Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery
Abstract
:1. Introduction—Context and Related Work
1.1. Earthquakes and Coseismic Landslides
1.2. Satellite Remote Sensing-Based Landslide Detection
No. | Publication | Satellite Sensors | Detection Method | Change Detection | GEE | Study Area | Co-Seismic |
---|---|---|---|---|---|---|---|
M1 | [41] | L8, SRTM DEM | ∆NDVI, Supervised classification | Yes | Yes | Nepal | Yes |
M2 | [42] | S2, SRTM DEM | ∆NDVI or rdNDVI | Yes | Yes | Sulawesi | Yes |
M3 | [43] | S2, L8 | rdNDVI | Yes | Yes | Papua New Guinea, Kenya | Yes 1 |
M4 | [40] | S2 | ∆BSI | Yes | No | Central America | Yes |
M5 | [29] | S2, DTM (5 m) | ∆NDVI, slope | Yes | Yes | Italy | No 1 |
M6 | [31] | S2, ALOS GDEM | Unsupervised classification (NDVIpost, slope, S2post bands) | No | No | India, China, Taiwan | Yes 1 |
M7 | [38] | S2, ALOS GDEM | Supervised OBIA (NDVIpost, slope) | No | No | India, China, Taiwan | No 1 |
M8 | [44] | L8 | Supervised classification (NDWIpost, NDVIpost, DEM, slope) | No | Yes | India | No 1 |
M9 | [45] | S1 or S2 | ∆NDVI, SAR backscatter (VV-VH) | Yes | Yes | Norway | No 1 |
M10 | [19,46] | S1 | ∆SAR backscatter (VH), heatmap for visual landslide interpretation | Yes | Yes | Haiti; Vietnam; Japan: Hokkaido, Hiroshima; | Yes 1 |
M11 | [47] | S1 | ∆SAR backscatter (VV-VH) | Yes | No | Mexico | Yes |
M12 | [39,48] | P2 | ∆SAR backscatter (HH) | Yes | No | Japan: Hokkaido | Yes |
M13 | [32] | L8 | SLIP (%RedChange, ∆mNDMI) | Yes | No | Nepal, Cameron | Yes 1 |
M14 | [33] | L8 | aSLIP (mRedChange, ∆iNDVIn, ∆mNDMI) | Yes | No | Nepal, Cameron | No 1 |
M15 | [34] | S2 | iSLIP (mRedChange, ∆mNDMI) | Yes | No | Japan: Hokkaido | Yes |
M16 | [36] | S1, S2 | ∆SAR backscatter (VV) or SLIP (%RedChange, ∆mNDMI) | Yes | No | India | No |
M17 | [49,50] | GE RGB imagery | ML: RetinaNet, YOLO v3, Mask R-CNN, YOLOX | No | No | China | Yes |
1.3. Cloud-Based Processing, Google Earth Engine and Machine Learning
1.4. Research Gaps, Aim and Contributions of This Work
- Existing methods built upon change detection of either spectral index or SAR backscatter, but the benefits of combining optical and SAR sensor bands have not yet been explored;
- No study has applied and compared the performance of different ML classifiers available in GEE for landslide detection;
- Existing studies using optical sensors (e.g., L8 or S2) have used SR products, but none have investigated the use of TOA vs. SR products regarding resulting landslide detection performance;
- No comparison of existing landslide detection methods has been applied to the same study dataset;
- No study has investigated the benefits of transfer learning for landslide detection;
- No ready-to-use ML-based solution to landslide detection is available in GEE.
- To what extent could ML-based landslide detection using stacked bands from multiple optical and radar sensors improve landslide detection compared to existing approaches?
- How do ML classifiers, available in GEE and applied to landslide detection, compare in terms of performance and processing speed?
- What are the possibilities in GEE for early landslide detection—how does the use of TOA radiance products compare to SR products?
- How important are relevant spectral and derived topographic bands for landslide detection?
- What other factors impact satellite imagery-based landslide detection accuracy?
- To what extent can an ML-based landslide detection in GEE be fully automized to allow easy operational adjustment to any spatio-temporal scenario?
- Detailed comparison of the performance (accuracy assessment) of existing RS-based landslide detection methods using ground truthing datasets from four different case sites;
- Novel RS-based landslide detection solution that:
- ○
- Utilizes stacked multi-band optical and SAR imagery at 10 m spatial resolution including S1, S2, P2, and elevation-derived topographic bands;
- ○
- Applies landslide-specific training and validation sampling strategy based on a novel slope masking approach;
- ○
- Applies ML classifier with optimized parameters to boost performance and processing speed;
- ○
- Utilizes new additional pseudobands as part of the ML classifier: slope curvature, aspect, P2 SAR bands, S1 SAR band: combined VH-VV;
- ○
- Is implemented in GEE with an accessible source code, including landslide inventory data for all four study sites and a guideline to adjust the GEE code to any study area;
- Investigation of the importance of each landslide conditioning band within the ML model;
- Thorough investigation and comparison of ML classifiers in GEE for coseismic landslide detection;
- Comprehensive across-geography applied transfer learning-based landslide detection and validation;
- Transfer learning space transferability.
2. Materials and Methods
2.1. Case Studies
2.1.1. Japan, 2018 Mw 6.6 Hokkaido Earthquake
2.1.2. Haiti, 2021 Tiburon Peninsula Mw 7.2 Earthquake
2.1.3. Papua New Guinea, 2018 Mw 7.5 Earthquake
2.1.4. New Zealand, 2016 Mw 6.7 Kaikōura Earthquake
2.2. Methodology
2.2.1. Data Preparation
2.2.2. Landslide Conditioning Factors
- S1_log_VH: log ratio for pre- and post-event S1 SAR (VH) intensity;
- S1_90p_VH: 90th percentile of S1 log ratio (VH);
- S1_90p_VH_VV: 90th percentile of S1 log ratio (VH and VV).
2.2.3. ML Sampling Strategy
2.2.4. ML Classifier
2.2.5. Evaluation Metrics
2.2.6. Band Importance Investigations
2.2.7. Transfer Learning Investigations
3. Results
3.1. Landslide Detection Accuracies
3.2. Importance Factors of Landslide Conditioning Bands
3.3. Transfer Learning
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area of interest |
BA | Balanced Accuracy |
BSI | Bare Soil Index |
CART | Classification and Regression Trees |
CE | Commission Error |
CNN | Convolutional Neural Network |
DL | Deep Learning |
EECU | Earth Engine Compute Unit |
ESA | European Space Agency |
FN | False Negative |
FP | False Positive |
gDEM | Global Digital Elevation Model |
GE | Google Earth |
GEE | Google Earth Engine |
GTB | Gradient Tree Boost |
IR | Infra-Red |
iSLIP | Improved Sudden Landslide Identification Product |
L8 | Landsat-8 |
LULC | Land Use Land Cover |
ML | Machine learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
Narea | Area for negative training samples |
N-Barea | Area for negative training samples inside ring-buffers |
NASA | National Aeronautics and Space Administration |
NB | Naive Bayes |
NDVI | Normalized Difference Vegetation Index |
NIR | Near-Infra-Red |
NRT | Near real-time |
OA | Overall accuracy |
OE | Omission error |
PCA | Principal component analysis |
P2 | Palsar-2 |
QP | Quality percentage |
RF | Random Forest |
RS | Remote Sensing |
S1 | Sentinel-1 |
S2 | Sentinel-2 |
SIAC | Sensor Invariant Atmospheric Correction |
SLIP | Sudden Landslide Identification Product |
SR | Surface reflectance |
STI | Sediment Transport Index |
SVM | Scalable Vector Machine |
SWIR | Short-Wave Infra-Red |
TA | Training accuracy |
TN | True Negative |
TOA | Top-Of-Atmosphere (reflectance) |
TOA2SR | Top of Atmosphere reflectance corrected to Surface Reflectance |
Parea | Area for positive training samples (ground truth) |
TP | True positive |
TWI | Topographic Wetness Index |
VA | Validation Accuracy |
VHR | Very high-resolution |
References
- Highland, L.; Bobrowsky, P.T. The Landslide Handbook: A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008.
- Keefer, D.K. Landslides Caused by Earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Natural Disasters. Available online: https://ourworldindata.org/natural-disasters (accessed on 9 July 2023).
- Wallemacq, P.; Below, R.; McClean, D. Economic Losses, Poverty & Disasters: 1998–2017. United Nations Office for Disaster Risk Reduction. 2018. Available online: https://www.preventionweb.net/files/61119_credeconomiclosses.pdf (accessed on 17 September 2023).
- Quigley, M.; Duffy, B. Effects of Earthquakes on Flood Hazards: A Case Study from Christchurch, New Zealand. Geosciences 2020, 10, 114. [Google Scholar] [CrossRef]
- Noy, I.; Okubo, T.; Strobl, E.; Tveit, T. The Fiscal Costs of Earthquakes in Japan. Int. Tax Public Financ. 2022, 30, 1225–1250. [Google Scholar] [CrossRef]
- Cruden, D.M. Cruden, Dm, Varnes, Dj, 1996, Landslide Types and Processes, Transportation Research Board, Us National Academy of Sciences, Special Report, 247: 36–75. Landslides Eng. Pract. 1993, 24, 20–47. [Google Scholar]
- Stanley, T.A.; Kirschbaum, D.B.; Benz, G.; Emberson, R.A.; Amatya, P.M.; Medwedeff, W.; Clark, M.K. Data-Driven Landslide Nowcasting at the Global Scale. Front. Earth Sci. 2021, 9, 640043. [Google Scholar] [CrossRef]
- Ruggeri, P.; Fruzzetti, V.M.; Ferretti, A.; Scarpelli, G. Seismic and Rainfall Induced Displacements of an Existing Landslide: Findings from the Continuous Monitoring. Geosciences 2020, 10, 90. [Google Scholar] [CrossRef]
- Saito, H.; Uchiyama, S.; Hayakawa, Y.S.; Obanawa, H. Landslides Triggered by an Earthquake and Heavy Rainfalls at Aso Volcano, Japan, Detected by Uas and Sfm-Mvs Photogrammetry. Prog. Earth Planet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Z.; Wei, Z.; Zheng, J.; Konagai, K. Assessment of Earthquake-Triggered Landslide Susceptibility Considering Coseismic Ground Deformation. Front. Earth Sci. 2023, 10, 993975. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Pham, Q.B.; Vojtek, M.; Gigović, L.; Ahmad, A.; Ghorbani, M.A. GIS-Based Landslide Susceptibility Modeling: A Comparison between Fuzzy Multi-Criteria and Machine Learning Algorithms. Geosci. Front. 2021, 12, 857–876. [Google Scholar] [CrossRef]
- Fan, X.; Liu, B.; Luo, J.; Pan, K.; Han, S.; Zhou, Z. Comparison of Earthquake-Induced Shallow Landslide Susceptibility Assessment Based on Two-Category LR and KDE-MLR. Sci. Rep. 2023, 13, 833. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Gamba, P. Remote Sensing and Earthquake Damage Assessment: Experiences, Limits, and Perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar] [CrossRef]
- Yao, T.; Green, D.; Michael, K.; Davies, D. Using Nasa Lance near Real-Time Products for Disaster Risk Reduction. In Proceedings of the FOSS4G 2021 (Free and Open Source Software for Geospatial), Online, 27 September–2 October 2021. [Google Scholar]
- NASA. Near Real Time (Nrt) Data from Esa Sentinel Satellites. 2021. Available online: https://appliedsciences.nasa.gov/join-mission/publications-resources/near-real-time-nrt-data-esa-sentinel-satellites (accessed on 21 September 2023).
- Shafapourtehrany, M.; Batur, M.; Shabani, F.; Pradhan, B.; Kalantar, B.; Özener, H. A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment. Remote Sens. 2023, 15, 1939. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z.; Yang, C.; Zhu, W.; Liu-Zeng, J.; Chen, L.; Liu, C. Integration of Sentinel-1 and Alos/Palsar-2 Sar Datasets for Mapping Active Landslides Along the Jinsha River Corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Huang, M.-H.; Jones, S.Y.; Amatya, P.; Kerner, H.R.; Kirschbaum, D.B. Generating Landslide Density Heatmaps for Rapid Detection Using Open-Access Satellite Radar Data in Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2022, 22, 753–773. [Google Scholar] [CrossRef]
- Wang, W.; Motagh, M.; Plank, S.; Orynbaikyzy, A.; Roessner, S. Application of Sar Time-Series and Deep Learning for Estimating Landslide Occurrence Time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 1181–1187. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective 2/E; Pearson Education: Noida, India, 2009. [Google Scholar]
- Fitzgerald, D.L.; Peters, S.; Guerin, G.R.; McGrath, A.; Keppel, G. Quantifying Dieback in a Vulnerable Population of Eucalyptus Macrorhyncha Using Remote Sensing. Land 2023, 12, 1271. [Google Scholar] [CrossRef]
- Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. Aggregating Cloud-Free Sentinel-2 Images with Google Earth Engine. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 145–152. [Google Scholar]
- Martinez, S.N.; Schaefer, L.N.; Allstadt, K.E.; Thompson, E.M. Evaluation of Remote Mapping Techniques for Earthquake-Triggered Landslide Inventories in an Urban Subarctic Environment: A Case Study of the 2018 Anchorage, Alaska Earthquake. Front. Earth Sci. 2021, 9, 673137. [Google Scholar] [CrossRef]
- Ray, R.L.; Lazzari, M.; Olutimehin, T. Remote Sensing Approaches and Related Techniques to Map and Study Landslides. Landslides-Investig. Monit 2020, 2, 1–25. [Google Scholar]
- Xu, C.; Gorum, T.; Tanyas, H. Application of Remote Sensing and Gis in Earthquake-Triggered Landslides. Front. Earth Sci. 2022, 10, 964753. [Google Scholar] [CrossRef]
- Byrraju, S.V. Landslide Detection Using Remote Sensing Methods A Review of Current Techniques; University of South Carolina: Columbia, SC, USA, 2019. [Google Scholar]
- Kader, M.A.; Jahan, I. A Review of the Application of Remote Sensing Technologies in Earthquake Disaster Management: Potentialities and Challenges. In Proceedings of the International Conference on Disaster Risk Management, Dhaka, Bangladesh, 12–14 January 2019; pp. 12–14. [Google Scholar]
- Notti, D.; Cignetti, M.; Godone, D.; Giordan, D. Semi-Automatic Mapping of Shallow Landslides Using Free Sentinel-2 and Google Earth Engine. Nat. Hazards Earth Syst. Sci. Discuss. 2023, 23, 2625–2648. [Google Scholar] [CrossRef]
- Lu, P.; Qin, Y.; Li, Z.; Mondini, A.C.; Casagli, N. Landslide Mapping from Multi-Sensor Data through Improved Change Detection-Based Markov Random Field. Remote Sens. Environ. 2019, 231, 111235. [Google Scholar] [CrossRef]
- Shahabi, H.; Rahimzad, M.; Tavakkoli Piralilou, S.; Ghorbanzadeh, O.; Homayouni, S.; Blaschke, T.; Lim, S.; Ghamisi, P. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sens. 2021, 13, 4698. [Google Scholar] [CrossRef]
- Fayne, J.V.; Ahamed, A.; Roberts-Pierel, J.; Rumsey, A.C.; Kirschbaum, D. Automated Satellite-Based Landslide Identification Product for Nepal. Earth Interact. 2019, 23, 1–21. [Google Scholar] [CrossRef]
- Ngandam Mfondoum, A.H.; Wokwenmendam Nguet, P.; Mefire Mfondoum, J.V.; Tchindjang, M.; Hakdaoui, S.; Cooper, R.; Gbetkom, P.G.; Penaye, J.; Bekoa, A.; Moudioh, C. Adapting Sudden Landslide Identification Product (SLIP) and Detecting Real-Time Increased Precipitation (DRIP) Algorithms to Map Rainfall-Triggered Landslides in Western Cameroon Highlands (Central-Africa). Geoenviron. Disasters 2021, 8, 17. [Google Scholar] [CrossRef]
- Piralilou, S.T.; Shahabi, H.; Pazur, R. Automatic Landslide Detection Using Bi-Temporal Sentinel 2 Imagery. GI_Forum 2021, 9, 39–45. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of Landslides Triggered by the 2018 Hokkaido Eastern Iburi Earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Sivasankar, T.; Ghosh, S.; Joshi, M. Exploitation of Optical and SAR Amplitude Imagery for Landslide Identification: A Case Study from Sikkim, Northeast India. Environ. Monit. Assess. 2021, 193, 386. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Qi, W.; Fang, J. Using Google Earth Engine to Monitor Co-Seismic Landslide Recovery after the 2008 Wenchuan Earthquake. Earth Surf. Dyn. Discuss. 2020, 2020, 1–14. [Google Scholar]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide Detection Using Deep Learning and Object-Based Image Analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Aimaiti, Y.; Liu, W.; Yamazaki, F.; Maruyama, Y. Earthquake-Induced Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 data. Remote Sens. 2019, 11, 2351. [Google Scholar] [CrossRef]
- Ariza, A.; Davila, N.A.; Kemper, H.; Kemper, G. Landslide Detection in Central America Using the Differential Bare Soil Index. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 679–684. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Muhammad, S. Analysis of Satellite-Derived Landslide at Central Nepal from 2011 to 2016. Environ. Earth Sci. 2018, 77, 331. [Google Scholar] [CrossRef]
- Subiyantoro, A.; Westen, C.J.V.; Bout, B.V.D.; Yuniawan, R.A.; Mulyana, A.R. Semi-automatic Landslide Detection Using Google Earth Engine, a Case Study in Poi Village, Central Sulawesi. In Proceedings of the 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, 24–25 November 2022; pp. 1–4. [Google Scholar]
- Scheip, C.M.; Wegmann, K.W. HazMapper: A Global Open-Source Natural Hazard Mapping Application in Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2021, 21, 1495–1511. [Google Scholar] [CrossRef]
- Singh, P.; Maurya, V.; Dwivedi, R. Pixel Based Landslide Identification Using Landsat 8 and Gee. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8444–8447. [Google Scholar]
- Lindsay, E.; Frauenfelder, R.; Rüther, D.; Nava, L.; Rubensdotter, L.; Strout, J.; Nordal, S. Multi-Temporal Satellite Image Composites in Google Earth Engine for Improved Landslide Visibility: A Case Study of a Glacial Landscape. Remote Sens. 2022, 14, 2301. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Jones, S.Y.; Huang, M.-H.; Amatya, P.; Kerner, H.R.; Kirschbaum, D.B. Rapid Landslide Identification Using Synthetic Aperture Radar Amplitude Change Detection on the Google Earth Engine. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–24. [Google Scholar]
- Hernandez, N.D.; Pastrana, A.A.; Garcia, L.C.; de Leon, J.C.V.; Alvarez, A.Z.; Morales, L.D.; Nemiga, X.A.; Posadas, G.D. Co-Seismic Landslide Detection after M 7.4 Earthquake on June 23, 2020, in Oaxaca, Mexico, Based on Rapid Mapping Method Using High and Medium Resolution Synthetic Aperture Radar (Sar) Images. Landslides 2021, 18, 3833–3844. [Google Scholar] [CrossRef]
- Fujiwara, S.; Nakano, T.; Morishita, Y.; Kobayashi, T.; Yarai, H.; Une, H.; Hayashi, K. Detection and Interpretation of Local Surface Deformation from the 2018 Hokkaido Eastern Iburi Earthquake Using Alos-2 Sar Data. Earth Planets Space 2019, 71, 64. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, Q.; Jin, S.; Li, W.; Su, Y.; Dong, X.; Guo, Q. Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sens. 2022, 14, 1182. [Google Scholar] [CrossRef]
- Yu, Z.; Chang, R.; Chen, Z. Automatic Detection Method for Loess Landslides Based on Gee and an Improved Yolox Algorithm. Remote Sens. 2022, 14, 4599. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J.; Peters, S.; Li, J.; Oliver, S.; Mueller, N. Investigating the Impact of Using Ir Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight Cnn Model. Remote Sens. 2022, 14, 3047. [Google Scholar] [CrossRef]
- Gomes, V.C.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote. Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What Is Going on within Google Earth Engine? A Systematic Review and Meta-Analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Smith, W.D.; Dunning, S.A.; Brough, S.; Ross, N.; Telling, J. Geraldine (Google Earth Engine Supraglacial Debris Input Detector): A New Tool for Identifying and Monitoring Supraglacial Landslide Inputs. Earth Surf. Dyn. 2020, 8, 1053–1065. [Google Scholar] [CrossRef]
- Van Natijne, A.; Bogaard, T.; van Leijen, F.; Hanssen, R.; Lindenbergh, R. World-Wide Insar Sensitivity Index for Landslide Deformation Tracking. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102829. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Singh, V.P.; Wang, G.; Zhao, J.; Shen, Z.; Sun, S. A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4662. [Google Scholar] [CrossRef]
- Ilmy, H.F.; Darminto, M.R.; Widodo, A. Application of Machine Learning on Google Earth Engine to Produce Landslide Susceptibility Mapping (Case Study: Pacitan). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 26 August 2020; p. 012028. [Google Scholar]
- Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Li, B.; Liu, K.; Wang, M.; He, Q.; Jiang, Z.; Zhu, W.; Qiao, N. Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. Remote Sens. 2022, 14, 5795. [Google Scholar] [CrossRef]
- Khan, M.M.; Ghaffar, B.; Shahzad, R.; Khan, M.R.; Shah, M.; Amin, A.H.; Eldin, S.M.; Naqvi, N.A.; Ali, R. Atmospheric Anomalies Associated with the 2021 M W 7.2 Haiti Earthquake Using Machine Learning from Multiple Satellites. Sustainability 2022, 14, 14782. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Yunus, A.P.; Siva Subramanian, S.; Alonso-Rodriguez, A.; Dai, L.; Xu, Q.; Huang, R. Coseismic Landslides Triggered by the 2018 Hokkaido, Japan (M W 6.6), Earthquake: Spatial Distribution, Controlling Factors, and Possible Failure Mechanism. Landslides 2019, 16, 1551–1566. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Li, W.; Lu, H.; Li, Z. Evaluation of Factors Controlling the Spatial and Size Distributions of Landslides, 2021 Nippes Earthquake, Haiti. Geomorphology 2022, 415, 108419. [Google Scholar] [CrossRef]
- Tanyaş, H.; Hill, K.; Mahoney, L.; Fadel, I.; Lombardo, L. The World’s Second-Largest, Recorded Landslide Event: Lessons Learnt from the Landslides Triggered during and after the 2018 Mw 7.5 Papua New Guinea Earthquake. Eng. Geol. 2022, 297, 106504. [Google Scholar] [CrossRef]
- Tanyaş, H.; Görüm, T.; Fadel, I.; Yıldırım, C.; Lombardo, L. An Open Dataset for Landslides Triggered by the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand. Landslides 2022, 19, 1405–1420. [Google Scholar] [CrossRef]
- Ohtani, M.; Imanishi, K. Seismic Potential around the 2018 Hokkaido Eastern Iburi Earthquake Assessed Considering the Viscoelastic Relaxation. Earth Planets Space 2019, 71, 57. [Google Scholar] [CrossRef]
- Yamagishi, H.; Yamazaki, F. Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides 2018, 15, 2521–2524. [Google Scholar] [CrossRef]
- Martinez, S.N.; Allstadt, K.E.; Slaughter, S.L.; Schmitt, R.G.; Collins, E.; Schaefer, L.N.; Ellison, S. Landslides Triggered by the August 14, 2021, Magnitude 7.2 Nippes, Haiti, Earthquake; US Geological Survey: Reston, VA, USA, 2021.
- Wang, S.; Xu, C.; Li, Z.; Wen, Y.; Song, C. The 2018 Mw 7.5 Papua New Guinea Earthquake: A Possible Complex Multiple Faults Failure Event with Deep-Seated Reverse Faulting. Earth Space Sci. 2020, 7, e2019EA000966. [Google Scholar] [CrossRef]
- Yin, F.; Lewis, P.E.; Gómez-Dans, J.L. Bayesian Atmospheric Correction over Land: Sentinel-2/Msi and Landsat 8/Oli. Geosci. Model Dev. 2022, 15, 7933–7976. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest parameters to SAR data. In Proceedings of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991. [Google Scholar]
- Suri, M. Global Solar Atlas 2.0 Technical Report; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Google. The Global Precipitation Measurement Mission (Gpm). Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V06 (accessed on 2 September 2023).
- Google. Supervised Classification—The Classifier Package Handles Supervised Classification by Traditional Ml Algorithms Running in Earth Engine. Available online: https://developers.google.com/earth-engine/guides/classification (accessed on 15 February 2023).
- Aksoy, S.; Yildirim, A.; Gorji, T.; Hamzehpour, N.; Tanik, A.; Sertel, E. Assessing the Performance of Machine Learning Algorithms for Soil Salinity Mapping in Google Earth Engine Platform Using Sentinel-2a and Landsat-8 Oli Data. Adv. Space Res. 2022, 69, 1072–1086. [Google Scholar] [CrossRef]
- Al-Amri, S.S.; Kalyankar, N.V.; Khamitkar, S.D. A Comparative Study of Removal Noise from Remote Sensing Image. arXiv 2010, arXiv:1002.1148. [Google Scholar]
- Velez, D.R.; White, B.C.; Motsinger, A.A.; Bush, W.S.; Ritchie, M.D.; Williams, S.M.; Moore, J.H. A Balanced Accuracy Function for Epistasis Modeling in Imbalanced Datasets Using Multifactor Dimensionality Reduction. Genet. Epidemiol. Off. Publ. Int. Genet. Epidemiol. Soc. 2007, 31, 306–315. [Google Scholar] [CrossRef]
- He, T.; Mu, S.; Zhou, H.; Hu, J. Wood Species Identification Based on an Ensemble of Deep Convolution Neural Networks. Wood Res. 2021, 66, 1–14. [Google Scholar]
- Zhao, L.; Liu, J.; Peters, S.; Li, J.; Mueller, N.; Oliver, S. Learning Class-Specific Spectral Patterns to Improve Deep Learning-Based Scene-Level Fire Smoke Detection from Multi-Spectral Satellite Imagery. Remote Sens. Appl. Soc. Environ. 2024, 34, 101152. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Wang, R.; Qiu, J.; Wang, W.; Zhao, Q.; Liu, D. An Advanced Echo Separation Scheme for Space-Time Waveform-Encoding Sar Based on Digital Beamforming and Blind Source Separation. Remote Sens. 2022, 14, 3585. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer Learning in Environmental Remote Sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, S.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.; Scheel Monteiro, P.M. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Altman, J.; Ukhvatkina, O.N.; Omelko, A.M.; Macek, M.; Plener, T.; Pejcha, V.; Cerny, T.; Petrik, P.; Srutek, M.; Song, J.-S. Poleward Migration of the Destructive Effects of Tropical Cyclones during the 20th Century. Proc. Natl. Acad. Sci. USA 2018, 115, 11543–11548. [Google Scholar] [CrossRef] [PubMed]
- Bloemendaal, N.; de Moel, H.; Martinez, A.B.; Muis, S.; Haigh, I.D.; van der Wiel, K.; Haarsma, R.J.; Ward, P.J.; Roberts, M.J.; Dullaart, J.C. A Globally Consistent Local-Scale Assessment of Future Tropical Cyclone Risk. Sci. Adv. 2022, 8, eabm8438. [Google Scholar] [CrossRef]
- Knutson, T.R.; Chung, M.V.; Vecchi, G.; Sun, J.; Hsieh, T.-L.; Smith, A.J. Climate Change Is Probably Increasing the Intensity of Tropical Cyclones. Crit. Issues Clim. Chang. Sci. Sci. Brief Rev. 2021, 4570334. [Google Scholar] [CrossRef]
Earthquake Date | Epicenter Location | Epicenter Lat/Lon | Focal Depth (km) | Mw, Death, Injured | Inventory Method | Ref. | No. Inventory Landslides | Used Landslides | Study Area (km2) |
---|---|---|---|---|---|---|---|---|---|
6 September 2018 | Japan, Hokkaido, Iburi | 42.662°N 142.011°E | 37 | 6.6, 41, 691 | VHR UAV imagery, PlanetScope | [62] | 5625 | 5208 (93%) | 359 |
14 August 2021 | Haiti, Tiburon Peninsula, Pic Macaya NP | 18.434°N 73.482°W | 10 | 7.2, 2200, 12,200 | GE imagery, PlanetScope | [63] | 6100 | 80% | 170 |
25 February 2018 | PNG, Hela Province, Komo | 6.070°S 142.754°E | 15–30 | 7.5, 160, 500 | GE imagery, PlanetScope, Rapid Eye | [64] | 11,607 | 8912 (77%) | 5163 |
14 November 2016 | New Zealand, South Island, Kaikōura | 42.737°S 173.054°E | 15 | 6.7, 2, 618 | GE imagery, S2 | [65] | 14,233 | 2521 (18%) | 1370 |
Sensor | Bands | GSD (m) | Description and Source (URL) |
---|---|---|---|
S2-L1C | B2-B12 | 10 or 20 | Sentinel-2 L1C (TOA) multispectral bands https://developers.google.com/earth-engine/datasets/catalog/sentinel-2 (accessed on 9 October 2023) |
S1 | VV, VH | 10 | Sentinel-1 C-band Interferometric Wide swath, Ground Range Detected, log scaling; https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 9 October 2023) |
P2 | HH, HV | 25 | PALSAR-2 L-band ScanSAR Level 2.2 backscatter data, log scaling https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR (accessed on 9 October 2023) |
ASTER | Elevation (b1) | 30 | ASTER Global Digital Elevation Model (GDEM) Version 3 https://gee-community-catalog.org/projects/aster/ (accessed on 9 October 2023) |
Site | Slope Max. | Slope Mean | Inventory and Slopes | Area [km2] | % |
---|---|---|---|---|---|
JPN | 61 | 19 | Inventory area covered by 10°slope | 18,240 | 76% |
Not covered | 5753 | 24% | |||
Total | 23,993 | 100% | |||
HTI | 75 | 29 | Inventory area covered by 10° slope | 10,557 | 95% |
Not covered | 567 | 5% | |||
Total | 11,123 | 100% | |||
PNG | 85 | 22 | Inventory area covered by 10° slope | 161,196 | 87% |
Not covered | 23,865 | 13% | |||
Total | 185,061 | 100% | |||
NZL | 73 | 24 | Inventory area covered by 10° slope | 13,145 | 88% |
Not covered | 1787 | 12% | |||
Total | 14,932 | 100% |
Classifier | Training Samples | No. of Trees | Min LeafPop 1 | Bag Fraction | Split | Max Nodes | Shrinkage | Sampling Rate |
---|---|---|---|---|---|---|---|---|
CART | 4800 | N/A | 7 | N/A | N/A | 40 | N/A | N/A |
RF | 4800 | 500 | 7 | 0.5 | 10 | 20 | N/A | N/A |
GTB | 4800 | 650 | N/A | N/A | N/A | 20 | 0.00095 | 0.173 |
NB | 4800 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Classifier | No. of Samples | Type | Kernel Type | Decision Procedure | Shrinking | Degree | Gamma | Coef0 |
SVM | 4800 | C_SVC | Poly | Margin | TRUE | 1 | 0.5 | 10 |
Used Bands | Classifier | Validation Pixels | All Pixels | EECU Minutes 1 | Peak Memory (MB) 1 | Count of Operations 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
OA | BA | OA | BA | ||||||||
All 40 bands | CART | 0.883 | 0.869 | 0.883 | 0.869 | 3.1 | 19,515,864 | 2490 | |||
RF | 0.889 | 0.876 | 0.889 | 0.876 | 37.9 | 23,429,664 | 2490 | ||||
GTB | 0.919 | 0.894 | 0.919 | 0.894 | 47.1 | 26,217,076 | 2490 | ||||
SVM | 0.888 | 0.871 | 0.888 | 0.871 | 53.6 | 62,084,948 | 1834 | ||||
NB | 0.668 | 0.607 | 0.668 | 0.607 | 2.7 | 19,359,664 | 1830 | ||||
20 most important bands | CART | 0.881 | 0.866 | 0.881 | 0.866 | 2.4 | 24% | 9,168,112 | 53% | 2068 | 17% |
RF | 0.891 | 0.875 | 0.891 | 0.875 | 20.0 | 47% | 15,366,896 | 34% | 2068 | 17% | |
GTB | 0.917 | 0.894 | 0.917 | 0.894 | 17.6 | 63% | 17,570,796 | 33% | 2088 | 16% | |
15 most important bands | CART | 0.881 | 0.872 | 0.881 | 0.872 | 2.2 | 29% | 7,940,596 | 59% | 2018 | 19% |
RF | 0.891 | 0.875 | 0.891 | 0.875 | 12.8 | 66% | 14,440,848 | 38% | 2018 | 19% | |
GTB | 0.913 | 0.892 | 0.913 | 0.892 | 13.2 | 72% | 16,044,596 | 39% | 2018 | 19% | |
10 most important bands | CART | 0.881 | 0.875 | 0.881 | 0.875 | 2.1 | 32% | 6,713,312 | 66% | 1968 | 21% |
RF | 0.885 | 0.874 | 0.885 | 0.874 | 14.6 | 61% | 13,510,296 | 42% | 1968 | 21% | |
GTB | 0.910 | 0.890 | 0.910 | 0.89 | 9.5 | 80% | 15,033,080 | 43% | 1968 | 21% | |
5 most important bands 2 | CART | 0.868 | 0.865 | 0.868 | 0.865 | 2.0 | 36% | 5,402,080 | 72% | 1918 | 23% |
GTB | 0.890 | 0.881 | 0.890 | 0.881 | 6.3 | 87% | 14,090,680 | 46% | 1918 | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, S.; Liu, J.; Keppel, G.; Wendleder, A.; Xu, P. Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery. Remote Sens. 2024, 16, 1722. https://doi.org/10.3390/rs16101722
Peters S, Liu J, Keppel G, Wendleder A, Xu P. Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery. Remote Sensing. 2024; 16(10):1722. https://doi.org/10.3390/rs16101722
Chicago/Turabian StylePeters, Stefan, Jixue Liu, Gunnar Keppel, Anna Wendleder, and Peiliang Xu. 2024. "Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery" Remote Sensing 16, no. 10: 1722. https://doi.org/10.3390/rs16101722
APA StylePeters, S., Liu, J., Keppel, G., Wendleder, A., & Xu, P. (2024). Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery. Remote Sensing, 16(10), 1722. https://doi.org/10.3390/rs16101722