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Abstract: The modification of fire regimes and their impact on vegetation recovery, soil properties,
and fuel structure are current key research areas that attempt to identify the thresholds of vegetation’s
susceptibility to wildfires. This study aimed to evaluate the vulnerability of Mediterranean pine
forests (Pinus halepensis Mill. and Pinus pinaster Aiton) to wildfires, analyzing two major forest fires
that occurred in Yeste (Spain) in 1994 and 2017, affecting over 14,000 and 3200 hectares, respectively.
Four recovery regions were identified based on fire severity—calculated using the delta Normalized
Burn Ratio (dANBR) index—and recurrence: areas with high severity in 2017 but not in 1994 (UB9%4-
HS17), areas with high severity in 1994 but not in 2017 (HS94-UB17), areas with high severity in
both fires (HS94-HS17), and areas unaffected by either fire (UB94-UB17). The analysis focused on
examining the recovery patterns of three spectral indices—the Normalized Difference Vegetation
Index (NDVI), Normalized Moisture Index (NDMI), and Normalized Burn Ratio (NBR)—using the
Google Earth Engine platform from 1990 to 2023. Additionally, the Relative Recovery Indicator (RRI),
the Ratio of Eighty Percent (R80P), and the Year-on-Year average (YrYr) metrics were computed to
assess the spectral recovery rates by region. These three spectral indices showed similar dynamic
responses to fire. However, the Mann—Kendall and unit root statistical tests revealed that the NDVI
and NDMI exhibited distinct trends, particularly in areas with recurrence (HS94-HS17). The NDVI
outperformed the NBR and NDMI in distinguishing variations among regions. These results suggest
accelerated vegetation spectral regrowth in the short term. The Vegetation Recovery Capacity After
Fire (VRAF) index showed values from low to moderate, while the Vulnerability to Fire (V2FIRE)
index exhibited values from medium to high across all recovery regions. These findings enhance our
understanding of how vegetation recovers from fire and how vulnerable it is to fire.

Keywords: cloud computing; forest management; Google Earth Engine; remote sensing; wildfires

1. Introduction

Wildfires play a significant role in shaping the landscape of Mediterranean environ-
ments. In the current global change context, the numbers of both ignitions and burned
surfaces are expected to increase [1]. In the Iberian Peninsula, rural abandonment is leading
to a significant increase in available fuel in forest areas. This fact increases the risk of
experiencing waves of extreme wildfire events (EWEs) [2], which are extremely dangerous
for populations and beyond extinguishing capacity. These fires, characterized by explosive

Remote Sens. 2024, 16, 1718. https:/ /doi.org/10.3390/1s16101718

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs16101718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1909-1200
https://orcid.org/0000-0002-2397-5543
https://orcid.org/0000-0003-2298-9115
https://orcid.org/0000-0001-9966-1869
https://orcid.org/0000-0001-6270-8408
https://orcid.org/0000-0003-2374-7097
https://doi.org/10.3390/rs16101718
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101718?type=check_update&version=1

Remote Sens. 2024, 16, 1718

20f21

and intense behavior and rapid spread rates, are linked with climate change and alter the
meteorological conditions in affected areas, resulting in true firestorms. Although they
occur in relatively small proportions, they catastrophically damage the landscape, countries’
economies, and the lives of their citizens (e.g., EWEs in Portugal in 2017, Spain in 2019 and
2022 and, most recently, Greece in 2023). The scientific community has referred to them
as “sixth-generation wildfires or megafires” [3-7]. Society faces a significant challenge as
these high-severity wildfires become increasingly inevitable due to rural abandonment and
climate change. Therefore, it is imperative to focus on enhancing our ability to mitigate
wildfires, reduce their severity, and minimize their impacts. In Spain, large investments
in firefighting resources conducted to achieve a high wildfire suppression success proved
not to be useful for fire impact mitigation under current climate change scenarios [8,9].
High fire exclusion rates, added to scarce forest management and traditional practices due
to rural abandonment, result in fuel accumulation, leading to more intense fire behavior
in many ecosystems [10]. The solution lies in comprehensive prevention, where forest
management and restoration are crucial. Through this restoration, we can shape the future
landscape, promote more fire-resilient and diversified landscapes that are better adapted to
climate change, and minimize the risk to humans and infrastructure.

In this context, the confluence of various factors, including the persistent and escalating
trend of rural abandonment, fuel accumulation in forested areas, rising global average
temperatures, and inadequate precipitation due to climate change, among others [11,12],
is rendering forest ecosystems increasingly susceptible to such disturbances [13,14]. As
a result, the ability of ecosystems to react to wildfires, even Mediterranean ones with
adaptations to these perturbations [15-17], is directly diminishing.

Over the years, the terms resilience and vulnerability have been widely used somewhat
ambiguously and have often been interchanged without a clear definition of their precise
meanings being provided [18-20]. Resilience is employed across various academic and
policy disciplines and has diverse interpretations owing to its inherent flexibility [21-23]. It
is applied for multiple purposes [24-32]. All authors acknowledge resilience as the capacity
of an ecosystem, organism, etc., to recover its initial state following disturbance. Similarly
to resilience, the term vulnerability has multiple definitions and applications in various
fields [33-36]. Vulnerability can be defined as the sensitivity of a system to a driver of
change [34]. Depending on the specific driver of change, vulnerability can be referred
to as vulnerability to fire, social vulnerability, or ecological vulnerability, among others.
In all cases, the term signifies susceptibility or weakness when confronted by a driver
of change. Therefore, a forest system will be considered vulnerable if its characteristics
(e.g., topography, canopy cover, fuel models, etc.) are such that they are likely to result in
substantial adverse impacts in the event of disturbance. Furthermore, the terms vulnerabil-
ity and resilience are interrelated, because a system that exhibits resilience to fire is likely to
have low vulnerability, and vice versa [37]. When establishing vulnerability and resilience
indicators, particularly on large scales (e.g., landscape scale), utilizing remote sensing (RS)
information is a valuable tool [38]. The introduction of the Google Earth Engine (GEE)
platform [39] has significantly reduced processing times for analyzing spectral vegetation
indices over time series [40] and includes the possibility of obtaining global-scale results
for imagery tasks that do not require excessive processing capacity [41].

As previously mentioned, establishing indicators or indices [42,43] that allow us to assess
which areas are more vulnerable and which are more resilient to such disturbances is a priority
to act accordingly by prioritizing actions in the most sensitive areas to minimize both risks
and effects by forest management [44—47]. For this purpose, environmental characteristics
and vegetation are critical factors for estimating ecological vulnerability to fire [34].

This study aims to assess the vulnerability of endemic Mesogean pine forests (habitat
type 9540 of Directive 92/43/EEC) to wildfires by explicitly focusing on the two major fires
that occurred in 1994 and 2017 in the vicinity of Yeste (Albacete, Spain). The objective of this
assessment was to evaluate the sensitivity of these areas to new wildfires by considering
the history of previous fires and their different impact degrees. This study also investigated
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the effects of wildfires (based on fire severity and recurrence) and applied approaches such
as susceptibility indicators and spectral indices to analyze their consequences. To achieve
these objectives, we carried out the following tasks:

(i) Calculation of spectral indices to analyze the temporal dynamics of the vegetation
spectral response within the designated timeframe (1990-2023).

(ii) Analysis of the vegetation recovery rates in the different delimited zones based on fire
severity and recurrence.

(iii) Implementation of the conceptual model, including the analysis and evaluation of re-
silience after fire and vegetation’s vulnerability to wildfires, based on selected indicators.

These analyses aim to enhance our understanding of how vulnerable and resilient
endemic Mediterranean pine forests are to wildfires, and to contribute to developing
effective management strategies. Our initial hypotheses posit that the areas subjected to
two high-severity burns with a recurrence interval of fewer than 25 years will have slower
vegetation recovery rates than those subjected to only one burn.

2. Materials and Methods
2.1. Study Area

The study site is in Albacete Province, southeast Spain (Figure 1). Two large forest fires
occurred here in 1994 and 2017. The 1994 fire burned more than 14,000 ha, and the 2017 fire
burned 3200 ha. Both fires had a recurrence burn surface. According to the Koppen-Geiger
classification [48], the study area has a hot-summer Mediterranean climate (type “Csa”).
The mean annual precipitation is 400-600 mm, with a mean temperature of 10-14 °C.
These values were obtained from the Agricultural Geographic Information System [49].
According to the USDA’s Soil Taxonomy [50], soils in the area are classified as Aridisols and
Inceptisols. The natural vegetation community is Pinus halepensis Mill., and Pinus pinaster
Aiton forests are accompanied by the shrub species Quercus coccifera L., Pistacia lentiscus L.,
Viburnum tinus L., Phyllirea angustifolia L., Arbutus unedo L., Lonicera implexa Ait., Daphne
gnidium L., Rubia peregrina L., and Juniperus oxycedrus L., among others. The study sites
belong to habitat type 9540 according to Directive 92/43/EEC.
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Figure 1. (a) Location of Albacete Province and the study site in Spain. (b) Recovery regions based on
fire severity and recurrence: areas with high severity in 2017 but not in 1994 (UB94-HS17), areas with
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high severity in 1994 but not in 2017 (HS594-UB17), areas with high severity in both fires (HS594-
HS17), and areas unaffected by either fire (UB94-UB17). The reference coordinate system is ETRS89
(EPSG:25830).

We used the following categories to delimit the recovery regions based on fire severity
and recurrence (Figure 1):

(i) Zones that were either unburned or underwent very low-intensity burning during the
1994 wildfire but were subjected to high-severity burning in 2017 (UB94-HS17).

(ii) Zones that were subject to high-medium-severity burning in 1994 but remained
unburned in 2017 (HS94-UB17).

(iii) Zones that faced high-medium-severity burning during both the 1994 and 2017 fires
(HS94-HS17).

(iv) Control zones that remained unburned during both the 1994 and 2017 wildfires
(UB94-UB17).

2.2. Datasets
2.2.1. Landsat Collections

One Landsat scene covers the entire study area (path/row: 200/033, Worldwide
Referencing System: WRS-2), which can be accessed with the GEE catalog [39]. Our case
study used images from the Landsat Collection 2 Level-2 Surface Reflectance. These datasets
contain atmospherically corrected surface reflectance and land surface temperature data.
They are derived from the data acquired from the Landsat Thematic Mapper (TM), Landsat
Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), and Thermal
Infrared Sensor (TIRS) sensors. The Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) was employed for the TM and ETM+ data. At the same time, the
Land Surface Reflectance Code (LaSRC) system algorithm was utilized for the Landsat
OLI/TIRS sensors. Both algorithms ensure the inter-calibration and comparability of the
results across the TM, ETM+, and OLI/TIRS sensors, making them suitable for time-series
analyses [51-53]. All of the images were provided by the United States Geological Survey
(USGS) and the National Aeronautics and Space Administration (NASA). Since 2003, the
Landsat 7 (L7) satellite images have exhibited a banding effect. This indicates a region
lacking data due to the malfunction of the Scan Line Corrector (SLC) system, a component
of the ETM+ system that compensates for the satellite’s movement during image capture.
The use of this collection was minimized as much as possible to cover the time series from
1990 to 2023. The spatial and temporal resolutions were 30 m and 16 days, respectively.

2.2.2. Auxiliary Data: Orthophotos and Cartography Sources

We used vector data from the Nature Database, which belongs to the Spanish Ministry
for Ecological Transition and Demographic Challenge, about Mediterranean pine forests
with endemic species of Mediterranean pines (habitat type 9540 of Annex I Directive
92/43/ECC). This information, combined with fire severity, allowed us to delimit the
preliminary recovery areas affected by wildfires.

Additionally, we used the historical orthophotos from the National Plan for Aerial Or-
thophotography (PNOA) [54], along with static photos from the Spanish Forestry Map [55],
to assess the changes observed in each recovery area and to determine the occurrence of
any landscape modifications (i.e., salvage logging, prescribed burns, shrub clearing, etc.)
aside from wildfires to subsequently revise and update the existing mapping.

To map fire vulnerability, we used the 25 x 25 m Digital Terrain Model (DTM) from the
Spanish National Centre for Geographic Information (CNIG), generated by the Directorate
General for the National Geographic Institute (IGN). This DTM facilitated the generation
of slope and aspect information. Additionally, the fuel models provided by the Forest
Information Management Platform (GINFOR) of Castilla-La Mancha allowed us to obtain
information about the vertical and horizontal distribution of vegetation.
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2.3. Data Processing

The methodology followed in this study is structured in three blocks: (i) data acqui-
sition and preparation, (ii) data processing methods, and (iii) output maps and graphs
(Figure 2).

GEE QGIS
Data : ¥ :
acquisition Satellite Geographical :
and collections P information i
preparation Filtering, masking, etc I :
Processing
methods
i

Raster stack
collection

Spectral index
calculation

Vulnerability to

m fire and

resilience

Vegetation
recovery rates

Figure 2. Methodology flowchart.

2.3.1. Data Preparation, Processing Methods, and Cloud Computing

First, the different image collections were loaded on the GEE platform, and all of the
scenes were filtered and selected based on four parameters: perimeter, path/row (to avoid
overlapping with other scenes), timeframe, and a cloud percentage below 10%. The final
scenes used in the study are summarized in Table 1.

Table 1. Summary and descriptions of the image collections used in this study.

Sensor Timeframe Number of Images
Landsat 5 (L5) 16 January 1990-9 October 2011 158
Landsat 7 (L7) 10 October 201124 February 2013 13
Landsat 8 (L8) 25 February 2013-20 October 2021 82
Landsat 9 (L9) 21 October 2021-25 April 2023 17

Then, we calculated three spectral indices [56] (Table 2) for each Landsat collection
using the specific “ee.Image.normalizeDifference” method. The selected indices are the
most familiar and extensively used for post-fire recovery dynamics [57-59]. The NDVI is
the most widely used vegetation index indicator of photosynthetically active biomass. It
allows for the assessment of vegetation health [60]. Negative values correspond to areas
with water surfaces, artificial structures, rocks, clouds, and snow. Bare soil generally falls
within the range of 0.1-0.2. A healthy, dense vegetation canopy should have values above
0.5, while sparse vegetation falls within the range of 0.2 to 0.5.

The NDMI is used to determine vegetation’s water content [61]. Its range is —1 to +1.
Negative values correspond to bare soil (<—0.8) and dry or very low canopy cover (—0.8
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to 0). Lower values (0 to 0.4) indicate high water stress or low canopy cover, while higher
values (0.4 to 1) denote high water content or canopy cover.

The NBR is a spectral index developed specifically for delineating burnt areas in
extensive fire zones. The disparity between the pre-fire and post-fire NBR, commonly
called dNBR, is a measure for assessing fire severity. The dNBR (Table 2) was only used to
calculate the severity of the fires in 1994 and 2017, and it was not included in the time-series
analysis. High dNBR values indicate more damage, whereas negative dNBR values may
suggest post-fire regrowth [62]. According to [63], the ANBR is classified according to the
following thresholds: unburned (<—0.1), low severity (0.1 to 0.27), moderate-low severity
(0.27 to 0.44), moderate-high severity (0.44 to 0.66), and very high severity (>0.66).

Table 2. Summary of the vegetation indices calculated from the Landsat collections. The NIR
represents the near-infrared band, and SWIR1 and SWIR2 refer to the first and second shortwave
infrared bands, respectively.

Vegetation Index Formula Reference
NDVI (NIR — RED)/(NIR + RED) [60]
NDMI (NIR — SWIR1)/(NIR + SWIR1) [64,65]

NBR (NIR — SWIR2)/(NIR + SWIR?2) [66]
dNBR dNBR = NBRprefire — NBRpostfire [63]

Finally, we merged the various collections of raster stacks and plotted them together
to analyze the dynamics and trends of spectral indices across the recovery areas using the
“Ui.Chart.image.seriesByRegion” method. This representation enabled the calculation of
the vegetation recovery rates. For detailed information about the methods employed in
this study, readers should refer to the Earth Engine’s Developer Guide [67].

Based on the work of Frazier et al. [68], we calculated three metrics to analyze the
recovery rates: the Relative Recovery Indicator (RRI), the Ratio of Eighty Percent (R80P),
and the Year-on-Year Average (YrYr). We applied the equations to the three spectral indices
(NDVI, NDMLI, and NBR), even though the reference study only used the NBR. The formula
for each metric is presented in Table 3.

Table 3. Summary of the metric equations used to compare the recovery rates of each region.

Metric Equation Description
Relative Recovery Max (Indexys, Indexyis) — Indexy Compare the disturbance magnitude to the recovery
Indicator (RRI) Indexpre — Indexyg magnitude five years post-disturbance.
Ratio of Eighty Max (I ndexy s, ”d@xy+4) Represent the amount of spectral recovery relative to the
Percent (R80P) Indexpre x 0.8 pre-disturbance situation.
Year-on-Year Indexy s — Indexyg Average rate of spectral change from the year
average (YrYr) 5 of disturbance.

2.3.2. Model Adjustment and Validation

To validate the NDVI results obtained from the remote sensing datasets, 12 plots
of 30 x 30 m were established in the study area in 2022. In those plots, 240 Leaf Area
Index (LAI) measurements were taken with an ACCUPAR LP-80 ceptometer (Decagon
Devices, Pullman, WA, USA). Subsequently, a model for the NDVI was calculated based
on the LAI measurements taken during fieldwork, and the results were compared to the
corresponding satellite image. The plots were revisited during 2022-2023 fieldwork, and
measurements were compared to the results obtained from RS. It is essential to emphasize
that the validation applied here was designed for recent data and sensors, as it is impossible
to validate for the past.
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2.3.3. Mapping Resilience and Vulnerability to Wildfires

The Vegetation Resilience After Fire (VRAF) index developed by Bisson et al. (2008) [37]
quantifies the recovery capacity of vegetation in areas affected by wildfires by considering
critical factors like soil characteristics, vegetation composition, and canopy cover. The
process involves digitizing and transforming data into raster files. A comprehensive de-
scription of the calculation methodology can be found in the corresponding paper [37].
The VRAF index is classified into distinct categories to reflect the recovery capacity, as
follows: very low (VRAF < 1.7), low (1.7 < VRAF < 2.5), moderate (2.5 < VRAF < 3.3),
high (3.3 < VRAF < 4.0), and very high (VRAF > 4.0).

For the vulnerability assessment, the V2FIRE index was developed by considering the
following parameters:

V2FIRE = 2(SL + A) + FT + SN + S +V, (1)

where

SL is the slope gradient (%).
A describes the aspect (°).
FT refers to the fuel types—a simplified representation of a forest ecosystem used to
predict and analyze fire behavior. Each FT describes the structure of the vegetation in
terms of height, density, load, and continuity [69].

e SN describes the proximity to NATURA 2000 protected sites, such as Special Protected
Areas (SPAs) and Special Areas of Conservation (SACs).
S is the ability of the soil to recover after the fire.
V refers to the capacity of the vegetation to recover after the fire.

Similarly to the VRAF index, calculating the V2FIRE index required digitizing the
information presented in Table 4 and converting it into raster files. These raster files were
then combined to derive the final index values to reflect vulnerability in three categories:
low (V2FIRE < 10), medium (10 < V2FIRE < 14), and high (V2FIRE > 14).

Table 4. Description of the indicators and corresponding values assigned to each parameter to
calculate the V2FIRE index.

Indicator High Vulnerability (3) Medium Vulnerability (2) Low Vulnerability (1)
Slope (SL) >45% 15-45% <15%
Aspect (A) Southwest-southeast Northeast-southeast; Northwest—-northeast
southwest-northwest
Fuel types (FTs) FT4; FT7; FT6; FT5 FT3; FT12; FT1 FTS; FT9, FT12
. . Protected areas or proximity Typical landscapes with . . .
Singularity (SN) to SPAs/SACs relative significance Areas without visual richness
Soil (S) Hilly grave soils; calcareous soils Silty clay SOIIS;. Organic soils; alluvial soils
non-calcareous soils
Vege tation (V) Transition communities; Pine forests Deciduous forest;

protected ecosystems Mediterranean macchia

The slope significantly impacts the ecological susceptibility to fire through various
mechanisms. Forest fires propagate faster on steep slopes, intensifying the risk in such
regions. Regions characterized by steep gradients are prone to fire propagation, whereas
places with a plain topography have reduced susceptibility [70,71]. In addition, areas
with steeper slopes are more susceptible to soil erosion and face greater regeneration and
recovery challenges [71,72], which lead to increased vulnerability.

Sun-exposed areas exhibit lower humidity levels, making them more prone to wildfires.
Similarly, north-facing slopes retain more moisture and are less vulnerable to fire [71].
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Fuel models influence the ecological vulnerability to fire by determining the quantity,
spatial distribution, moisture content, and phenology of plant fuels [70].

Land management, human activity, and climate change are a few factors that may
impact forest fire vulnerability in protected areas [73]. Effective conservation policies and
fire management in these spaces are critical to addressing ecological vulnerability to fire in
protected areas [74].

Soil types influence ecological vulnerability due to their response to fires and short-
and medium-term impacts on their properties [34]. After the fire, soils with lower water
retention capacity, such as sandy soils, are more prone to erosion. The soil structure
is degraded, erodibility increases, and fertility decreases, leading to a significant level
of nutrient poverty [75,76]. In addition, water repellency can reduce the soil infiltration
capacity, increasing the susceptibility to erosion losses [77-79].

The vegetation type significantly influences the ecological vulnerability to forest
fires [34,71]. For example, in Mediterranean ecosystems, vegetation has a remarkable ability
to recover from disturbances caused by fire [80-82]. However, plant species that lack
adaptations or tolerance to fire may suffer a high mortality rate, altering the dynamics and
composition of the ecosystem [83]. Also, vegetation regeneration after the fire is a crucial
factor in reducing soil erosion, as the presence of vegetation helps to protect the soil from
erosion [84,85].

2.4. Statistical Analysis

With reference to [86], the trend and seasonal characteristics of the NDVI, NDMI,
and NBR time series from 1990 to 2023 across the different recovery regions (UB94-HS17;
HS94-UB17; HS94-HS17; UB94-UB17) were obtained. The statistical analysis used the
average values of spectral indices across all recovery regions for each satellite image as
input data. The trends were analyzed using the Mann-Kendall test [87], while stationarity
was evaluated using the unit root test [88].

Normality and homoscedasticity were evaluated before any ANOVA. For this purpose,
the Shapiro-Wilk test and Levene’s test were calculated, respectively. If variables deviated
from a normal distribution, we employed the Kruskal-Wallis test to determine any signifi-
cant disparities in vegetation response across the different recovery regions. Tukey’s HSD
or the Dunn—Bonferroni post hoc test was run to assess the differences between recovery
regions. The statistical tests were conducted at a significance level of 95% (p-value < 0.05).

All of the analyses were performed using version 4.3.2 of RStudio [89]. The investiga-
tion also employed other tools and packages, such as “dplyr version 1.1.2” [90] for data
processing and “ggplot2 version 3.4.2” [91] for creating graphics and visualizations.

3. Results
3.1. Vegetation Recovery Dynamic Trends by Region

The dNBR index was only utilized to assess the fire severity and identify recovery
regions (UB94-HS17; HS594-UB17; H594-HS17; UB94-UB17), as described at the end of
Section 2.3.1. First, we evaluated the long-term series of NDVI (Figure 3), NDMI (Figure 4),
and NBR (Figure 5) across the recovery regions, and we plotted the vegetation recovery
dynamics. We observed changes and interannual variations for the NDVI, NDMI, and
NBR from 1990 to 2023 (Table 5). Before the 1994 fire (from 1990 to 1994), the mean values
observed between all regions were similar for the indices calculated, which significantly
decreased when the 1994 wildfire occurred, especially in the H594-UB17 and HS94-HS17
regions. Subsequently, just after the 1994 fire (from 1994 to 2000), the three indices slowly
increased their mean values (Figures 3-5). Between 2000 and 2017, the mean NDVI values
recovered, while NDMI and NBR values still showed lower values than in the 1994 pre-fire
situation. Notably, after the 2017 wildfire, there was a sharp drop in all three indices
(NDVI, NDMI, and NBR). This drop was more noticeable in UB94-HS17 and HS94-HS17,
while H594-UB17 recovered its spectral values from the 1994 fire. Despite six years having
elapsed, the mean values before the 2017 wildfire were not attained in 2023. In the UB94-
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UBL17 region across the complete study period (1990-2023), the mean NDVI values slightly
increased, the mean NDMI values were relatively constant, and the mean NBR values were
the most unchanged, although they increased slightly at the end of the period.

Table 6 displays the time-series statistical analysis outcomes on each spectral index
across the different recovery regions. The statistics indicate that the three spectral indices
(NDVI, NDM]I, and NBR) exhibit identical trends and seasonality for UB94-HS17, HS94-
UB17, and UB94-UB17. Regarding HS94-HS17, the NDMI and NBR showed a consistent
trend and temporal pattern; however, the NDVI did not demonstrate a notable trend.

Table 5. Changes in the mean values of spectral indices (NDVIL, NDMI, and NBR) for each recovery
region (UB94-HS17; H594-UB17; H594-HS17; UB94-UB17) in different periods: before the 1994 fire
(from 1990 to 1994), just after the 1994 fire (from 1994-2000), before the 2017 fire (from 1998-2017),
and after the fire of 2017 (from 2017 to 2023).

Before 1994 Fire After 1994 Fire Before 2017 Fire After 2017 Fire
(1990-1994) (1994-2000) (2000-2017) (2017-2023)
Spectral Index Recovery Region Mean sd Mean sd Mean sd Mean sd
UB94-HS17 0.433 0.040 0.473 0.067 0.537 0.073 0.312 0.059
NDVI HS94-UB17 0.439 0.047 0.294 0.088 0471 0.084 0.591 0.068
HS94-HS17 0.475 0.054 0.296 0.088 0.491 0.086 0.355 0.083
UB9%4-UB17 0.347 0.033 0.358 0.051 0.415 0.062 0.490 0.055
UB94-HS17 0.079 0.040 0.104 0.069 0.168 0.056 —0.078 0.098
NDMI HS94-UB17 0.133 0.079 —0.061 0.126 0.071 0.068 0.185 0.080
HS94-HS17 0.143 0.066 —0.101 0.100 0.083 0.070 —0.067 0.090
UB9%4-UB17 0.042 0.055 0.028 0.066 0.043 0.051 0.102 0.056
UB94-HS17 0.285 0.047 0.319 0.075 0.388 0.058 0.051 0.119
NEBR HS94-UB17 0.368 0.086 0.087 0.185 0.290 0.076 0.411 0.085
HS94-HS17 0.380 0.077 0.044 0.154 0.302 0.081 0.073 0.141
UB94-UB17 0.238 0.063 0.220 0.070 0.243 0.056 0.303 0.060
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Figure 3. NDVI time-series graphs by region (UB94-HS17; HS94-UB17; HS94-HS17; UB94-UB17) from
1990 to 2023.
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from 1990 to 2023.
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Figure 5. NBR time-series graphs by region (UB94-HS17; HS94-UB17; H594-HS17; UB94-UB17) from

1990 to 2023.

The Kruskal-Wallis and Dunn-Bonferroni tests showed significant differences between
the NDVI time series across the following recovery regions (Figure 6): UB94-HS17 and
HS94-HS17, UB94-HS17 and UB94-UB17, HS94-UB17 and HS94-HS17, H594-UB17 and
UB94-UB17, and HS94-HS17 and UB94-UB17. The only zones that showed no significant
differences were UB94-HS17 and HS94-UB17, which corresponded to the areas that had
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undergone a single fire event (in either 1994 or 2017). The results for the NDMI and NBR
were similar except for HS94-HS17 and UB94-UB17, which showed no differences.

"

Table 6. Analysis of trends and stationarity of time series for each region; “z” is the time-series

"

trend test statistic. A positive “z

"o

implies an ascending trend, while a negative “z” suggests a

declining trend.

Spectral Index  Recovery Region Mann-Kendall (z) p-Value Trend  Unit Root Test (p-Value) Stationarity
UB94-HS17 —0.274 0.784 0 0.48 No
NDVI HS9%4-UB17 12.770 0.000 + 0.05 Yes
HS94-HS17 0.500 0.617 0 0.34 No
UB94-UB17 13.609 0.000 + 0.01 Yes
UB94-HS17 1.050 0.294 0 0.46 No
NDMI HS94-UB17 7.641 0.000 + 0.09 Yes
HS94-HS17 —2.806 0.005 - 0.35 No
UB94-UB17 7.190 0.000 + 0.01 Yes
UB9%4-HS17 0.457 0.648 0 0.40 No
NER HS94-UB17 7.192 0.000 + 0.11 No
HS94-HS17 —3.561 0.000 - 0.26 No
UB94-UB17 7.192 0.000 + 0.01 Yes
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Figure 6. Cont.
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Figure 6. Boxplots of each recovery region (from 1990 to 2023) using all spectral indices calculated
(NDVI, NDMI, NBR). The black dots represent abnormal observations. Not sharing a letter indicates

statistically significant differences.

Field measurements are crucial for validating the quality, reliability, and correct inter-
pretation of data obtained from remote sensors. We used the model presented in Table 7 to
validate the results obtained from the NDVI in the field. Figure 7 compares the NDVI values
obtained from remote sensors (GEE) and NDVI values obtained from field measurements
(LAI). There were no significant differences in the NDVI derived from GEE compared to
those obtained from LAI measurements.

Table 7. NDVI-LAI model validation. Model trends to estimate the NDVI results with the parameters

measured in the field.

Model

R2 RMSE (%)

NDVI =-0.0317 x LAI2 + 0.2389 x LAI + 0.1633

0.56 13-29%

UB94-HS17

HS94-UB17

0.7
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Figure 7. Comparison of NDVI values from different recovery regions (UB94-HS17; HS94-UB17

LAI

GEE LAI

7

HS94-HS17; UB94-UB17) derived from remote sensors (GEE) with NDVI values obtained from field
measurements (LAI). Not sharing a letter indicates statistically significant differences. The black solid

circles represent outliers.
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The results for the calculations of recovery rates are shown in Table 8. The RRI showed
similar values for the three indices (NDVI, NDMI, and NBR) in the different recovery
areas (UB94-HS17; HS94-UB17; HS94-HS17; UB94-UB17). UB94-HS17 and UB94-UB17
for the 1994 fire displayed values above 2, indicating that there had been more recovery
than disturbance (which is consistent, because these areas did not experience fire damage
in 1994). In contrast, HS94-UB17 and HS94-HS17 showed values close to 1, indicating
the same amount of spectral recovery as a disturbance having occurred. After the 2017
fire, the RRI for UB94-HS17 and HS94-HS17 showed lower recovery values than the 1994
fire-affected areas (0.90-1.30 versus 0.49-0.82) for all indices analyzed. HS94-UB17 and
UB94-UB17, unaffected by the 2017 fire, displayed values exceeding 2.

The R80P results for the 1994 fire indicate that all regions have reached 80% recovery
based on their pre-disturbance spectral index values. The UB94-HS17 region for NDVI, the
HS94-HS17 region for NDMI, and both the UB94-HS17 and HS94-HS17 regions for NBR
still need to recover from the 2017 fire.

The YrYr displayed positive values for all indices (NDVI, NDMI, and NBR) and
both fires (1994 and 2017), suggesting that all zones increased their spectral index values.
Additionally, the areas affected by recent forest fires showed more significant changes.

Table 8. Comparison between recovery indicators (Relative Recovery Indicator, RRI; Ratio of Eighty
Percent, R80P; and Year-on-Year Average, YrYr) after the 1994 and 2017 wildfires across the different
recovery areas (UB94-HS17; HS94-UB17; HS94-HS17; UB94-UB17).

1994 Fire 2017 Fire
Spectral Index Recovery Region RRI R80P YrYr RRI R80OP YrYr
UB94-HS17 4.06 1.66 0.02 0.49 0.84 0.03
NDVI HS94-UB17 1.01 1.26 0.04 5.51 1.64 0.02
HS94-HS17 0.90 1.16 0.04 0.82 1.10 0.05
UBY4-UB17 291 1.59 0.02 8.37 1.63 0.01
UB94-HS17 6.82 5.17 0.02 0.88 1.00 0.02
NDMI HS94-UB17 1.30 2.28 0.06 5.22 3.58 0.02
HS94-HS17 1.05 1.42 0.04 0.77 0.59 0.04
UB94-UB17 2.60 4.10 0.01 5.60 441 0.01
UB94-HS17 6.97 2.36 0.02 0.80 0.93 0.05
NER HS94-UB17 1.10 1.46 0.10 5.56 2.15 0.03
HS94-HS17 0.95 1.16 0.08 0.79 0.84 0.07
UBY4-UB17 241 1.83 0.02 6.51 2.09 0.01

3.2. Mapping Vegetation’s Resilience and Vulnerability to Wildfires

Figure 8 spatially represents the calculated VRAF and V2FIRE indices. These indices
allowed us to identify areas with low recovery capacity after a fire and vulnerable regions in
the event of a new disturbance. The study area predominantly exhibited low-to-moderate
levels of resilience, with VRAF values consistently below 2.5. This can be attributed to
environmental characteristics, such as slopes, aspect, fuel loads, and proximity to areas
of high ecological value. Consequently, most of the study area showed medium-to-high
vulnerability values (10 < V2FIRE < 18).

The comparison between the VRAF and V2FIRE indices is shown in Table 9. Areas that
have been burned once or twice (UB94-HS17, HS94-UB17, and HS94-HS17) exhibited VRAF
values around 2, indicating a low recovery capacity (1.7 < VRAF < 2.5). The regions un-
burned by both fires (UB94-UB17) showed moderate recovery capacity (2.5 < VRAF < 3.3).
Therefore, in line with these findings, fire-affected areas (UB94-HS17, H594-UB17, and
HS94-HS17) showed high vulnerability to fire, while unburned areas (UB94-UB17) dis-
played medium vulnerability to fire.
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Figure 8. (a) Location of Albacete Province and the study site in Spain; (b) Vegetation Resilience After
Fire (VRAF) index and (c) Vulnerability to Fire (V2FIRE) index for each recovery region (UB94-HS17;
HS94-UB17; HS94-HS17; UB94-UB17).

Table 9. Comparison between resilience after fire (VRAF index) and vulnerability to fire (V2FIRE
index) for each recovery region: UB94-HS17, H594-UB17, HS94-HS17, and UB94-UB17.

VRATF Index V2FIRE Index
Recovery Region Min Max  Mean SD Min Max  Mean SD
UB94-HS17 1.62 2.90 2.07 0.20 11.00 17.00 14.21 1.04
HS94-UB17 1.62 2.90 2.23 0.22 11.00  17.00  14.28 1.09
HS94-HS17 1.62 2.90 211 0.22 12.00 17.00 14.99 1.06
UB94-UB17 1.62 3.30 224 0.25 9.00 17.00 13.64 1.31

4. Discussion
4.1. Vegetation Recovery Dynamics by Region

We utilized the NDVI as an indicator of the photosynthetic activity of the forest canopy,
the NDMI as an indicator of vegetation water content, and the NBR as an indicator of
vegetation biomass. The combination of these indices provides insights into the seasonal
variations in vegetation status [92] when a disturbance occurs, along with whether it
recovers after disturbance or not [93]. The indices NDVI, NDMI, and NBR exhibited similar
responses to forest fires (Table 5). Before the 1994 fire, all zones had consistent averages for
the three indicators. Following the 1994 fire, the areas affected by the fire (HS94-UB17 and
HS94-HS17) experienced significant decreases in the values of the three indices. Between
1994 and 2017, during the first six years after the fire, the spectral indices showed growth
(Figures 3-5). These indices eventually reached values similar to those before the fire.
The 2017 fire significantly decreased the values of the three indices in the fire-affected
areas (UB94-HS17 and HS94-HS17), which are recovering. The regions unaffected by forest
fires (UB94-UB17) exhibited relatively stable values throughout the study period, without
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experiencing significant declines. These results are consistent with the findings of [94,95],
where the indices analyzed showed similar performance after the fire.

However, the three indices responded differently to the Mann—-Kendall and unit root
statistical tests (Table 6). This was particularly evident in areas with two fire episodes
(HS94-HS17), where the NDVI exhibited no discernible pattern. On the other hand, the
NDMI and NBR displayed a negative trend. The NDVI and NDMI showed comparable
stationarity patterns. More precisely, UB94-HS17 and HS94-HS17 produced time series that
exhibited non-stationarity, whereas H594-UB17 and UB94-UB17 produced time series that
revealed stationarity. All of the recovery regions related to NBR showed a non-stationary
series except for UB94-UB17. A stationary time series has consistent statistical qualities
(such as mean, variance, and autocorrelation) that remain constant over time, simplifying
the analysis and interpretation of the data. Non-stationary time series can pose challenges
for modeling and accurate prediction because of trends or fluctuations in data variability
across time [96].

The NDVI better captured the differences between the recovery regions than the
NBR and NDMI (Figure 6). The long-term survey of post-wildfire vegetation recovery [94]
revealed that the NDMI outperformed the NDVI in capturing vegetation canopy mois-
ture content. Similarly, another study [97] demonstrated that the NDMI exhibited greater
sensitivity to vegetation disturbances and enhanced resistance to data noise compared to
other tested indices. That study also highlighted that the NBR performs poorly under arid
conditions, while the NDMI is only effective in wet areas.

The results obtained from the RRI, R80P, and YrYr metrics of the NDVI, NDMI, and
NBR (Table 8) time series enabled the identification of the time needed for vegetation
to exhibit similar spectral values to those observed before the fire, as reported in other
studies [98-100]. The NDVI values derived from RS and LAI field measurements did not
show any statistically significant differences throughout all recovery regions, as illustrated
in Figure 7. Thus, the outcomes derived via RS align well with those computed based on
field data. However, field verification is necessary to assess vegetation’s recovery after fire,
including potential changes in floristic composition, structure, and regeneration, among
other parameters. Our findings align with previous research that also reported increased
rates of vegetation regrowth in the short term based on spectral vegetation indices in
Mediterranean pine forests [101]. While the remote sensing data analysis indicated that the
spectral photosynthetic response recovered within 5-10 years after a wildfire, it did not
provide information on these specific parameters [102]. The obtained spectral recovery rate
was similar to the results reported in other studies [37,93,103]. It is important to note that
the area burned in 2017 is still recovering, while the area burned in 1994 has fully recovered
and showed comparable NDVI spectral values to the pre-fire conditions. The areas that
had undergone two high-severity fire events appeared to exhibit similar recovery patterns
to those that had faced a single fire event. However, the statistical tests (Figure 6) indicated
significant differences in index evolution between these two areas. As highlighted by [80],
these differences may be due to the reduction in species richness and the changes in the
proportions of seeders and resprouter species in the study area because of fire severity and
recurrence effects. A future research line will investigate what is happening in all of these
areas regarding vegetation and soil functional recovery.

Employing cloud-based processing platforms for monitoring and assessing vegetation
responses to wildfires offers significant advantages [98,104]. Numerous researchers have
highlighted that utilizing cloud computing platforms for managing extensive datasets is
a popular research topic [95]. Our results, compared to similar ones involving the use of
the GEE, showed similarities [100]. However, it is essential to be cautious and consider
interannual variations when interpreting the results [105].

4.2. Mapping Resilience and Vulnerability to Wildfires

UB94-UB17 showed the highest recovery capacity after fire, at 2.24 £ 0.25, with H594-
UBL17 closely following at 2.23 & 0.22. The H594-HS17 and UB94-HS17 regions exhibited
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reduced fire recovery capacities (2.11 £ 0.22 and 2.07 % 0.20, respectively). An inverse
relationship was noted between vulnerability to fires and recovery capacity. UB94-UB17
had the lowest fire vulnerability, at 13.64 £ 1.31, followed by UB94-HS17 and HS94-UB17
at 14.21 4 1.04 and 14.28 + 1.09, respectively. H594-HS17 (14.99 + 1.06) was identified
as the most vulnerable area. These results emphasize the significance of monitoring the
post-fire recovery of vegetation and soil properties. Changes in vegetation coverage and
soil erosion can hinder ecosystem recovery, reducing the recovery capacity and increasing
the vulnerability to fire [80].

Recovery capacity (VRAF index) depends directly on burn severity [82]. As mentioned
by other authors [37,106], slopes play a crucial role in determining recovery capacity due
to their relationship with soil erosion. Areas with high burn severity and steeper slopes
are more susceptible to soil erosion during the initial rainfalls that follow wildfires. This
poses a challenge for these areas to undergo a successful recovery process. The correlation
analysis did not show a significant relationship between high slopes and fire severity, so
based on these results (Figure 9) we cannot conclusively state that high slopes significantly
influence fire severity.

° o0 oo X} ®co®
y2= 6.7542x + 27.494 °. :
R"=0.0032
Correlation =0.056
90 1 ® °

60 o

Slope (%)

30 1

Fire severity (ANBR)

Figure 9. Correlation analysis between fire severity (ANBR) and slope gradient (%).

Identifying potentially vulnerable zones is a major concern to mitigate wildfires” im-
pacts. Different authors are working on determining the factors affecting vulnerability
to forest fires. The authors of [107] highlighted that alteration to fire regimes is the most
significant factor contributing to fire susceptibility, and leading areas previously considered
to be relatively safe are now classified as vulnerable to fire. Therefore, comparative assess-
ments and protocols are necessary to better comprehend the factors that influence wildfire
susceptibility [108]. Another example of vulnerability assessment in a wildland—urban
interface has found that landscapes with high road density and diverse land uses are more
vulnerable [109]. Understanding how vegetation recovers after these extreme events will
be extremely useful for forest managers in making management and restoration decisions
in a world with a changing climate.

5. Conclusions

To conclude, if we consider the points mentioned above and the findings of this
study, the employed tools have proven effective in assessing spectral recovery rates af-
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ter fire events and identifying potential vulnerability. Given the increasing prevalence of
high-severity wildfires, assessments based on remote sensing data and available cloud com-
puting platforms (like GEE) may be an effective tool for forest managers when monitoring
post-fire restoration efforts.

However, the limitations of the present study should also be highlighted. Being a case
study, the results obtained cannot be generalized, as many factors depend on the conditions
of the site itself. In addition, this study acknowledges that field verification is necessary to
fully assess vegetation’s recovery after fire, including changes in parameters not captured
by the remote sensing data.

Hence, as a future proposal, further research is necessary to continue to study and
verify whether the factors included in the proposed V2FIRE index can be improved for a
better assessment of ecosystems’ vulnerability to wildfires, e.g., considering changes in
species composition that may affect the successional stage or even the degradation of the
pine forests under recurrent burning scenarios. In this regard, work is underway to examine
the vegetation and soils in each delineated recovery zone in this study (on a smaller scale),
so as to evaluate the extent of their recovery.
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