Arctic Sea Ice Albedo Estimation from Fengyun-3C/Visible and Infra-Red Radiometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. FY-3C/VIRR L1B Data
2.1.2. ERA5 Hourly Data on Single Levels
2.1.3. Aircraft Measurements
2.1.4. APP-x Albedo Product
2.1.5. MPF V1.7 Data
2.2. Methods
2.2.1. Cloud Detection
2.2.2. Narrowband to Broadband Conversion
2.2.3. Anisotropy Correction
2.2.4. Atmospheric Correction
3. Results
3.1. Validation with Aircraft Measurements
3.2. Comparison with APP-x Albedo Products
3.3. Comparison with OLCI MPF Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Imura, S.; Kim, S.-J.; Krishnan, K.P.; Mohan, R.; Pant, N.C.; Turner, J. Polar Studies—Window to the changing Earth. Polar Sci. 2021, 30, 100767. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea Ice-Albedo Climate Feedback Mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Pistone, K.; Eisenman, I.; Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 2014, 111, 3322–3326. [Google Scholar] [CrossRef] [PubMed]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef] [PubMed]
- Hall, A. The role of surface albedo feedback in climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef]
- Perovich, D.; Meier, W.; Tschudi, M.; Hendricks, S.; Petty, A.A.; Divine, D.; Farrell, S.; Gerland, S.; Haas, C.; Kaleschke, L.; et al. Arctic Report Card 2020: Sea Ice; NOAA: Washington, DC, USA, 2020. [Google Scholar]
- Ebert, E.E.; Curry, J.A. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res. Ocean. 1993, 98, 10085–10109. [Google Scholar] [CrossRef]
- Key, J.R.; Wang, X.; Stoeve, J.C.; Fowler, C. Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res. 2001, 106, 12489–12497. [Google Scholar] [CrossRef]
- De Abreu, R.A.; Key, J.; Maslanik, J.A.; Serreze, M.C.; LeDrew, E.F. Comparison of in situ and AVHRR-derived broadband albedo over Arctic sea ice. Arctic 1994, 47, 288–297. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Kang, L. Retrieval and analysis of Arctic albedo from NOAA/AVHRR data. J. Remote Sens. 2013, 17, 541–552. [Google Scholar]
- Key, J.; Wang, X.; Liu, Y.; Dworak, R.; Letterly, A. The AVHRR Polar Pathfinder Climate Data Records. Remote Sens. 2016, 8, 167. [Google Scholar] [CrossRef]
- Riihelä, A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, F. CLARA-SAL: A global 28 yr timeseries of Earth’s black-sky surface albedo. Atmos. Chem. Phys. 2013, 13, 3743–3762. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Anttila, K.; Trentmann, J.; Stengel, M.; Fokke Meirink, J.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef]
- Key, J.R.; Wang, X. Climate Algorithm Theoretical Basis Document, Extended AVHRR Polar Pathfinder (APP-x). NOAA: Washington, DC, USA, 2019. [Google Scholar]
- Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens. Environ. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Shao, C.; Shuai, Y.; Tuerhanjiang, L.; Ma, X.; Hu, W.; Zhang, Q.; Xu, A.; Liu, T.; Tian, Y.; Wang, C.; et al. Cross-Comparison of Global Surface Albedo Operational Products-MODIS, GLASS, and CGLS. Remote Sens. 2021, 13, 4869. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Pohl, C.; Istomina, L.; Tietsche, S.; Jäkel, E.; Stapf, J.; Spreen, G.; Heygster, G. Broadband albedo of Arctic sea ice from MERIS optical data. Cryosphere 2020, 14, 165–182. [Google Scholar] [CrossRef]
- Zege, E.; Malinka, A.; Katsev, I.; Prikhach, A.; Heygster, G.; Istomina, L.; Birnbaum, G.; Schwarz, P. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data. Remote Sens. Environ. 2015, 163, 153–164. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wendisch, M.; Macke, A.; Ehrlich, A.; Lüpkes, C.; Mech, M.; Chechin, D.; Dethloff, K.; Velasco, C.B.; Bozem, H.; Brückner, M.; et al. The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bull. Am. Meteorol. Soc. 2019, 100, 841–871. [Google Scholar] [CrossRef]
- Stapf, J.; Ehrlich, A.; Wendisch, M. Influence of Thermodynamic State Changes on Surface Cloud Radiative Forcing in the Arctic: A Comparison of Two Approaches Using Data from AFLUX and SHEBA. J. Geophys. Res. Atmos. 2021, 126, e2020JD033589. [Google Scholar] [CrossRef]
- Ehrlich, A.; Wendisch, M.; Lüpkes, C.; Buschmann, M.; Bozem, H.; Chechin, D.; Clemen, H.-C.; Dupuy, R.; Eppers, O.; Hartmann, J.; et al. A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign. Earth Syst. Sci. 2019, 11, 1853–1881. [Google Scholar] [CrossRef]
- Istomina, L.; Marks, H.; Huntemann, M.; Heygster, G.; Spreen, G. Improved cloud detection over sea ice and snow during Arctic summer using MERIS data. Atmos. Meas. Tech. 2020, 13, 6459–6472. [Google Scholar] [CrossRef]
- Niehaus, H.; Spreen, G.; Birnbaum, G.; Istomina, L.; Jäkel, E.; Linhardt, F.; Neckel, N.; Fuchs, N.; Nicolaus, M.; Sperzel, T.; et al. Sea Ice Melt Pond Fraction Derived from Sentinel-2 Data: Along the MOSAiC Drift and Arctic-Wide. Geophys. Res. Lett. 2023, 50, e2022GL102102. [Google Scholar] [CrossRef]
- Boccolari, M.; Parmiggiani, F. Trends and variability of cloud fraction cover in the Arctic, 1982–2009. Theor. Appl. Climatol. 2018, 132, 739–749. [Google Scholar] [CrossRef]
- Hunt, G.E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Q. J. R. Meteorol. Soc. 1973, 99, 346–369. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Massom, R.; Lubin, D. Polar Remote Sensing Volume II: Ice Sheets; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2, p. 367. [Google Scholar]
- Malinka, A.; Zege, E.; Heygster, G.; Istomina, L. Reflective properties of white sea ice and snow. Cryosphere 2016, 10, 2541–2557. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Suttles, J.; Green, R.; Minnis, P.; Smith, G.; Staylor, W.; Wielicki, B.; Walker, I.; Young, D.; Taylor, V.; Stowe, L. Angular Radiation Models for Earth-Atmosphere System. Volume 1: Shortwave Radiation; NASA: Washington, DC, USA, 1988. [Google Scholar]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Koepke, P. Removal of Atmospheric Effects prom AVHRR Albedos. J. Appl. Meteor. 1989, 28, 1341–1348. [Google Scholar] [CrossRef]
- Zhao, W.; Tamura, M.; Takahashi, H. Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ. 2001, 76, 202–212. [Google Scholar] [CrossRef]
- Key, J.R.; Schweiger, A.J. Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci. 1998, 24, 443–451. [Google Scholar] [CrossRef]
- Rigor, I.G.; Wallace, J.M.; Colony, R.L. Response of Sea Ice to the Arctic Oscillation. J. Clim. 2002, 15, 2648–2663. [Google Scholar] [CrossRef]
- Vincent, R.F. The effect of Arctic dust on the retrieval of satellite derived sea and ice surface temperatures. Sci. Rep. 2018, 8, 9727. [Google Scholar] [CrossRef]
Product | Retrieval Algorithms | Spatial Resolution | Accuracy | Time Period | References |
---|---|---|---|---|---|
ERA5 reanalysis | Data assimilation | 0.25° | \ | 1940–present | Hersbach et al. [21] |
APP-x | Traditional algorithm | 25 km | RMSE = 0.08 | 1982–present | Key et al. [9] Key et al. [16] |
CLARA -A2 | Traditional algorithm | 25 km | RMSE = 0.069 | 1982–2015 | Riihela et al. [13] Karlsson et al. [14] |
MPF | Melt pond detection | 12.5 km | RMSE = 0.02 | 2002–2011 2017–2023 | Zege et al. [20] Pohl et al. [19] |
\ | Direct estimation | \ | RMSE = 0.068 | \ | Qu et al. [16] |
Channel | Center Wavelength (μm) | Band Range (μm) | NER (%)/ NETD (300 K) | Dynamic Range (/K) | Application in Algorithm |
---|---|---|---|---|---|
1 | 0.630 | 0.580.68 | 0.1% | 100% | Albedo calculation; Cloud detection |
2 | 0.865 | 0.840.89 | 0.1% | 100% | Albedo calculation; Cloud detection |
3 | 3.740 | 3.553.93 | 0.3 K | 180350 K | Cloud detection |
4 | 10.80 | 10.311.3 | 0.2 K | 180350 K | Cloud detection |
5 | 12.00 | 11.512.5 | 0.2 K | 180350 K | Cloud detection |
11 μm BT (K) | 220 | 230 | 240 | 250 | 260 | 270 | 280 |
BTD45_THRESH (K) | 0.8 | 0.9 | 1.2 | 1.45 | 1.8 | 2.45 | 3.4 |
AOD | a | b | c | Relative Bias |
---|---|---|---|---|
all | 0.3110 | 0.5522 | 0.0124 | \ |
0.05 | 0.2701 | 0.6028 | 0.0053 | 0.89% |
0.10 | 0.2573 | 0.6153 | 0.0061 | 0.87% |
0.20 | 0.2892 | 0.5772 | 0.0103 | 0.32% |
0.30 | 0.3353 | 0.5259 | 0.0140 | −0.36% |
0.40 | 0.3956 | 0.4636 | 0.0155 | −1.04% |
0.50 | 0.3698 | 0.4770 | 0.0222 | −0.93% |
Bias | Std | Median | Rsd | RMSE | Relative Bias | R2 | Num. |
---|---|---|---|---|---|---|---|
−0.040 | 0.071 | −0.039 | 0.071 | 0.081 | −4.68% | 0.83 | 391 |
Year | APP-x | OLCI MPF | ||||
---|---|---|---|---|---|---|
Bias | Std | R2 | Bias | Std | R2 | |
2016 | 0.052 | 0.070 | 0.85 | \ | \ | \ |
2017 | 0.033 | 0.075 | 0.90 | −0.009 | 0.083 | 0.91 |
2018 | 0.043 | 0.066 | 0.89 | −0.013 | 0.097 | 0.89 |
2019 | 0.053 | 0.071 | 0.88 | −0.015 | 0.092 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Guan, L. Arctic Sea Ice Albedo Estimation from Fengyun-3C/Visible and Infra-Red Radiometer. Remote Sens. 2024, 16, 1719. https://doi.org/10.3390/rs16101719
Sun X, Guan L. Arctic Sea Ice Albedo Estimation from Fengyun-3C/Visible and Infra-Red Radiometer. Remote Sensing. 2024; 16(10):1719. https://doi.org/10.3390/rs16101719
Chicago/Turabian StyleSun, Xiaohui, and Lei Guan. 2024. "Arctic Sea Ice Albedo Estimation from Fengyun-3C/Visible and Infra-Red Radiometer" Remote Sensing 16, no. 10: 1719. https://doi.org/10.3390/rs16101719
APA StyleSun, X., & Guan, L. (2024). Arctic Sea Ice Albedo Estimation from Fengyun-3C/Visible and Infra-Red Radiometer. Remote Sensing, 16(10), 1719. https://doi.org/10.3390/rs16101719