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Abstract: With the increasing availability of satellite monitoring data, the demand for storage and
computational resources for updating the results of monitoring the surface subsidence in a mining
area continues to rise. Sequential adjustment (SA) models are considered effective for rapidly
updating time series interferometry synthetic aperture radar (TS-InSAR) measurements. However,
the accuracy of surface subsidence values estimated through traditional sequential adjustment is
highly sensitive to abnormal observations or prior information on anomalies. Moreover, the surface
subsidence associated with mining exhibits nonlinear and large gradient characteristics, making
general InSAR methods challenging for obtaining reliable monitoring results. In this study, we employ
the phase unwrapping network (PUNet) to obtain unwrapped values of differential interferograms.
To mitigate the impact of abnormal errors in the near real-time small baseline subset InSAR (SBAS-
InSAR) sequential updating process in mining areas, a robust sequential adjustment method based on
M-estimation is proposed to estimate the temporal deformation parameters by using the equivalent
weight model. Using a coal backfilling mining face in Shanxi, China, as the study area and the
Sentinel-1 SAR dataset, we comprehensively evaluate the performance of unwrapping methods and
subsidence time series estimation techniques and evaluate the effect of filling mining on surface
subsidence control. The results are validated using leveling measurements within the study area. The
relative error of the proposed method is less than 5%, which can meet the requirements of monitoring
the surface subsidence in mining areas. The method proposed in this study not only enhances
computational efficiency but also addresses the issue of underestimation encountered by InSAR
methods in mining area applications. Furthermore, it also mitigates unwrapping phase anomalies on
the monitoring results.

Keywords: mining subsidence; large gradient; PUNet; robust sequential adjustment; SBAS-InSAR

1. Introduction

Coal as a crucial primary energy source serves as a strong pillar for social development.
With the increasing demand for energy, coal mining not only creates significant value for
the world economy but also raises concerns about associated hazards. The subsidence
and collapse resulting from large-scale and sustained mining operations not only damage
surface infrastructure but also have the potential to trigger various geological disasters,
posing a significant threat to the safety of people’s lives and property. Therefore, to
prevent disasters and ensure safe production, it is imperative to monitor the subsidence in
mining areas.
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Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a technology that
utilizes SAR images from different time periods to obtain surface deformation information
through differential interferometry. This technique, known for its cost-effectiveness and
efficiency, is widely applied in monitoring the surface subsidence in mining areas [1,2].
Phase unwrapping is a crucial step in the processing of InSAR data, and the unwrapped
phase directly influences the accuracy of the subsidence parameter estimation [3,4]. Owing
to the periodic nature of the phase data with its inherent 2π ambiguity, phase unwrapping is
employed to restore the absolute phase values, thereby yielding more accurate deformation
information [5]. In mining scenarios, significant nonlinear subsidence with large gradients
often arises as the mining face advances. Conventional phase unwrapping methods, such
as branch–cut and minimum cost flow, tend to underestimate the subsidence with large
gradients, leading to biases in the subsequent subsidence parameter estimates [6]. There-
fore, it is essential to employ unwrapping methods suitable for large gradient subsidence.
In recent years, scholars have applied deep learning methods to phase unwrapping, achiev-
ing considerable success [7]. Interferograms depicting large gradient subsidence exhibit
complex fringe patterns and significant decorrelation noise. However, specific features or
patterns within interferograms can still be extracted through deep learning to enhance the
phase unwrapping results. To address the challenges of unwrapping the large gradient sub-
sidence in mining areas, this study employs the PUNet for phase unwrapping operations.
The PUNet treats phase unwrapping as a regression problem, learning a direct mapping
from the interferograms to the unwrapped phases. This approach can effective handle
deformation the interferograms characterized by dense fringes and decorrelation noise.

Traditional D-InSAR techniques suffer from interference factors, such as tempo-
ral and spatial decorrelation, and atmospheric effects, leading to a lower measurement
accuracy [8,9]. TS-InSAR technology, by processing historical SAR images of the same
area, can mitigate or eliminate the impact of the aforementioned factors, resulting in high-
precision deformation parameters. SBAS-InSAR is currently a widely applied TS-InSAR
method, playing a crucial role in studies related to ground subsidence, landslides, and other
scenarios [10,11]. The SBAS-InSAR employs short baseline interferometric combinations
for the measurements, effectively mitigating the decorrelation issues caused by spatial
baselines. Additionally, since all interferograms satisfying the short baseline condition are
involved in the estimation and the singular value decomposition method is employed, the
method can obtain the minimum norm solution of the observation time series, thereby
improving the stability and reliability of the solution. Therefore, as a post-processing
technique for D-InSAR, SBAS-InSAR is more practical and reliable.

In the mining area, rapid and near real-time updates of surface subsidence monitoring
values are of significant importance for guiding the mining progress and for disaster
prevention and mitigation. With the development of the measurement technology, SAR
satellites such as the European Space Agency’s Sentinel-1 operate continuously. This
enables the stable acquisition of SAR data, providing a rich data basis for the InSAR time
series analysis for near real-time monitoring in mining areas. However, a challenge arises
with the increasing volume of SAR data processing, which is to dynamically update the
deformation parameters without compromising the accuracy of the parameter estimation
while also improving the computational efficiency [12]. General SBAS-InSAR typically
involves processing a certain amount of data in a region to obtain deformation monitoring
results for the accumulated time period. When new SAR images are added, each update
calculation requires merging the previous interference phase and date matrices with the
newly added data, thereby expanding the dimensions of the matrices, which hinders the
efficient, continuous, and dynamic monitoring requirements [13,14].

To address this challenge, numerous scholars have proposed various solutions. Ansari
et al. introduced an efficient InSAR time series algorithm. This method divides the data
into small datasets, compresses the datasets, and avoids reprocessing the entire dataset,
greatly improving the time efficiency [15]. Hu et al. explored a general pattern of surface
deformation by applying a sequential adjustment method after adding two or more SAR
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images, validating the feasibility of the approach with simulated data [9]. Wang et al.
conducted research on sequential adjustment and dynamic Kalman filtering methods in
the efficient computation of SBAS-InSAR incremental data [16].

Sequential adjustment requires no storage of a large amount of historical observational
data and can obtain the same optimal solution as the overall adjustment without the need
for large matrix inversions. Currently, standard sequential adjustment is widely adopted
for dynamically solving SBAS-InSAR deformation parameters efficiently. Existing research
often assumes that the points do not change after the addition of new data, representing the
ideal scenario of consistently effective monitoring points. However, in practical engineering
applications, it is challenging to meet this assumption. In the process of InSAR monitoring,
changes in land features may occur, leading to variations in the coherence of objects
depicted in SAR images. The decreased coherence of land features may result in anomalous
values in phase unwrapping, and when features lose coherence, effective monitoring values
cannot be obtained [17].

Furthermore, with the increase in temporal baselines, whether using conventional
unwrapping methods or the PUNet, the accuracy of phase unwrapping decreases, leading
to the presence of outliers in the results. Therefore, when dynamically solving SBAS-InSAR
deformation parameters, it is essential not only to consider the efficiency of computation
but also to account for anomalies and invalid values caused by changes in the coherence of
land features. This consideration helps avoid introducing outliers in the solution results.
In summary, there are two key concerns regarding InSAR technology in the context of
mining-induced subsidence: one pertains to reliable phase unwrapping methods, while
the other concerns the efficient and accurate computation of temporal subsidence. This
study employs the PUNet for the interferogram unwrapping to obtain the unwrapped
phases of the large gradient deformation. To overcome the influence of outliers caused
by the intermittent scattering of ground objects, a robust estimation theory is introduced
into the SBAS-InSAR parameter estimation. Robust estimation methods are utilized to
estimate the initial deformation parameters of the SBAS-InSAR, providing reliable a priori
estimates. Subsequently, a combination of the least squares Bayesian estimation and robust
sequential adjustment theory is employed for the subsidence parameter estimation. During
the dynamic parameter estimation, only the archived data related to the pairs of new data
are processed. Finally, based on the results of the InSAR monitoring, we also evaluated
the effect of the filling mining method on controlling the surface subsidence in the study
area. The primary innovation of this study lies in the introduction of robust estimation
and sequential computation into InSAR monitoring in mining areas. Compared to slow
subsidence, such as urban land subsidence, the subsidence induced by mining operations
occurs at a faster rate and requires a higher monitoring frequency, necessitating more
efficient monitoring and computation methods.

2. Methodology

Prior to the estimation of the deformation parameters, preprocessing steps are applied
to the SAR data, involving the following procedures:

(1) Utilization of time and spatial baseline constraints to generate M interferograms
from the adjacent N archived datasets. An External Digital Elevation Model (DEM) was
employed for the topographic phase removal, and the flat Earth phase was corrected based
on a reference ellipsoid and imaging parameters. The DEM utilized in this study comprised
the data collected by unmanned aerial vehicles with a resolution of 10 m.

(2) Selection of a common location as a reference point, followed by phase unwrapping
for the points meeting coherence threshold criteria. Based on the characteristics of the
PUNet and the geomorphological features of the study area, the candidate points with a
coherence greater than 0.2 were selected.

(3) Correction of orbit errors, turbulent atmospheric effects, and vertical stratified
atmospheric effects. In the atmospheric correction, a phase-to-height linear model was first
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employed to correct for vertical stratified atmospheric effects, followed by the application
of the Goldstein filtering method to correct for turbulent atmospheric effects [18].

2.1. Introduction to PUNet

The PUNet was first proposed in reference [19]. The design of the PUNet model was
inspired by classical denoising models such as the Denoising Convolutional Neural Net-
work (DnCNN) [20], residual networks, and dilated convolutions. The DnCNN has proven
effective in image denoising, avoiding the downsampling process. As a network backbone,
it can effectively handle the SAR interferograms with dense fringes and decorrelation noise.
Simultaneously, dilated convolutions significantly increase the network’s receptive field,
and residual modules expedite the training process.

The PUNet models the subsidence in mining areas by utilizing a distorted two-
dimensional Gaussian surface. Additionally, by adjusting certain parameters, it gener-
ates different subsidence signals with varying amplitudes and patterns [19]. The two-
dimensional elliptical Gaussian function can be expressed as follows:

f (X) =
1

2π|Σ|1/2 exp
{
−1

2
(X − u)TΣ−1(X − u)

}
(1)

Here, X = (x1, x2) represents a two-dimensional grid of a training sample, while
u = (u1, u2) controls the position of the subsidence center. The covariance matrix is
expressed as follows:

Σ = s × U′DU (2)

It is used to control the shape and size of the subsidence region, where D represents a
two-dimensional random diagonal matrix and U represents an orthogonal basis of another
two-dimensional random matrix, while s is the scaling factor [19]. As shown in Figure 1, the
PUNet model structure does not include the downsampling layers, and all convolutional
layers use zero padding at the edges, maintaining an output size equal to the input size.
Due to its fully convolutional architecture, the PUNet can accommodate input samples of
arbitrary sizes.
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2.2. Initial Parameter Robust Estimation

After removing the topographic residual phase from the unwrapped phase during
the phase unwrapping, the following model can be established to solve the time series
deformation of the archived data [12]:

−1 1 0 . . . 0 0 0
−1 0 1 . . . 0 0 0

. . . . . . .
0 0 0 . . . 0 −1 1


A1


φ1
φ2
. . .
φN


X

=


unw1
unw2

. . .
unwM


L1

(3)

In the above equation, φ represents the accumulated deformation phase and unw
represents the unwrapped phase from interferogram. The equation can be expressed in the
following form:
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V1 = A1X − L1X1 = (AT
1 A1)

−1
AT

1 L1 (4)

where V1 represents the measurement noise. To mitigate the potential impact of phase
outliers, we employed a robust M-estimator to estimate the final parameters [21,22]. The
specific process was as follows:

a. The initial weight matrix P was an identity matrix:

P(l=0)
1 = I (5)

b. There was then a weighted least squares adjustment estimation.

Xl
1 = (AT

1 Pl
1 A1)

−1
AT

1 Pl
1L1 (6)

c. The residual phase matrix vl
1 = [vl

11, . . . , vl
1N ]

T
was computed, and the equivalent

weight matrix P(l+1)
1 = diag

{
p(l+1)

1i

}
was as follows [23]:

vl
i = L1 − A1Xl

1 (7)

p(l+1)
1i =


pl

1i, |Vi| ≤ k0

pl
1i

k0
|Vi |

(
k1−|Vi |
k1−k0

)
2
, k0 ≤ |Vi| ≤ k1

0, |Vi| ≥ k1

(8)

In Equation (8), |Vi| = | vl
1i

σ
vl

i

|, k0 = 1, k1 = 2.5.

d. The computation was terminated when the residual phase converged; otherwise,
l = l + 1 was set, and the iteration was continued by returning to b. Here, we set the
termination condition as the cessation of the robust estimation algorithm when there is no
change between consecutive iterations. Finally, QX1

= (AT
1 P1 A1)

−1.
In the aforementioned process, the robust estimation iteratively reallocates the smaller

weights to the larger residual phases, making the estimation less susceptible to the influence
of phase outliers.

2.3. Robust Sequential Adjustment Method

When obtaining new SAR images, unlike the general SBAS-InSAR structure, we only
considered the unwrapped interferograms related to the new SAR image. Sequential adjust-
ment was employed to dynamically update the deformation time series. The observation
equation can be reformulated as follows:

V2 =
[
A2 B

][X2
Y

]
− L2 (9)

where X2, Y represent the cumulative deformation variables for the archived time corre-
sponding to the new data pair and the cumulative deformation variable for the new time,
respectively. Current methods typically involve computations with all archived data, which
can be computationally intensive. Without compromising accuracy, we only processed the
time period corresponding to the new data pair. The parameters of the prior matrix do
not need to be reprocessed; only truncating the existing matrix is necessary, minimizing
computational resources.

The solutions for variables X2 and Y based on the Bayesian least squares and sequential
adjustment with varying parameters are as follows [24]:
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[
X2
Y

]
=

[
Q−1

X1
+ AT

2 P2 A2 AT
2 P2 A2

BT P2 A2 BT P2B

]−1

∗
[

Q−1
X1

X1 + AT
2 P2L2

BT P2L2

]

Q[X2;Y] =

[
Q−1

X1
+ AT

2 P2 A2 AT
2 P2 A2

BT P2 A2 BT P2B

]−1 (10)

P2 represents the equivalent weight matrix, and for the purpose of enhancing the com-

putational efficiency, (Q−1
X1

+ AT
2 P2 A2)

−1
,

[
Q−1

X1
+ AT

2 P2 A2 AT
2 P2 A2

BT P2 A2 BT P2B

]−1

can be simplified

using the following matrix inversion formula:

(PX ± AT PA)
−1

= P−1
X ∓ P−1

X AT(P−1 ± AP−1
X AT)

−1
AP−1

X (11)

The solution for the final deformation parameters can be expressed as follows:[
X2
Y

]
=

[
X1 + Jx(L2 − A2X1 − BY)

(BTQJ
−1B)

−1
BTQJ

−1
(L2 − A2X1)

]
Q[X2;Y] =

[
QX2

QX2,Y
QX2,Y QY

] (12)

In the above equation, Jx represents the sequential adjustment gain matrix, and each
element can be specified as follows:

QX2
= QX1

− Jx A2QX1
+ JxBQYBT Jx

T

QX2,Y = −JxBQY

QY = (BTQJ
−1B)

−1

Jx = QX1
A2

TQJ
−1

QJ = P2
−1

+ A2QX1
A2

T

(13)

Similar to the robust estimation method mentioned in the initial deformation parame-
ters, the iterative computation process denoted by steps a–d was executed. However, the
weights were now represented by P2, and the unknowns to be solved were X2 and Y. The
introduction of robust estimation in the sequential update can reduce the influence of new
anomalous observations. This ensures consistency in the points and epochs involved in the
sequential adjustment, while also considering the variations in the scattering characteristics
of some points in practical scenarios. This approach suppresses the influence of outliers
and invalid values on the results. Furthermore, the proposed method in this study reduces
the storage space and computational time for matrix inversion compared to the general
SBAS-InSAR method. The flowchart of the above method is shown in Figure 2.
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3. Experimental Test
3.1. Simulation and Real Data

In our study, we employed a baseline network as depicted in Figure 3 below to
simulate the unwrapped phase of 38 interferometric pairs over 14 epochs. With reference
to the methods in previous studies [14,25], the initial nine epochs were designated as
a priori observations, while the subsequent five epochs were considered as additional
observations. The data from the eighth and eleventh epochs were intentionally introduced
with poor coherence, thereby introducing outliers with gross errors of 5–10 mm on the
relevant interferometric pairs. To assess the applicability of the algorithm, we conducted
simulations of the evolution of the subsidence using both a linear model and a Weibull
model, which exhibits similarities to the subsidence patterns in mining areas.
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This paper employs the proposed robust sequential adjustment method for the dy-
namic monitoring of a backfilled coal mining face in Shanxi, China. The study area is
characterized by mid-elevation topography dominated by limestone and sandstone for-
mations, with relatively gentle slopes. The working face extends 1709 m in strike length
and 176 m in dip length. The working face advances in a northeast-to-southwest direc-
tion. The coal seam being mined is structurally complex, classified as a stable, moderate
thickness seam with a Puri hardness index of 2.0. The thickness of the coal seam ranges
from 1.66 to 2.69 m, averaging 2.25 m, and dips at angles varying between 1◦ and 8◦,
with an average of 2◦. Geological investigations have revealed multiple challenges during
extraction, including the presence of faults, karst sinkholes, and hydrogeological issues.
A total of 46 ascending track Sentinel images were utilized, resulting in the generation
of 145 interferometric pairs. The central incidence angle of the data was 38.4◦, with a
multilook resolution of 20 m. The satellite data coverage and location of the study area are
shown in Figure 4. A measured DEM with a resolution of 10 m was employed to eliminate
the terrain-induced phase and atmospheric effects. To assess the suitability of a single-track
satellite for the study area, the visibility of the satellite was computed based on the DEM
and satellite imaging parameters. The calculation results from Figure 4 indicate a favorable
visibility within the study area, with no overlapping or shadowed regions. The study
area features gentle slopes, resulting in minimal displacements along the slope direction.
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Consequently, the vertical subsidence induced by mining activities constitutes the primary
component of the satellite line-of-sight displacement.
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Utilizing a network, as illustrated in Figure 5, the data spanning from November 2021
to June 2023 were divided into four monitoring phases: November 2021 to March 2022,
November 2021 to November 2022, November 2021 to March 2023, and November 2021 to
June 2023.
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3.2. Simulation Data Results

The results presented in Figure 6 below compare the outcomes of the traditional
sequential adjustment with the proposed improved robust estimation sequential adjustment
introduced in this paper. The traditional sequential adjustment exhibits significant biases,
while the method proposed in this study demonstrates a better conformity with the actual
results. In the linear model, the Root Mean Square Error (RMSE) for the general results is
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1.34 mm, whereas the RMSE for the proposed method is 0 mm. In the Weibull model, the
RMSE for general results is 2.63 mm, while the RMSE for the proposed method is 1.19 mm.
These findings further validate the effectiveness of the method proposed in this paper.
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3.3. PUNet Unwrapping Result

As shown in Figure 7, we compared the results of the surface deformation interfer-
ogram unwrapping using the PUNet and the minimum cost flow (MCF) method for the
same coal mining face. The results indicate that, in interferograms with small deformations,
the unwrapping differences between the two methods are minimal. However, in rapidly
subsiding regions, severe decorrelation and dense fringes hinder the MCF method from
accurately recovering the deformations within complex fringe patterns. At the moment
of maximum subsidence velocity, the interferogram exhibits the most severe coherence
loss, with the lowest coherence observed at the epicenter. The phase unwrapping results
obtained through the MCF method show a significant underestimation phenomenon, while
those from the PUNet demonstrate a notable improvement. We computed the time series
subsidence above the mining face using the SA method and compared the effectiveness
of the two unwrapping methods, as depicted in Figure 8. The MCF method has an ob-
vious underestimation. In contrast, the relative error of the PUNet method is less than
5%. The unwrapping results using the PUNet exhibit a higher accuracy in capturing the
deformation patterns. We analyzed the reasons for the significant differences between the
two methods and identified several factors. The MCF method relies on the assumption
of phase continuity during the unwrapping process. However, in areas of large gradient
deformation, the absolute phase difference between adjacent pixels is likely to exceed π,
violating the continuity assumption and making it difficult for the MCF method to achieve
the ideal unwrapping results. Furthermore, combining coherence maps reveals a poor co-
herence at the center of the subsidence basin, directly leading to an ineffective observation
phase acquisition, which is another factor contributing to the failure of the MCF method.
Through analysis of the PUNet, we found two main advantages of this method: (1) the
PUNet treats phase unwrapping as a regression problem to learn a direct mapping from the
interferograms to the unwrapped phases, allowing the recovery of the unwrapped phases
based on contextual information rather than solely relying on the phase difference between
adjacent pixels, thus not being constrained by the assumption of phase continuity; and
(2) the PUNet incorporates a denoising function that exhibits a strong robustness against
noise at different levels, ensuring the quality of the unwrapping.
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3.4. Dynamic Subsidence of Mining Area

The obtained results from InSAR represent the line-of-sight displacement, which is
transformed into the vertical ground subsidence using the following equation, where θ
denotes the incidence angle [26]:

d = los/ cos θ (14)

As shown in Figure 9a, the dynamic monitoring results above reveal a continual
expansion in the subsidence area over time. Figure 9b was obtained by averaging the
coherence across all interferometric pairs, revealing a notable consistency between the
locations of the subsidence zones and the areas exhibiting a low coherence. To assess the
accuracy and robustness of the monitoring outcomes, we compared the precision and
robustness of the sequential adjustment and the proposed robust sequential adjustment
method at two benchmark points: A and B. As shown in Figure 10, the robust sequential
adjustment aligns more closely with the leveling data, exhibiting a reduced data dispersion.
A statistical analysis of the accuracy and variance indicates that the RMSE for the sequential
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adjustment and robust sequential adjustment at point A are 35 mm and 33 mm, respectively.
At point B, the RMSE values for the sequential adjustment and robust sequential adjustment
are 37 mm and 35 mm, respectively. The relative error is less than 5%, which can meet the
requirements of the monitoring of the surface subsidence in mining areas. More intuitively,
after the ground surface has reached a state of relative stability, the SA method continues to
compute the subsidence fluctuations, which deviates from the actual scenario. In contrast,
the RSA method achieves a robustness, and the subsidence values tend toward 0 after the
surface has stabilized. The empirical data validate the higher reliability of the proposed
RSA method presented in this study.
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3.5. Evaluation of the Surface Subsidence Control Effect of Filling Mining

Caving mining is a traditional mining method characterized by the natural collapse of
the overlying strata after extraction, resulting in significant surface subsidence values and
gradients [27]. In contrast, backfilling mining involves the timely filling of the mined-out
voids with specific filling materials during the extraction process to support the overlying
strata and to reduce or prevent the collapse of the strata. In order to evaluate the effective-
ness of backfilling in the study area, which is a backfilled mining face, we simulated the
subsidence under the scenario of the caving mining method, as illustrated in Figure 11. This
study employs a probability integration model (PIM) to simulate the surface subsidence
caused by caving mining, treating subsidence as the cumulative effect of numerous small
unit movements, each of which can be regarded as a random variable [9]. Through proba-
bilistic integration, the effects of these random variables are combined to predict the overall
surface subsidence. The maximum subsidence obtained from the simulation of the caving
mining method is 1400 mm. The maximum subsidence value obtained by the SBAS-InSAR
monitoring is 1150 mm, which accounts for approximately 80% of the subsidence caused
by caving mining. It is evident from both the simulation and the measurement results that
the control of the surface subsidence in the study area due to backfilling mining is not
satisfactory, with a limited magnitude of subsidence control. Furthermore, as depicted in
a differential interferogram (Figure 12), the center of the subsidence basin shows decor-
relation, indicating significant post-mining surface subsidence gradients occurring in the
working face. It should be noted that the presence of two subsidence basins in the figure is
due to the existence of another active working face near the studied working face. However,
the influence zones of the two working faces overlap only in the peripheral areas.
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4. Discussion

In order to evaluate the advantages of the near real-time estimation method proposed
in this paper, we discuss the efficiency of the quantization operation from three aspects: the
matrix dimension, the number of iterations, and the calculation time. In addition, we also
discuss the improvement direction of the robust estimation method in InSAR monitoring.

4.1. Changes in Matrix Dimensions

The previous SBAS-InSAR sequential adjustment method involved incorporating all
available prior date data into the computation. The dimensionality of the covariance matrix
P1 for the a priori parameters was N × N, where N represents the total number of initial
epochs considered. The covariance matrix of the coefficients had a similar N × N dimension.
By selectively extracting the matrices related only to the dates overlapping with subsequent
times, the dimensionality of the covariance matrix reduced to n × n, where n represents the
number of epochs initially computed and the overlapping dates with subsequent updates
(n < N). The covariance matrix of the coefficients also reduced to n × n. This reduction in
the matrix dimensions facilitates more efficient matrix operations and storage.

4.2. Calculation Time Change

A total of 145 interferometric pairs were processed in the experiment, with a multilook
factor of 4:1, resulting in the extraction of 42,798 monitoring points. The CPU utilized for
the testing was an Intel Core i9-13900k running at 3.0 GHz. We conducted a statistical
analysis of the computational time consumed by various methods during the data pro-
cessing. As depicted in Figure 13, the iterative estimation process of the robust sequential
adjustment method sacrifices some time compared to the general SBAS method, but the
overall computation time remains superior. Importantly, our method also possesses the
capability to suppress outliers, addressing a critical aspect of the data processing.
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4.3. Iteration Number Distribution

To investigate the suitability of the algorithm proposed in this paper, we conducted a
statistical analysis of the number of iterations required for each point during the robust
estimation process. As shown in Figure 14, the majority of the points exhibited itera-
tion counts equal to or less than two, with only a small subset of points requiring more
than two iterations. Therefore, the method proposed in this paper does not increase the
computation time too much.
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4.4. Improvements in Robust Estimation Methods

The main issues in current research on the sequential adjustment updating of the
InSAR data are assuming that the pixels involved from the initial to subsequent updates
are the same and that all pixels are persistent scatterers and neglecting the influence of
intermittent coherence points on the results. When local changes occur, the pixels that were
previously highly coherent may lose coherence, making it impossible to obtain accurate
monitoring values using conventional unwrapping methods. To address this problem,
two approaches can be considered. First, in scenarios where deformation exhibits spatial
correlation, deep learning methods such as the PUNet can be used to obtain unwrapped
phases, which can then be used to update the temporal deformation data. Second, in scenar-
ios where deformation lacks spatial correlation, an equivalent weight model considering
coherence can be adopted. This model assigns a weight of 0 to unreliable unwrapped
phases obtained from low-coherence regions using conventional methods, thus avoiding
the introduction of outliers during sequential updating. The equivalent weight model
considering coherence can be represented in the form of Equation (15), where, compared
to Equation (8), it includes the coherence parameter γi. When γi < 0.3, the weight of the
observation is set to 0.

p(l+1)
1i =


pl

1i, γi > 0.3 & |Vi| ≤ k0

pl
1i

k0
|Vi |

(
k1−|Vi |
k1−k0

)
2
, γi > 0.3 & k0 ≤ |Vi| ≤ k1

0, γi ≤ 0.3 or |Vi| ≥ k1

(15)

4.5. The Analysis of Potential Data Leakage and Other Issues with PUNet

The PUNet network was first proposed in [19] without analyzing the potential over-
fitting caused by the leakage of subsidence peak values. However, the article extensively
tested the reliability of the model using real data, indicating that the PUNet network is
suitable for scenarios with subsidence rates below 500 cm/a. As long as the subsidence
rate does not exceed this threshold, the method can achieve relatively reliable results.
Additionally, the training, testing, and validation datasets used by the PUNet are all inde-
pendently generated, thus minimizing the possibility of data leakage. Due to the direct use
of the pre-trained model from reference [19] and the utilization of an unsupervised training
paradigm, this paper achieves the cross-domain transfer of knowledge on large gradient
deformation phase unwrapping without the need for additional training conditions. As
indicated in reference [19], the training data for the PUNet is simulated using Gaussian
functions, while the test data in our experiments is derived from real mining area scenes,
with no intersection between them, thus eliminating the possibility of data leakage.

The PUNet is a phase unwrapping method aimed at large-scale deformation in mining
areas, which has achieved relatively ideal results in current research. Through an analysis
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of the training sample generation method and network structure of this network, we
identify several potential issues. (1) The PUNet uses Gaussian and distortion functions
to generate training samples to simulate subsidence basins under different conditions.
However, under mining conditions, the PIM is used to describe subsidence caused by
mining. It may be more appropriate to use the PIM to simulate samples. (2) According
to [19], the PUNet is suitable for scenarios with subsidence rates below 500 cm/a. Surface
subsidence monitoring in scenarios with large mining heights and shallow burial depths
may not be appropriate. This also indicates that the training data for the PUNet are not
comprehensive enough. By considering actual mining scenarios and enriching training
samples, it is expected that the application effectiveness of the PUNet can be improved.

5. Conclusions

In this paper, we propose an approach that combines the PUNet and RSA to estimate
the near real-time large gradient nonlinear subsidence time series with increasing SAR data.
The results of the proposed method are used to evaluate the effect of filling the mining face
in controlling the surface subsidence.

(1) The proposed method can overcome the issues of underestimation in traditional
InSAR methods and the susceptibility of low-coherence areas to outliers.

(2) The effectiveness of both the PUNet and MCF unwrapping methods is compared,
and the results indicate that the PUNet method is more suitable for phase unwrapping in
mining areas.

(3) The time series estimation outcomes of the RSA and general SBAS-InSAR are
validated using simulations and leveling data, demonstrating that the RSA method achieves
a higher accuracy. The relative error is less than 5%, which can meet the requirements of
the monitoring of the surface subsidence in mining areas.

(4) The study area of this paper has large gradient subsidence, and the effect of filling
mining on controlling the surface subsidence in this study area is not ideal.

The proposed approach provides an efficient means for monitoring large gradient
nonlinear subsidence.
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