2913–2925. [Google Scholar] [CrossRef]
- Tian, M.; Wu, B.; Liao, Y.; Yang, J.; Liu, H. The Influence of Turbulent Diffusion Driven by Fog-Top Radiative Cooling on Heavy Fog in North China Plain. Chin. J. Atmos. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Tennekes, H. A Model for the Dynamics of the Inversion Above a Convective Boundary Layer. J. Atmos. Sci. 1973, 30, 558–567. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Blossey, P.N.; Uchida, J. Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett. 2007, 34, L03813. [Google Scholar] [CrossRef]
- Driedonks, A.G.M. Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteorol. 1982, 23, 283–306. [Google Scholar] [CrossRef]
- Moeng, C.H.; Sullivan, P.P. A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows. J. Atmos. Sci. 1994, 51, 999–1022. [Google Scholar] [CrossRef]
- Nicholls, S.; Turton, J.D. An observational study of the structure of stratiform cloud sheets: Part II Entrainment. Q. J. R. Meteorol. Soc. 1986, 112, 461–480. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Wyant, M.C. Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers. J. Atmos. Sci. 1997, 54, 148–167. [Google Scholar] [CrossRef]
- Fu, G.; Li, P.; Crompton, J.G.; Guo, J.; Gao, S.; Zhang, S. An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteorol. Atmos. Phys. 2010, 107, 149–159. [Google Scholar] [CrossRef]
- Schwenkel, J.; Maronga, B. Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: Impact of different aerosol activation and condensation parameterizations. Atmos. Chem. Phys. 2019, 19, 7165–7181. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, B.; Huang, Y.; Zhu, J.; Kang, H.; Lu, C.; Zhu, T. To what extents do urbanization and air pollution affect fog? Atmos. Chem. Phys. 2020, 20, 5559–5572. [Google Scholar] [CrossRef]
- Yan, S.; Wang, H.; Liu, X.; Zu, F.; Liu, D. Effect of the boundary layer low-level jet on fast fog spatial propagation. Atmos. Chem. Phys. 2023, 23, 13987–14002. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Japan. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Powell, K.A.; Hostetler, C.A.; Vaughan, M.A.; Lee, K.-P.; Trepte, C.R.; Rogers, R.R.; Winker, D.M.; Liu, Z.; Kuehn, R.E.; Hunt, W.H. CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel. J. Atmos. Ocean. Technol. 2009, 26, 2015–2033. [Google Scholar] [CrossRef]
- Wu, D.; Lu, B.; Zhang, T.; Yan, F. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 88–94. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Wu, X.; Liu, Y.; Liu, J. The Research on Yellow Sea Sea Fog Based on MODIS Data:Sea Fog Properties Retrieval and Spatial-Temporal Distribution. Period. Ocean Univ. China 2009, 39 (S1), 311–318. [Google Scholar]
- Huang, B.; Xu, J.; Shi, D.; Liu, L. Deformation Feature of a Continuous Sea Fog Process over the Yellow Sea and Bohai Sea and Its Genesis Analysis. Meteorol. Mon. 2018, 44, 1342–1351. [Google Scholar]
- Liu, L.; Liu, L.; Huang, B. Observation and numerical simulation on a sea fog event under the background of an extratropical cyclone entering sea. Chin. J. Atmos. Sci. 2023, in press. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res.-Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, M.A.; Mitchell, K.E.; Ek, M.B.; Gayno, G.; Węgiel, W.; Cuenca, R.H. Implementation and verification of the unified Noah land-surface model in the WRF model [presentation]. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Bergot, T.; Terradellas, E.; Cuxart, J.; Mira, A.; Liechti, O.; Mueller, M.; Nielsen, N.W. Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog. J. Appl. Meteorol. Climatol. 2007, 46, 504–521. [Google Scholar] [CrossRef]
- Zhou, B.; Ferrier, B.S. Asymptotic analysis of equilibrium in radiation fog. J. Appl. Meteorol. Climatol. 2008, 47, 1704–1722. [Google Scholar] [CrossRef]
- Gao, X.; Gao, S.; Yang, Y. A Comparison between 3DVAR and EnKF for Data Assimilation Effects on the Yellow Sea Fog Forecast. Atmosphere 2018, 9, 346. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System. Weather Forecast. 2010, 25, 303–322. [Google Scholar] [CrossRef]
- Stoelinga, M.T.; Warner, T.T. Nonhydrostatic, Mesobeta-Scale Model Simulations of Cloud Ceiling and Visibility for an East Coast Winter Precipitation Event. J. Appl. Meteorol. 1999, 38, 385–404. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.-W.; Ren, Z.-P.; Xie, S.-P.; Zhang, S.-P.; Gao, S.-H. Atmospheric Conditions for Advection-Radiation Fog Over the Western Yellow Sea. J. Geophys. Res.-Atmos. 2018, 123, 5455–5468. [Google Scholar] [CrossRef]
Experiments | Specification | Purpose |
---|---|---|
Exp-orig | Run with the ysu_topdown_pblmix option enabled | Assess the necessity of ysu_topdown_pblmix option |
Exp-notpd | Run with the ysu_topdown_pblmix option disabled | |
Exp-noR1 | As in Exp-orig, but the term is removed | Investigate the function of |
Exp-noR2 | As in Exp-orig, but the term is removed | Investigate the function of |
Experiments | Examination Items | Activation Status of ysu_topdown_pblmix | |||
---|---|---|---|---|---|
Higher-E and Lower-W | Fog-Top LWC Peak | Fog-Top Heights | Absence of Dissipation | ||
Exp-orig | √ | √ | × | × | On |
Exp-notpd | × | × | × | √ | Off |
Exp-noR1 | √ | √ | × | × | On without |
Exp-noR2 | √ | √ | √ | √ | On without |
Average Value | Experiments | |||
---|---|---|---|---|
Exp-orig | Exp-noR1 | Exp-noR2 | ||
fog-top height (m) | 132.9 | 145.2 | 142.6 (21%) | 128.2 (62%) |
fog-bottom height (m) | 3.7 | 21.3 | 15.6 (32%) | 1.2 (86%) |
Average vertically integrated LWC ) | / | 0.8 | 0.9 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shi, H.; Gao, S.; Li, S. Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study. Remote Sens. 2024, 16, 1656. https://doi.org/10.3390/rs16101656
Zhang L, Shi H, Gao S, Li S. Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study. Remote Sensing. 2024; 16(10):1656. https://doi.org/10.3390/rs16101656
Chicago/Turabian StyleZhang, Li, Hao Shi, Shanhong Gao, and Shun Li. 2024. "Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study" Remote Sensing 16, no. 10: 1656. https://doi.org/10.3390/rs16101656
APA StyleZhang, L., Shi, H., Gao, S., & Li, S. (2024). Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study. Remote Sensing, 16(10), 1656. https://doi.org/10.3390/rs16101656