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Abstract: The occurrence of Supraglacial Lakes (SGLs) may influence the signals acquired with
microwave radiometers, which may result in a degree of uncertainty when employing microwave
radiometer data for the detection of surface melt. Accurate monitoring of surface melting requires
a reasonable assessment of this uncertainty. However, there is a scarcity of research in this field.
Therefore, in this study, we computed surface melt in the vicinity of Automatic Weather Stations
(AWSs) by employing Defense Meteorological Satellite Program (DMSP) Ka-band data and Soil
Moisture and Ocean Salinity (SMOS) satellite L-band data and extracted SGL pixels by utilizing
Sentinel-2 data. A comparison between surface melt results derived from AWS air temperature
estimates and those obtained with remote sensing inversion in the two different bands was conducted
for sites below the mean snowline elevation during the summers of 2016 to 2020. Compared with
sites with no SGLs, the commission error (CO) of DMSP morning and evening data at sites where
these water bodies were present increased by 36% and 30%, respectively, and the number of days
with CO increased by 12 and 3 days, respectively. The omission error (OM) of SMOS morning and
evening data increased by 33% and 32%, respectively, and the number of days with OM increased by
17 and 21 days, respectively. Identifying the source of error is a prerequisite for the improvement of
surface melt algorithms, for which this study provides a basis.

Keywords: Greenland Ice Sheet; surface melt; Ka-band; L-band; Supraglacial Lakes

1. Introduction

As the second-largest continental ice sheet after Antarctica, the Greenland Ice Sheet
(GrIS) is projected to cause a sea level rise of about 7 m if melted entirely [1]. In recent
decades, climate change-induced mass loss from the Greenland Ice Sheet has been the
primary driver of sea level rise, contributing approximately 13.7 mm to sea level rise
from 1972 to 2018, with the reduction in Surface Mass Balance (SMB) accounting for
approximately 34% of the total mass loss [2]. Similarly, from 1992 to 2018, mass loss
from the GrIS led to a sea level rise of 10.8 mm, with the decrease in SMB constituting
50.3% of the total mass loss [3]. Projections suggest that mass loss from the GrIS will
contribute approximately 4–30 cm to sea level rise by the end of the century [4], with the
reduction in SMB being expected to account for around 50% of the mass loss [5]. The
decline in SMB is gradually becoming the dominant factor in mass loss from the GrIS. This
decline is primarily attributed to the runoff of meltwater from the surface into the ocean [6].
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Consequently, investigating the surface melting of the GrIS is paramount to understanding
and predicting sea level rise in the context of climate change.

Microwave radiometer data serve as the primary source for determining the surface
melting of the GrIS [7]. The passive microwave bands prevalently employed for calculating
binary surface melt status (melt or no melt) include the K and Ka bands [8,9]. Nghiem et al.
leveraged Defense Meteorological Satellite Program (DMSP) K-band and Ka-band data to
monitor the extreme melting range of 98.6% of the GrIS on 12 July 2012 [10]. Colosio et al.,
by employing Ka-band data, calculated the surface melting of the GrIS spanning the years
1979 to 2019 [8]. The L band is utilized for calculating quantitative surface melt [11,12].
Houtz et al. utilized L-band data from the European Space Agency’s (ESA) Soil Moisture
and Ocean Salinity (SMOS) satellite to calculate the liquid water content (LWC) of the GrIS
from 2011 to 2018 [11]. Mousavi et al. harnessed NASA’s Soil Moisture Active Passive
(SMAP) satellite L-band data to calculate the melting intensity of the GrIS from 2015 to
2021 [13]. Colliander et al. employed SMAP L-band and AMSR2 (Advanced Microwave
Scanning Radiometer-2) K- and Ka-band data together to calculate the LWC of the GrIS [14].

When inverting surface melt data by using Ka and L bands, two key models are
involved—MEMLS and LS-MEMLS [9,12]. In the context of surface melting applications,
both models postulate the presence of stratified snow on top of glacial ice [9,12]. The
MEMLS is capable of simulating frequencies ranging from 5 GHz to 100 GHz, and the
number of snow layers can be flexibly chosen [15]. This model was utilized in Tedesco’s
research study, where it was assumed that the bottom layer consisted of ice, and the total
thickness of the snow layer was established at 20 m, with each layer having a fixed thickness
of 5 cm [9]. The LS-MEMLS was developed by Schwank et al. [16]. This model builds upon
the MEMLS and incorporates modeling components representing multilayer soil beneath
the snow cover, aiming to aid in the investigation of soil freeze–thaw conditions or snow
cover mapping by applying the L-band data from the SMOS satellite [16]. The LS-MEMLS
assumes the presence of a seasonal snow field above glacier ice, which is further divided
into wet and dry snow layers [11,12].

In ablation zones, cumulus snow fields exist above glacial ice [17]. At times of less
intense melting, the configuration of these two models is consistent with the reality of
much of the ablation zones [11,12]. However, at times of more intense melting, the configu-
ration of these two models is oversimplified. During the ablation season (June–August or
May–September), snow melting occurs, and surface meltwater forms ice runoff facilitated
by topographical features or pools in topographic lows to form SGLs [18–20]. Therefore, for
Ka- and L-band data, during the ablation season in ablation zones, there are mixed pixels,
such as snow and SGLs, whose existence is inconsistent with the assumptions of the above
two models.

The uncertainty that SGLs introduce into the passive microwave inversion of surface
melting data has been discussed in previous studies. For example, Houtz et al. stated
that L-band data may underestimate the liquid water volume when SGLs are present [11],
and Li et al. asserted that the Ka band may cause false-positive retrieval when SGLs are
present [21]. However, the uncertainty introduced by SGLs into the inversion of surface
melting data in different passive microwave bands has not been confirmed. The accurate
monitoring of surface melting necessitates a comprehensive evaluation of this uncertainty.
To investigate the impact of SGLs on surface melting data inversion in various passive
microwave wavebands, in this study, we primarily conducted the following tasks: DMSP
Ka-band and SMOS L-band data were employed to estimate the surface melting of the GrIS
from 2011 to 2020, and the spatio-temporal distribution of surface melt and surface melt
errors was analyzed (refer to Section 3.1). Subsequently, Sentinel-2 summer data from 2016
to 2020 were utilized to identify SGLs in the vicinity of Automatic Weather Stations (AWSs)
(refer to Section 3.2) and examine their influence on Ka-band and L-band data (refer to
Section 3.3).
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2. Data and Methods
2.1. Data
2.1.1. Passive Microwave Data

In this study, we employed Ka-band (37 GHz) horizontal polarization data, which were
obtained with the DMSP-F17 platform’s SSMI/S sensor. The projection method employed
was EASE-grid 2.0 Northern Hemisphere, Lambert Azimuthal (EPSG: 6931), with a spatial
resolution of 25 km [21]. These data are available twice daily, once in the morning and
once in the evening. The data obtained by the DMSP satellite in the morning are referred
to as DMSP morning data, and those obtained in the evening are referred to as DMSP
evening data. Due to the significant variation in melt information captured at different
times of the day [22], the melt results of DMSP morning and evening data were calculated
separately. Given that horizontal polarization data at 37 GHz are more sensitive to changes
in LWC [23], Ka-band horizontal polarization data were chosen for this study. These data
can be accessed freely on the EarthData website (https://search.earthdata.nasa.gov/search,
accessed on 1 January 2024). In this study, DMSP data from 2011 to 2020 were selected for
the calculation of surface melt.

L-band (1.4 GHz) tertiary bright temperature data were obtained with the SMOS
satellite at the top of the atmosphere. These data feature two polarization modes, horizontal
and vertical, and a total of 14 effective incidence angles, ranging from 2.5◦ to 62.5◦ (with a 5◦

interval, including 40◦). The projection method employed was EASE-grid 2.0 Global, Equal-
Area (EPSG: 6933), and the spatial resolution was 25 km [24]. These data are available
twice daily, once in the morning and once in the afternoon. The data obtained by the
SMOS satellite in the morning are hereinafter referred to as SMOS morning data, and
those obtained in the afternoon as SMOS evening data. Due to the sampling characteristics
of the MIRAS radiometer on the SMOS satellite, data are not provided at all angles of
incidence [25]. To eliminate false-positive retrieval, these data require that the number of
effective incidence angles provided by the input data be greater than 5 [12]. The data can be
accessed freely at the SMOS data center website (https://www.catds.fr/sipad, accessed on
1 January 2024). In this study, SMOS data from 2011 to 2020 were selected for the calculation
of surface melt.

In this study, the surface melt results of the GrIS were calculated for the period from
2011 to 2020. The passive microwave data used included DMSP and SMOS morning and
evening data. The DMSP satellite data provide the effective number of days, with a value
of 365 or 366 days, and the latter has the same parameter but with an average value of
301 days. Figure 1 provides the effective days in Greenland with data for both satellites
for the period of 2011 to 2020. It can be seen that the effective days with DMSP satellite
data in all regions of Greenland were close to a full year. However, the SMOS satellite
data accounted for different effective days in different regions of Greenland (the number of
effective days in the north was higher than in the south). This is because the SMOS satellite
calculation of the melt status depends on the number of available incidence angles. For
a pixel of the SMOS satellite, there are 14 angles of incidence, but not all of them provide
brightness temperature. The melt status of a pixel can be calculated when the number of
incidence angles providing brightness temperature is greater than 5.

https://search.earthdata.nasa.gov/search
https://www.catds.fr/sipad
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Figure 1. Effective days with passive microwave data. (a) DMSP morning data; (b) DMSP evening
data; (c) SMOS morning data; (d) SMOS evening data.

2.1.2. AWSs and MODIS Data

Owing to the scarcity of quantitative data concerning the surface melting of the
GrIS [26], temperature serves as the sole available metric for assessing this phenomenon [9].
In this research study, data from 42 AWSs were selected from two datasets: the Greenland
Climate Network (GC-Net) [27] and the Greenland Ice Sheet Monitoring Project (PROMICE)
(refer to Figure 2). Data from PROMICE stations were provided by the Geological Survey
of Denmark and Greenland (GEUS) (accessible at http://www.promice.dk, accessed on
1 January 2024). In this study, we analyzed surface melt outcomes derived from DMSP
and SMOS data by utilizing hourly site temperatures per day from 2011 to 2020. Given
the occurrence of melting due to radiative forcing (solar radiation), melting processes also
take place when the air temperature falls below 0 ◦C. Thus, for AWS air temperature, we
established three melt thresholds of 0, −1, and −2 ◦C [8].

Previous studies have pointed out that the Moderate Resolution Imaging Spectrora-
diometer (MODIS) summer ice surface temperature is significantly correlated with the
mean melting range of the GrIS [28]. Therefore, in this study, in addition to station temper-
ature data, MODIS ice surface temperature data were also used. DMSP and SMOS satellite
data were considered for certain time points and were evaluated with MODIS ice surface
temperature data to further support the evaluation results of station-derived temperature
data. MODIS ice surface temperature data from the dataset “Multilayer Greenland Ice
Surface Temperature, Surface Albedo, and Water Vapor from MODIS, Version 1” are freely
available on the EarthData website [29]. The dataset includes both ice surface temperature
data and surface melt products derived from ice surface temperature, where the melt
threshold is set to −1 ◦C; this is because the accuracy of ice surface temperature data is
±1 ◦C, and if it were set to 0 ◦C, there would be omissions [30]. Yu et al. [31] used the ice
surface temperature data from AWSs to evaluate those from MODIS, and the results show
that the latter has a cooling deviation of about 2~4 ◦C. Compared with the ablation data
from the AWSs, the consistency of the melt results obtained by using MODIS at −1 ◦C is
41~61%. In this study, we used data from 2011 to 2018, as well as data from spring, summer,
and autumn 2019, to evaluate the melt values of the passive microwave data from the
two satellites.

http://www.promice.dk
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Figure 2. The distribution of the AWSs on the GrIS. The green dots represent the sites; the gray line
represents the boundary line of the watershed; and the background color shows the elevation, with
blue for low values and red for high values. The GrIS is divided into eight basins: northern (N),
northwestern (NW), northeastern (NE), west-central (CW), east-central (CE), southwestern (SW),
southeastern (SE), and southern (S).

The assessment data used in this study included site air temperature data and MODIS
ice surface temperature data. The former data were obtained from both the GC_Net and
PROMICE datasets. Tables 1 and 2 provide the number of valid days from 2011 to 2020
for the stations in both datasets. For a specific site, we may not necessarily have data
for every year between 2011 and 2020, and for a specific year, a site may not necessarily
provide temperature data for 365 or 366 days. Figure 3 provides the number of valid
days with MODIS ice surface temperature data from 2011 to 2018, the average of which
was 294 days. The number of valid days with MODIS ice surface temperature data was
unevenly distributed across the various regions of Greenland (the number of valid days is
higher in the north than in the south) (Figure 3). This is due to the fact that MODIS data are
susceptible to cloud cover, which makes them unavailable in some areas.
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Table 1. Number of valid days with AWS data from the GC_Net dataset.

Site\Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Swiss Camp 366 365 365 365 366 331 365 306 0 0
Crawford Pt. 0 0 0 194 114 198 269 251 0 0

NASA-U 254 337 315 335 298 321 294 0 0 0
GITS 0 259 283 329 269 298 2 141 0 0

Humboldt 181 247 242 276 203 272 211 218 0 0
Summit 244 363 365 364 364 365 365 306 0 0

TUNU-N 180 326 364 365 366 365 306 0 0 0
DYE-2 366 365 365 365 366 229 283 306 0 31

JAR 219 202 291 170 263 331 182 185 0 0
Saddle 366 365 365 365 358 365 365 306 0 0

South Dome 329 365 365 365 366 365 365 306 0 0
NASA-E 366 365 365 365 366 365 306 0 0 0

NASA-SE 366 365 319 365 366 365 365 306 0 0
JAR 2 229 240 0 0 0 0 0 0 0 0

Peterman ELA 143 364 365 277 0 1 0 0 0 0
NEEM 366 365 365 365 365 365 327 253 0 0

Table 2. Number of valid days with AWS data from the PROMICE dataset.

Site\Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

KPC_L 0 225 365 365 366 365 365 365 241 145
KPC_U 366 365 365 365 366 240 325 365 241 145

EGP 0 0 0 0 0 270 365 365 241 145
SCO_L 366 365 365 365 366 365 365 365 366 184
SCO_U 366 365 365 240 323 365 365 365 366 184

MIT 366 365 365 365 365 365 240 200 200 145
TAS_L 262 365 365 365 365 164 217 365 366 184
TAS_U 366 242 365 365 92 0 0 0 0 0
TAS_A 0 0 181 365 366 365 365 303 366 184
QAS_L 356 365 365 365 364 365 365 365 241 145
QAS_M 0 0 0 0 0 56 296 365 366 184
QAS_U 356 365 365 365 366 365 365 365 241 145
QAS_A 0 15 197 346 0 0 0 0 0 0
NUK_L 315 365 365 365 366 365 365 365 366 184
NUK_U 326 365 287 230 297 365 365 365 366 184
NUK_K 0 0 0 181 366 365 365 365 366 184
NUK_N 289 326 365 92 0 0 0 0 0 0
KAN_B 274 365 365 365 366 365 365 365 366 184
KAN_L 366 365 365 365 366 365 365 365 366 184
KAN_M 366 365 307 258 366 365 365 365 364 184
KAN_U 240 365 365 365 366 365 365 365 366 184
UPE_L 366 356 365 365 366 365 365 365 366 184
UPE_U 366 365 365 365 347 365 365 365 366 184
THU_L 302 365 365 365 251 360 365 364 241 145
THU_U 259 365 365 365 366 365 365 365 205 145

CEN 0 0 0 0 0 0 220 365 241 145

It has been documented that the snowline of the GrIS experiences seasonal and
interannual fluctuations, making it challenging to map [32]. Consequently, snowline vector
data have not yet been disseminated on the official website. In the research study conducted
by Ryan et al. [32], the mean snowline elevation data in eight regions of Greenland (north,
northeast, east-central, southeast, south, southwest, west-central, and northwest (refer to
Figure 2)) between 2001 and 2017 were determined. To investigate the correlation between
the surface melt error distribution of the two passive microwave datasets and the altitude
of the snowline, the average snowline altitude from 2011 to 2017 was utilized.
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2.1.3. Sentinel-2 Imagery

Sentinel-2 data became available after 23 June 2015; therefore, in this study, we used
data from each summer from 2016 to 2020, as well as Sentinel-2 top-of-atmosphere (TOA)
reflectivity data, both synthetic and daily, for each summer. For the Sentinel-2 data, a total
of five bands (B4: red band; B3: green band; B2: blue band; B10: cirrus band; B11: SWIR
1 band) were used, and their spatial resolutions were 10 m, 10 m, 10 m, 60 m, and 20 m,
respectively. In GEE, the resolution of all bands is set to 10 m.

2.2. Methods
2.2.1. Surface Melt Simulation

MEMLS2 is a temperature threshold-based method proposed by Tedesco et al. [9].
Compared with other threshold methods, this algorithm not only exhibits heightened
sensitivity to LWC but also demonstrates higher concurrence with surface melt estimates
derived from AWS air temperature data, making it more suitable for simulating surface melt
in Greenland [8]. Based on the Microwave Emission Model of Layered Snowpack (MEMLS),
this method simulates the brightness temperature beneath a wet snow layer of the fixed
thickness (5 cm) and liquid water content (0.2%), thereby obtaining a linear function of
the melt threshold and winter brightness temperature, which is typically expressed as
follows [9]:

Tc = γ ∗ Twinter + ω

where γ = 0.48, ω = 128 K, and Twinter represents the average brightness temperature in
winter. The MEMLS incorporates specific parameter settings, which include snow density
ranging from 0.1 to 0.45 g/cm3, correlation length from 0.01 mm to 0.3 mm, and snow
temperature between 230 K and 270 K. Each layer is 5 cm thick, accumulating a total
thickness of 20 m. The bottom layer consists of ice, with a density of 0.917 g/cm3.

Houtz et al. proposed a novel technique for simulating surface melt by employing
the L-band-Specific Microwave Emission Model of Layered Snowpacks (LS-MEMLS) of
stratified snow [12]. This innovative approach not only facilitates the calculation of the
surface melting status but also offers the LWC of the GrIS’s surface. In comparison with the
brightness temperature threshold method, this technique demonstrates immense potential
for estimating GrIS surface-derived mass loss. In the LS-MEMLS, initially, the known
humidity and density values are simulated as the atmospheric bottom brightness temper-
ature. Subsequently, the loss function of the simulated and satellite measurement-based
brightness temperature is computed. The retrieval values of humidity and density within
the snow cover on the ice sheet’s surface are determined according to the minimum value
of the loss function [12]. For the specific formula of this method, refer to the study by Houtz
et al. [12], which is not to be reiterated here.

As in Colosio et al. [8], in this study, the same three metrics of overall accuracy (OA),
commission error (CO), and omission error (OM) based on confusion matrices were chosen
to characterize the accuracy of the surface melt results. The case where the AWS air
temperature data (MODIS ice surface temperature data) indicated the presence of melt and
the result calculated from the passive microwave data indicated its absence was categorized
as an omission error (OM), while the case where the AWS air temperature data (MODIS
ice surface temperature data) indicated the absence of melt and the result obtained from
the passive microwave data indicated its presence was categorized as commission error
(CO) [8].

2.2.2. Mapping of SGLs

Two indices, the modified Normalized Differential Water Index (NDWI) and the
Normalized Differential Snow Index (NDSI), were used in this study. The former, proposed
by Yang et al. [33], uses blue–red bands to extract water bodies. Compared with the
traditional NDWI (using green waves and near-infrared bands), this index can enhance
the spectral contrast of ice, snow, and water bodies. The NDSI, which uses both green
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wave and shortwave infrared bands, can rule out the effect of rock [34,35]. In this study,
we used a set of automatic water body extraction methods on Sentinel-2 images when
extracting water bodies, as proposed by Moussavi et al. [36]. The rock mask was extracted
by calculating NDSI < 0.85 and B2 < 0.4. The cloud mask was extracted by calculating
B11 > 0.1 and B10 > 0.01. Then, NDWI > 0.18 and (B3–B4) > 0.09 were calculated to extract
the water bodies. On the basis of water body extraction, the influence of rock and cloud
could be excluded by applying rock and cloud masks, respectively. Image downloading
and water extraction operations were all carried out on the GEE platform [37]. Figure 4
shows the flow chart of the processing of data and analysis of results in this study.
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3. Results
3.1. Spatio-Temporal Distribution of Surface Melt and Surface Melt Errors
3.1.1. In Ka Band

In this research study, we employed DMSP morning and evening data to determine the
duration of the melting of the GrIS during spring, summer, autumn, and winter, spanning
the years 2011 to 2020 (refer to Figure 5a,b). The number of melt days in each season
varied in the range of [0, 92] days. In order to facilitate a more visually striking depiction
of the melting range, we assigned the grids with zero-day melting period Not a Number
(NaN) values, which are accordingly represented as blank spaces in the graphs below.
The DMSP data failed to detect any melting during the winter season, indicating that the
number of days with melting at each location was nil. Consequently, the duration of the
melting process in winter is not displayed. The grids with less melting are depicted in
blue, and those with frequent melting are in red. In the spring season, melting was merely
observed in the peripheral regions of the GrIS, with the corresponding melt day values
being relatively low (displayed in blue in the graphs). In the summer season, the frequency
of melt events generally decreased from the peripheral regions of Greenland towards its
interior regions, as illustrated by the color gradient from red to yellow, green, blue, and
blank in the figure. The years 2012 and 2019 were characterized by extreme melting, which
was detected across the majority of Greenland’s surface (refer to Figure 5a). In autumn,
melting was solely detected within the peripheral regions of SW and SE Greenland, with
the number of melt days being exceedingly low (represented in blue within the illustration).
Melting was found to demonstrate distinct seasonal and vertical disparities and primarily
occurred during the summer season.
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Figure 5. Melt days and overall accuracy of DMSP data. (a,b) represent the melt days of DMSP
morning and evening data, respectively, in spring, summer, and autumn (2011–2020); (c,d) denote the
OA values of DMSP morning and evening data, respectively, in spring, summer, autumn, and winter.
The blank areas indicate NaN values.

The discrepancy between the DMSP morning and evening data regarding melt results
was more pronounced during the summer season. For instance, in this season, from 2011
to 2020, a distinct reddish hue is evident in Figure 5a, while only a limited amount of such
coloration is observed along the periphery of Greenland in Figure 5b. In 2019, the DMSP
morning data revealed melting across the whole region (refer to Figure 5a); however, the
DMSP evening data did not indicate the occurrence of any melting within the high-altitude
inner regions (see Figure 5b). The DMSP morning data suggested a wider range of melt
occurrences and a higher melt day number than the DMSP evening data.

In this research study, we assessed the surface melt results identified by using DMSP
data and compared them with those estimated derived from AWS air temperatures and
MODIS ice surface temperature data. For a designated AWS or grid, we calculated accuracy
metrics (OA, CO, and OM) for DMSP data for spring, summer, autumn, and winter. We
then computed the mean values of the data across all AWSs and grids, taking into account
the season and the mean snowline elevation. Table 3 presents the precision metrics for
DMSP data across different seasons and altitudes, including spring, summer, autumn,
winter, and above and below the snowline. The OA for the DMSP data in spring, autumn,
and winter exceeded 90%. However, in summer, this metric decreased to approximately
76% (according to the AWS data) or 83% (according to the MODIS data). It appears that
the inaccuracies in DMSP-based melt detection were primarily concentrated during the
summer season. Above the average snowline altitude, the OA of the DMSP data exceeded
94%, whereas below the average snowline altitude, it ranged from 84% to 89%. This
indicates that the surface melt error of the DMSP data was mainly concentrated below the
mean snowline elevation. Figure 5c,d display the spatio-temporal distribution of the OA
values derived from the DMSP data. In terms of temporal scale, the minimal values of the
OA of DMSP data were primarily observed during the summer season, and in terms of
spatial scale, they predominantly corresponded to the peripheral regions of Greenland at
relatively low altitudes.
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Table 3. Accuracy results for DMSP data in spring, summer, autumn, winter, and both above and
below mean snowline elevation, including assessment data from AWSs and MODIS (The word “\” in
the table represents the null value).

Assessment
Data

Season\Altitude
DMSP Morning Data DMSP Evening Data

OA (%) CO (%) OM (%) OA (%) CO (%) OM (%)

AWSs

Spring 92 7 42 93 2 80
Summer 77 40 19 74 15 55
Autumn 93 1 67 91 1 85
Winter 99 0 97 99 0 87

Above the snowline 94 5 39 96 1 82
Below the snowline 86 20 45 84 8 68

MODIS

Spring 98 2 35 99 1 88
Summer 82 23 19 84 11 68
Autumn 99 0 75 100 0 92
Winter 100 0 \ 100 0 \

Above the snowline 96 11 67 97 6 90
Below the snowline 89 20 53 88 13 78

During the summer months, the CO was 21% (AWS-based data) or 4% (MODIS-based
data) higher than the OM for the DMSP morning data, and the OM was 40% (AWS-based
data) or 57% (MODIS-based data) higher than the CO for the DMSP evening data (Table 3).
This indicates that the DMSP morning data are susceptible to commission errors during
the summer months, while the DMSP evening data are likely to experience omission errors.
This observation is further corroborated by the data presented in Figure 5a,b.

3.1.2. In L Band

In this research study, we employed SMOS data to determine the duration of the
melting of the GrIS in spring, summer, autumn, and winter, spanning the years 2011 to 2020
(refer to Figure 6a,b). The illustration below shows a color-coded representation of the melt
days, with blue indicating low values, red indicating high values, and grids with 0 melt
days being designated as NaN values and displayed as empty spaces. In spring, melting
was observed in the peripheral regions of Greenland, characterized by a high number of
melt days (represented in red in the plots). Simultaneously, the melting detected in the
interior regions of Greenland displayed a low number of melt days (illustrated in blue in
the plots). The degree of melting and the number of melt days displayed by the SMOS data
were significantly higher in the summer than in the spring. The spatial distribution pattern
of melt days, according to the SMOS data, in autumn and winter was quite similar to that
in spring. The findings indicate that the substantial melting indicated by the SMOS data
was primarily concentrated in the peripheral regions of Greenland.

The spatial distribution patterns of melt days indicated by the SMOS morning and
evening data exhibited a high degree of similarity (Figure 6a,b). Nonetheless, in 2011,
within the interior of northern Greenland, the number of melt days indicated by the SMOS
morning data was consistently low (depicted in blue in Figure 6a), whereas the number of
melt days indicated by the SMOS evening data was elevated (illustrated in red in Figure 6b).

By employing the estimated surface melt results derived from AWS air temperature
and MODIS ice temperature data as a reference, in this research study, we assessed the
surface melt results identified by using the SMOS data (refer to Table 4). These data
exhibited the highest OA, 68%, with respect to AWS air temperature data and the lowest OA,
85%, with respect to MODIS ice surface temperature data, both during the summer. This
discrepancy is presumably attributed to the paucity of available AWSs. Upon evaluation of
the AWS data, it was found that the SMOS data exhibited an OA of over 90% at elevations
above the average snowline; conversely, at elevations below the average snowline, this
metric was approximately 36%. When we performed the evaluation with the MODIS
data, at elevations above the average snowline, the OA value of the SMOS data exceeded
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90%, whereas at elevations below the average snowline, it was approximately 70%. These
findings indicate that the inaccuracies in surface melt identified by using the SMOS data
primarily concern the summer season and altitudes below the average snowline.
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Figure 6. Melt days and overall accuracy of SMOS data. (a,b) represent the number of melt days
according to SMOS morning and evening data, respectively, in spring, summer, autumn, and winter
(2011 to 2020); (c,d) indicate the OA values according to SMOS morning and evening data, respectively,
in spring, summer, autumn, and winter, with the blank areas denoting NaN values.

Table 4. Accuracy results for SMOS data in spring, summer, autumn, winter, and both above and
below the mean snowline elevation, including evaluation data from AWSs and MODIS (The word
“\” in the table represents the null value).

Assessment
Data

Season\Altitude
SMOS Morning Data SMOS Evening Data

OA (%) CO (%) OM (%) OA (%) CO (%) OM (%)

AWSs

Spring 64 35 53 63 36 59
Summer 69 35 57 67 33 61
Autumn 65 36 43 65 36 45
Winter 61 38 54 62 37 36

Above the snowline 94 5 77 93 5 77
Below the snowline 36 68 46 36 66 45

MODIS

Spring 92 8 69 91 9 79
Summer 85 15 71 84 17 63
Autumn 95 5 81 94 6 96
Winter 95 5 \ 95 5 \

Above the snowline 95 14 92 94 15 89
Below the snowline 69 57 80 70 57 74

Figure 6c,d display the spatial distribution of the OA values derived from the SMOS
data across Greenland. In the figure, higher OA values are illustrated in yellow and lower
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OA values in black. It can be observed that the minimal OA values of the SMOS data
primarily concern the summer season and the peripheral regions of Greenland. The spatial
distribution patterns of the OA values of the SMOS morning and evening data exhibited a
high degree of similarity, with only the inland regions of northern Greenland demonstrating
notable disparities in 2011.

3.2. Spatio-Temporal Variation of SGLs

The occurrence of surface melt errors in the Ka and L bands was primarily concentrated
during the summer season and below the mean snowline elevation (Section 3.1). Therefore,
in this research study, by utilizing the water body identification approach detailed in
Section 2.2.2, we successfully extracted the SGL water body pixels within the summer
composite image (median composite) spanning 2016 to 2020. We identified the latitude and
longitude coordinates of the center of the grids (25 km × 25 km) where the AWSs below the
mean snowline elevation were situated. Subsequently, a 14 km buffer zone was established
for these centroids, and the number of SGL water body pixels within the buffer zone was
tallied (Table 5). From 2016 to 2020, the maximum number of water bodies was observed
in the grids where UPE_U, JAR, KAN_M, KAN_M, and JAR were situated, respectively.
Figure 7 illustrates the water bodies situated within the buffer zone encompassing the
centroids of these grids. For each grid where the sites were located, the number of water
body pixels per day was also calculated for the summer months of 2016 to 2020. Figure 8
shows the results of water body pixel extraction for each day in the summer of 2016 for the
grid where UPE_U was located. It can be noticed that the SGL water bodies in the summer
were in a dynamic state of flux.

In 2016, the total number of water bodies exceeded 1000, including those in the
Swiss Camp, JAR, KAN_L, KAN_M, UPE_L, and UPE_U grids, where the AWSs were
situated. The research results confirm the accuracy of daily SGL water body identification
in the aforementioned grids. The boundaries of the SGLs were manually delineated on
Sentinel-2 summer synthetic imagery, and a 200 m buffer zone was established for them.
Subsequently, two water sample points were randomly chosen within the SGLs’ perimeter,
along with two non-water sample points within the buffer zones, as illustrated in Figure 9.
A comprehensive study involving the selection of a total of 168 sample points, which
included 84 water-body samples and an equal number of non-water-body samples, was
conducted. Confusion matrices were calculated by examining the imagery for each day of
summer (within the above-mentioned six grids). The overall accuracy reached a desirable
value of 96%, accompanied by a Kappa coefficient of 0.92. This demonstrates that the water
bodies analyzed in this research study yielded satisfactory outcomes.

Table 5. Total number of pixels of SGL water bodies was calculated within a 14 km buffer zone in the
center of grids where AWS’s average snowline elevation was situated. Analysis based on Sentinel-2
summer composite imagery spanning from 2016 to 2020.

Site\Year 2016 2017 2018 2019 2020

Swiss Camp 10,752 97 0 18,840 294
JAR 8000 10,894 0 2985 4210

JAR2 8000 10,894 0 2985 4210
Peterman ELA 12 0 0 0 0

KPC_U 0 0 0 0 0
TAS_L 63 0 0 0 0
TAS_U 63 0 0 0 0
TAS_A 63 0 0 0 0
QAS_U 30 0 0 16 0
QAS_A 0 89 0 751 0
NUK_U 296 1058 0 464 12
NUK_N 571 983 0 444 0
KAN_L 2144 2910 756 1948 111
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Table 5. Cont.

Site\Year 2016 2017 2018 2019 2020

KAN_M 30,609 1905 3019 32,175 901
UPE_L 2278 23 0 508 65
UPE_U 46,623 564 0 16,941 52
THU_L 0 0 0 0 0
THU_U 0 0 0 0 0
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Figure 7. Extraction results of SGL water body pixels. (a–e) represent Sentinel-2 summer synthetic 
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JAR, KAN_M, KAN_M, and JAR, respectively) were situated. (f–j) depict water body extraction 

Figure 7. Extraction results of SGL water body pixels. (a–e) represent Sentinel-2 summer synthetic
images from 2016 to 2020, respectively, allocated in grids (25 km × 25 km) where AWSs (UPE_U, JAR,
KAN_M, KAN_M, and JAR, respectively) were situated. (f–j) depict water body extraction outcomes
of Sentinel-2 images at corresponding grids from 2016 to 2020, respectively. Green dot: center of the
grid where AWS is positioned; red boundary: 14 km buffer in the center of the grid; dark blue area:
water body pixels; light blue section: non-water body pixels.
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was located. The horizontal coordinate represents the day of the year, and the vertical coordinate
represents the number of water body pixels.
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Figure 9. Sample point selection. (a) A synthetic image relative to the 2016 Sentinel-2 summer season
within the grid where Swiss Camp was situated; the green point represents the center of the grid, the
red point signifies the selected sample point, the red boundary denotes the 14 km buffer zone in the
center of the grid, the blue boundary represents the artificially mapped boundary of the SGLs, and
the yellow boundary indicates the 200 m buffer zone. (b,c) depict magnified views of the two SGLs in
Figure (a), respectively.

3.3. Effect of SGLs on Surface Melt Data Inversion
3.3.1. On Ka Band

In this research study, we calculated not only the count of SGL water bodies within the
grids where the AWSs were located (in summer synthetic imagery) but also the accuracy
metrics (OA, CO, and OM) for the DMSP data within these specific grids. Using grids
facilitates the correlation between the surface melt error in the Ka band and the count of
SGL water body pixels. The accuracy metrics of the DMSP data were categorized into two
groups based on the “water body pixel number = 0” and “water body pixel number > 0”
criteria (Table 6) for the summer synthetic imagery. It was observed that the presence of
SGL water body pixels led to 36% and 20% increases in the CO of the DMSP morning and
evening data, respectively.

Table 6. The accuracy results of the DMSP data in both SGL and non-SGL environments. The SGL
water bodies in this study were derived from Sentinel-2 summer synthetic imagery.

Water Body
Pixel Number

DMSP Morning Data DMSP Evening Data

OA CO OM OA CO OM

=0 61% 36% 39% 44% 12% 66%
>0 76% 72% 4% 72% 32% 27%

For each grid encompassing an AWS area for a specific summer day, we computed
the number of water body pixels and ascertained whether they had been erroneously
categorized or overlooked based on the air temperature registered by the AWS and the
surface melt indicated by the DMSP data. We also meticulously calculated the number of
summer days for which this parameter had been misclassified and overlooked by using the
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DMSP data based on the “water body pixel number = 0” and “water body pixel number > 0”
criteria (refer to Table 7). The number of days with CO increased by 12 and 3 days when
using the DMSP morning and evening data, respectively, when SGL water body pixels
were present.

Table 7. Days with misclassification and omission errors with the use of DMSP data in the absence and
presence of SGL water bodies. The SGL water bodies here were derived from daily Sentinel-2 imagery.

Water Body
Pixel Number

DMSP Morning Data DMSP Evening Data

Days with CO Days with OM Days with CO Days with OM

=0 14 21 5 42
>0 26 3 8 17

Furthermore, we calculated the corresponding number of water bodies for each day
and the disparity between TB and Tc in instances where the surface melt indicated by
the DMSP data was truly negative, truly positive, misclassified, or overlooked (refer to
Figure 10). When the DMSP data did not indicate surface melt (TN), the number of SGL
water bodies was low; when these data indicated surface melt (TP), this number was
high. The presence of strong surface melt suggests that SGLs are equally well developed.
When the DMSP data indicated surface melt (CO), the number of SGL water bodies was
high; when these data did not indicate surface melt (OM), this number was low. This
suggests that the elevated brightness temperature in the DMSP data could be attributed
to a combination of surface melt and SGLs. A situation where the surface melt is absent
but the SGL water body number remains high can also lead to the DMSP data’s brightness
temperature surpassing the melt threshold, resulting in a commission error. When surface
melting occurs but the SGL water body number is lower, this results in the DMSP data’s
brightness temperature falling below the melt threshold, leading to an omission error.
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Figure 10. Number of SGL water body pixels (right y-axis) with the difference between brightness
temperature and melting threshold data (left y-axis) based on surface melt indicated by DMSP data,
categorized into true negatives, true positives, commission error, and omission error. (a) DMSP
morning data; (b) DMSP evening data.

3.3.2. On L Band

We further evaluated the precision outcomes of the SMOS data in the absence and
presence of SGLs (Table 8). It can be observed that the percentage of OM in the SMOS
morning and evening data increased by 33% and 32%, respectively, when SGLs were
present. In addition, we also calculated the number of days with CO and OM for the
SMOS data in the presence and absence of SGLs (Table 9). When SGLs were present, the
number of days with OM for the SMOS morning and evening data increased by 17 and
21 days, respectively. This indicates that the presence of SGLs increases the omission error
of SMOS data.
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Table 8. The accuracy results of the SMOS data in both SGL and non-SGL environments. The SGL
water bodies in this study were derived from Sentinel-2 summer synthetic imagery.

Water Body
Pixel Number

SMOS Morning Data SMOS Evening Data

OA CO OM OA CO OM

=0 66% 68% 26% 69% 77% 27%
>0 43% 65% 59% 41% 57% 59%

Table 9. The number of days with CO and OM for the SMOS data in the absence and presence of SGL
water bodies. The SGL water bodies here were derived from daily Sentinel-2 imagery.

Water Body
Pixel Number

SMOS Morning Data SMOS Evening Data

Days with CO Days with OM Days with CO Days with OM

=0 21 11 15 13
>0 17 28 10 34

We calculated the number of SGL water bodies and the disparity between the actual
LWC and the model 0.2% LWC when the surface melt result indicated by the SMOS data
was truly negative, truly positive, misclassified, and overlooked (Figure 11). In general,
the number of SGLs was consistent with the intensity of the LWC indicated by the SMOS
data. Although the presence of SGLs was found to increase the omission error of the SMOS
data, the occurrence of omission was not in a one-to-one response relationship with the
presence of SGLs. Moreover, there was no linear relationship between the LWC determined
according to the SMOS data and the number of SGL water bodies.
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Figure 11. The number of SGL water bodies (right y-axis) and the difference between the actual
LWC and the model 0.2% LWC (left y-axis) for surface melt are indicated by the SMOS data as
truly negative, truly positive, misclassified, and overlooked. (a) SMOS morning data; (b) SMOS
evening data.

4. Discussion

The DMSP Ka-band detected extreme surface melting during the summers of 2012
and 2019 (refer to Figure 5a,b). By applying data from three different sensors, Nghiem
et al. found that the melting extent in Greenland was as high as 98.6% on 12 July 2012 [10].
Zheng et al. combined a combination of regional climate models, passive microwave
data, and machine learning to find melting across Greenland in mid-July 2012 [38]. The
extreme melting event in July 2012 may be related to anomalous warm air ridges due
to high blockages in Greenland [10]. In 2019, the surface mass balance, snowfall, and
runoff set new records, and anomalously persistent anticyclones, low snowfall, and low
albedo promoted the absorption of solar radiation and enhanced surface melting [39].
Extreme melting in 2019 may be related to anomalous atmospheric conditions [39]. This
suggests that the surface melting detected by the DMSP Ka-band is in good agreement with
previous studies.
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Surface melting is generally more prevalent in the summer, while it is scarcely observed
or altogether nonexistent during the non-melting seasons, i.e., spring, autumn, and winter.
Nonetheless, for periods devoid of surface melting, the SMOS data revealed the occurrence
of melting in the GrIS’s marginal and inland regions (refer to Figure 6a,b). Previous research
has indicated that the SMOS satellite may exhibit false positives during the non-melting
seasons. For instance, when Houtz et al. employed SMOS L-band data to identify liquid
water in Greenland, they discovered a notable non-zero liquid water column during the dry
snow season in 2016 [11]. The L band exhibits significant penetration capabilities in snowy
environments, and its false-positive retrieval during non-melting seasons may be attributed
to the presence of buried lakes and firn aquifers within the GrIS during winter [11]. Zheng
et al. discovered buried lakes between 2017 and 2022, which were primarily located
in west-central, southwestern, and northeastern Greenland, at elevations ranging from
800 to 1700 m [40]. Shang et al. investigated firn aquifers during the 2010–2020 period and
discovered that they were primarily situated in southeastern and southern Greenland [41].

When snow melting occurs, the presence of liquid water content changes the dielectric
constant and emissivity of snow, which ultimately leads to a change in brightness tempera-
ture, which can be captured with microwave radiometers [7]. However, the change in liquid
water content is not simply linearly related to the change in brightness temperature [38].
The increase in liquid water content before the snowpack layer reaches saturation is mani-
fested as an increase in brightness temperature in microwave radiometer-based data [7].
Therefore, existing surface melt algorithms essentially allow for the detection of liquid
water content in the snowpack layer through a sharp change in brightness temperature [7].
The snowpack layer has a high albedo, typically above 0.8 [42]. SGLs, on the other hand,
have lower albedos, usually below 0.3 [43]. This allows SGLs to absorb more solar radiation
than snow, increasing their own temperature and promoting the melting of the surrounding
snow and ice [44]. The positive albedo feedback of SGLs may allow the relevant pixels in
the grid to have greater Ka-band thermal emission, presenting a higher brightness tempera-
ture in microwave radiometer data, leading to the false-positive retrieval of surface melt in
the Ka band (Section 3.3.1). L-band microwave radiometers detect brightness temperatures
from glacial ice, wet snow, and atmospheric thermal radiation [12]. L-band penetration
depth ranges from 15 to 120 m in ice, >100 m in dry snow, and >1.8 m in wet snow (<1%
LWC); however, penetration depth in water is of the order of 1 cm [45–47]. Therefore, when
SGLs are present, microwave radiometers may not detect L-band brightness temperatures,
resulting in the false negative retrieval of surface melt in the L band (Section 3.3.2).

In this study, the effect of SGLs on the passive microwave inversion of surface melt
data was determined in terms of AWS temperatures (Section 3.3). Due to the lack of
measured data for the GrIS, the use of station temperatures to evaluate the results of remote
sensing has so far been considered a good means of assessment [9]. Previous studies have
shown that site air temperature varies from −10 ◦C to 10 ◦C during ice sheet melting at
different locations [48]. In this study, for site air temperatures, we only used three melt
thresholds, i.e., −0, −1, and −2 ◦C. We found that the commission and omission error of
the inversion of surface melt data in two bands decreased and increased, respectively, when
the melt threshold for site air temperature was lowered from 0 ◦C to −2 ◦C. Therefore, for
site air temperature, if a lower melt threshold, i.e., below −2 ◦C, is used, the effect of SGLs
on the commission error in the Ka band may decrease, and that on the omission error in
the L band may increase.

5. Conclusions

In this study, we quantified the seasonal surface melting of the Greenland Ice Sheet
between 2011 and 2020 by utilizing DMSP and SMOS data. It was determined that the
surface melt determined with Ka-band and L-band inversion was primarily concentrated
during the summer and below the average snowline elevation. Subsequently, by utilizing
the surface melt estimation derived from AWS air temperature and MODIS ice surface
temperature data as a baseline, we identified that the surface melt errors in the Ka and
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L bands were also predominantly concentrated during the summer and below the mean
snowline elevation. Therefore, we selected AWSs situated below the mean snowline
elevation, and by employing Sentinel-2 data from the summers of 2016 to 2020, we extracted
SGL water body pixels in their vicinity and calculated the surface melt in the area with Ka-
band and L-band data. By comparing the surface melt estimated from AWS air temperature
data with that obtained with remote sensing data inversion, it was found that where SGLs
were present, the DMSP morning and evening data had increases of 36% and 30% in CO,
respectively, and of 12 and 3 days in the number of days with commission error, respectively;
the SMOS morning and evening data had increases of 33% and 32% in OM, respectively,
and of 17 and 21 days in the number of days with omission error, respectively. In future
studies, we will delve deeper into the physical mechanisms by which SGLs influence melt
data through passive microwave inversion by integrating Ka- and L-band surface melt
results to minimize their impact and improve accuracy.

Author Contributions: Conceptualization, M.D.; Methodology, C.W.; Writing—original draft, Q.L.;
Supervision, L.A.; Funding acquisition, M.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the National Science Foundation of China (grant No.
42122047), the National Key Research and Development Program of China (2021YFC2802504), and the
Basic Fund of the Chinese Academy of Meteorological Science (grant No. 2024Z007 and 2023Z015).

Data Availability Statement: The data from the Programme for Monitoring of the Greenland Ice
Sheet of the Geological Survey of Denmark and Greenland and from the Greenland Analogue Project
were retrieved from http://www.promice.dk, accessed on 1 January 2024.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel,

B.; et al. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo
Sounding Combined With Mass Conservation. Geophys. Res. Lett. 2017, 44, 11,051–11,061. [CrossRef] [PubMed]

2. Mouginot, J.; Rignot, E.; Bjørk, A.A.; van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-six
years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 2019, 116, 9239–9244. [CrossRef]
[PubMed]

3. Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.;
et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [CrossRef] [PubMed]

4. Aschwanden, A.; Brinkerhoff, D.J. Calibrated Mass Loss Predictions for the Greenland Ice Sheet. Geophys. Res. Lett. 2022, 49,
e2022GL099058. [CrossRef]

5. Choi, Y.; Morlighem, M.; Rignot, E.; Wood, M. Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over
the next century. Commun. Earth Environ. 2021, 2, 26. [CrossRef]

6. van den Broeke, M.; Box, J.; Fettweis, X.; Hanna, E.; Noël, B.; Tedesco, M.; van As, D.; van de Berg, W.J.; van Kampenhout, L.
Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Curr. Clim. Change Rep. 2017, 3,
345–356. [CrossRef]

7. Picard, G.; Leduc-Leballeur, M.; Banwell, A.F.; Brucker, L.; Macelloni, G. The sensitivity of satellite microwave observations to
liquid water in the Antarctic snowpack. Cryosphere 2022, 16, 5061–5083. [CrossRef]

8. Colosio, P.; Tedesco, M.; Ranzi, R.; Fettweis, X. Surface melting over the Greenland ice sheet derived from enhanced resolution
passive microwave brightness temperatures (1979–2019). Cryosphere 2021, 15, 2623–2646. [CrossRef]

9. Tedesco, M. Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness
temperature (1979–2008). Remote Sens. Environ. 2009, 113, 979–997. [CrossRef]

10. Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The
extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 2012, 39. [CrossRef]

11. Houtz, D.; Mätzler, C.; Naderpour, R.; Schwank, M.; Steffen, K. Quantifying Surface Melt and Liquid Water on the Greenland Ice
Sheet using L-band Radiometry. Remote Sens. Environ. 2021, 256, 112341. [CrossRef]

12. Houtz, D.; Naderpour, R.; Schwank, M.; Steffen, K. Snow wetness and density retrieved from L-band satellite radiometer
observations over a site in the West Greenland ablation zone. Remote Sens. Environ. 2019, 235, 111361. [CrossRef]

13. Mousavi, M.; Colliander, A.; Miller, J.Z.; Entekhabi, D.; Johnson, J.T.; Shuman, C.A.; Kimball, J.S.; Courville, Z.R. Evaluation of
Surface Melt on the Greenland Ice Sheet Using SMAP L-Band Microwave Radiometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2021, 14, 11439–11449. [CrossRef]

http://www.promice.dk
https://doi.org/10.1002/2017GL074954
https://www.ncbi.nlm.nih.gov/pubmed/29263561
https://doi.org/10.1073/pnas.1904242116
https://www.ncbi.nlm.nih.gov/pubmed/31010924
https://doi.org/10.1038/s41586-019-1855-2
https://www.ncbi.nlm.nih.gov/pubmed/31822019
https://doi.org/10.1029/2022GL099058
https://doi.org/10.1038/s43247-021-00092-z
https://doi.org/10.1007/s40641-017-0084-8
https://doi.org/10.5194/tc-16-5061-2022
https://doi.org/10.5194/tc-15-2623-2021
https://doi.org/10.1016/j.rse.2009.01.009
https://doi.org/10.1029/2012GL053611
https://doi.org/10.1016/j.rse.2021.112341
https://doi.org/10.1016/j.rse.2019.111361
https://doi.org/10.1109/JSTARS.2021.3124229


Remote Sens. 2024, 16, 1673 19 of 20

14. Colliander, A.; Mousavi, M.; Marshall, S.; Samimi, S.; Kimball, J.S.; Miller, J.Z.; Johnson, J.; Burgin, M. Ice Sheet Surface
and Subsurface Melt Water Discrimination Using Multi-Frequency Microwave Radiometry. Geophys. Res. Lett. 2022, 49,
e2021GL096599. [CrossRef]

15. Mätzler, C.; Wiesmann, A. Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote
Sens. Environ. 1999, 70, 317–325. [CrossRef]

16. Schwank, M.; Rautiainen, K.; Mätzler, C.; Stähli, M.; Lemmetyinen, J.; Pulliainen, J.; Vehviläinen, J.; Kontu, A.; Ikonen, J.; Ménard,
C.B. Model for microwave emission of a snow-covered ground with focus on L band. Remote Sens. Environ. 2014, 154, 180–191.
[CrossRef]

17. Braithwaite, R.J.; Laternser, M.; Pfeffer, W.T. Variations of near-surface firn density in the lower accumulation area of the Greenland
ice sheet, Pâkitsoq, West Greenland. J. Glaciol. 1994, 40, 477–485. [CrossRef]

18. Hu, J.; Huang, H.; Chi, Z.; Cheng, X.; Wei, Z.; Chen, P.; Xu, X.; Qi, S.; Xu, Y.; Zheng, Y. Distribution and Evolution of Supraglacial
Lakes in Greenland during the 2016&ndash;2018 Melt Seasons. Remote Sens. 2022, 14, 55. [CrossRef]

19. Yang, K.; Li, M.C.; Liu, Y.X. Remote Sensing Study of Meltwater Storage, Transport and Release from the Greenland Ice Sheet.
Ph.D. Thesis, Nanjing University, Nanjing, China, 2014.

20. Zhu, D.; Zhou, C.; Zhu, Y.; Peng, B. Evolution of supraglacial lakes on Sermeq Avannarleq glacier, Greenland using Google Earth
Engine. J. Hydrol. Reg. Stud. 2022, 44, 101246. [CrossRef]

21. Qian, L.; Che, W.; Tong, Z.; Wei, C.; Minghu, D. Assessment of Greenland surface melt algorithms based on DMSP and SMOS
data. Adv. Polar Sci. 2023, 34, 177–189.

22. Kwok, R.; Nghiem, S.V.; Steffen, K.; Tsai, W.Y. Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter
change. J. Glaciol. 2001, 47, 539–547. [CrossRef]

23. Anderson, M.R.; Mote, T.L. Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements.
J. Glaciol. 1995, 41, 51–60. [CrossRef]

24. Al Bitar, A.; Mialon, A.; Kerr, Y.H.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; Mahmoodi, A.; Tarot, S.; Parrens, M.; et al.
The global SMOS Level 3 daily soil moisture and brightness temperature maps. Earth Syst. Sci. Data 2017, 9, 293–315. [CrossRef]

25. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture
and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [CrossRef]

26. Liu, Y. Multi-source data fusion of Antarctic ice sheet freeze-thaw datasets (1999–2019). J. Glob. Change Data 2020, 4, 325–331. (In
English and Chinese)

27. Steffen, C.; Box, J.; Abdalati, W. Greenland Climate Network: GC-Net. In Glaciers, Ice Sheets and Volcanoes: A Tribute to Mark F.
Meier; CRREL 96-27 Special Report; Colbeck, S.C., Ed.; US Army Cold Regions Reattach and Engineering (CRREL): Hanover, NH,
USA, 1996; pp. 98–103.

28. Fang, Z.X. Summer surface temperature changes in the Greenland ice sheet from 2000 to 2020 and their implications for material
bal-ance. Glacial Permafr. 2022, 44, 872–884.

29. Hall, D.K.; Comiso, J.C.; DiGirolamo, N.E.; Shuman, C.A.; Box, J.E.; Koenig, L.S. Variability in the surface temperature and melt
extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett. 2013, 40, 2114–2120. [CrossRef]

30. Hall, D.K.; DiGirolamo, N.E. Multilayer Greenland Ice Surface Temperature, Surface Albedo, and Water Vapor from MODIS, Version 1;
NASA: Washington, DC, USA, 2019.

31. Yu, X.; Wang, T.; Ding, M.; Wang, Y.; Sun, W.; Zhang, Q.; Huai, B. Assessment of MODIS Surface Temperature Products of
Greenland Ice Sheet Using In-Situ Measurements. Land 2022, 11, 593. [CrossRef]

32. Ryan, J.; Smith, L.; Van As, D.; Cooley, S.; Cooper, M.; Pitcher, L.; Hubbard, A. Greenland Ice Sheet surface melt amplified by
snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [CrossRef] [PubMed]

33. Yang, K.; Smith, L.C. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral–shape information in
high-resolution satellite imagery. IEEE Geosci. Remote Sens. Lett. 2012, 10, 801–805. [CrossRef]

34. Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22.
[CrossRef]

35. Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution
imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [CrossRef]

36. Moussavi, M.; Pope, A.; Halberstadt, A.R.W.; Trusel, L.D.; Cioffi, L.; Abdalati, W. Antarctic supraglacial lake detection using
Landsat 8 and Sentinel-2 imagery: Towards continental generation of lake volumes. Remote Sens. 2020, 12, 134. [CrossRef]

37. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

38. Zheng, L.; Cheng, X.; Shang, X.; Chen, Z.; Liang, Q.; Wang, K. Greenland Ice Sheet Daily Surface Melt Flux Observed From Space.
Geophys. Res. Lett. 2022, 49, e2021GL096690. [CrossRef]

39. Tedesco, M.; Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the
Greenland ice sheet. Cryosphere 2020, 14, 1209–1223. [CrossRef]

40. Zheng, L.; Li, L.; Chen, Z.; He, Y.; Mo, L.; Chen, D.; Hu, Q.; Wang, L.; Liang, Q.; Cheng, X. Multi-sensor imaging of winter buried
lakes in the Greenland Ice Sheet. Remote Sens. Environ. 2023, 295, 113688. [CrossRef]

41. Shang, X.; Cheng, X.; Zheng, L.; Liang, Q.; Chi, Z. Decadal Changes in Greenland Ice Sheet Firn Aquifers from Radar Scatterometer.
Remote Sens. 2022, 14, 2134. [CrossRef]

https://doi.org/10.1029/2021GL096599
https://doi.org/10.1016/S0034-4257(99)00047-4
https://doi.org/10.1016/j.rse.2014.08.029
https://doi.org/10.3189/S002214300001234X
https://doi.org/10.3390/rs14010055
https://doi.org/10.1016/j.ejrh.2022.101246
https://doi.org/10.3189/172756501781831738
https://doi.org/10.3189/S0022143000017755
https://doi.org/10.5194/essd-9-293-2017
https://doi.org/10.1109/36.942551
https://doi.org/10.1002/grl.50240
https://doi.org/10.3390/land11050593
https://doi.org/10.1126/sciadv.aav3738
https://www.ncbi.nlm.nih.gov/pubmed/30854432
https://doi.org/10.1109/LGRS.2012.2224316
https://doi.org/10.1016/0034-4257(89)90101-6
https://doi.org/10.1016/0034-4257(95)00137-P
https://doi.org/10.3390/rs12010134
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1029/2021GL096690
https://doi.org/10.5194/tc-14-1209-2020
https://doi.org/10.1016/j.rse.2023.113688
https://doi.org/10.3390/rs14092134


Remote Sens. 2024, 16, 1673 20 of 20

42. Perovich, D.K.; Grenfell, T.C.; Light, B.; Hobbs, P.V. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res.
Ocean. 2002, 107, SHE 20-1–SHE 20-13. [CrossRef]

43. Tschudi, M.A.; Curry, J.A.; Maslanik, J.A. Airborne observations of summertime surface features and their effect on surface albedo
during FIRE/SHEBA. J. Geophys. Res. Atmos. 2001, 106, 15335–15344. [CrossRef]

44. Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea Ice-Albedo Climate Feedback Mechanism. J. Clim. 1995, 8, 240–247. [CrossRef]
45. Mätzler, C. Thermal Microwave Radiation: Applications for Remote Sensing; IET: London, UK, 2006; Volume 52.
46. Matzler, C.; Aebischer, H.; Schanda, E. Microwave dielectric properties of surface snow. IEEE J. Ocean. Eng. 1984, 9, 366–371.

[CrossRef]
47. Matzler, C.; Schanda, E.; Hofer, R.; Good, W.; Rango, A. Microwave signatures of the natural snow cover at Weissfluhjoch. In

Proceedings of the NASA Conference Publication, Hampton, VA, USA, 5–7 November 1980.
48. Braithwaite, R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling.

J. Glaciol. 1995, 41, 153–160. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2000JC000438
https://doi.org/10.1029/2000JD900275
https://doi.org/10.1175/1520-0442(1995)008%3C0240:SIACFM%3E2.0.CO;2
https://doi.org/10.1109/JOE.1984.1145644
https://doi.org/10.3189/S0022143000017846

	Introduction 
	Data and Methods 
	Data 
	Passive Microwave Data 
	AWSs and MODIS Data 
	Sentinel-2 Imagery 

	Methods 
	Surface Melt Simulation 
	Mapping of SGLs 


	Results 
	Spatio-Temporal Distribution of Surface Melt and Surface Melt Errors 
	In Ka Band 
	In L Band 

	Spatio-Temporal Variation of SGLs 
	Effect of SGLs on Surface Melt Data Inversion 
	On Ka Band 
	On L Band 


	Discussion 
	Conclusions 
	References

