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Abstract: Vector polygons represent crucial survey data, serving as a cornerstone of national geo-
graphic censuses and forming essential data sources for detecting geographical changes. The timely
update of these polygons is vital for governmental decision making and various industrial applica-
tions. However, the manual intervention required to update existing vector polygons using up-to-date
high-resolution remote sensing (RS) images poses significant challenges and incurs substantial costs.
To address this, we propose a novel change detection (CD) method for land cover vector polygons
leveraging high-resolution RS images and deep learning techniques. Our approach begins by em-
ploying the boundary-preserved masking Simple Linear Iterative Clustering (SLIC) algorithm to
segment RS images. Subsequently, an adaptive cropping approach automatically generates an initial
sample set, followed by denoising using the efficient Visual Transformer and Class-Constrained
Density Peak-Based (EViTCC-DP) method, resulting in a refined training set. Finally, an enhanced
attention-based multi-scale ConvTransformer network (AMCT-Net) conducts fine-grained scene
classification, integrating change rules and post-processing methods to identify changed vector
polygons. Notably, our method stands out by employing an unsupervised approach to denoise the
sample set, effectively transforming noisy samples into representative ones without requiring manual
labeling, thus ensuring high automation. Experimental results on real datasets demonstrate signifi-
cant improvements in model accuracy, with accuracy and recall rates reaching 92.08% and 91.34%,
respectively, for the Nantong dataset, and 93.51% and 92.92%, respectively, for the Guantan dataset.
Moreover, our approach shows great potential in updating existing vector data while effectively
mitigating the high costs associated with acquiring training samples.

Keywords: change detection (CD); deep learning; fine-grained scene classification; vector polygons;
high-resolution remote sensing (RS) image

1. Introduction

Land cover change detection plays a crucial role in understanding dynamics on the
Earth’s surface, with it being indispensable for applications such as land use analysis,
environmental assessment, monitoring of human development, and disaster response [1–5].
The increasing availability of high-resolution remote sensing (RS) images has revolution-
ized the field of change detection, enabling detailed long-term monitoring of land cover
dynamics [6]. The combination of these images with advancements in deep learning tech-
niques offers unprecedented opportunities for automating the change detection process,
thereby facilitating the timely updating of critical geographic datasets. However, despite
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these advancements, current methods used for change detection still face several challenges.
The processing involved in updating existing vector polygons with new high-resolution
RS images is time-consuming and labor-intensive, with manual intervention remaining
a bottleneck, leading to inefficiencies and high costs. Furthermore, traditional methods
for change detection through image differencing often struggle to handle noisy data and
require large quantities of high-quality training samples, limiting their scalability and
applicability in real-world scenarios [7–10]. Therefore, there is an urgent need for innova-
tive approaches to overcome these limitations and enhance the efficiency and accuracy of
change detection in high-resolution RS images.

To address the challenge of difficult sample acquisition, Zhao et al. [11] utilized linear
spectrum hybrid analysis and spectral index method to extract ground object samples in an
attempt to tackle sample selection difficulties in deep learning classification. Cui et al. [12]
determined the optimal focus radius for different land types based on focus statistics and
unique phenological characteristics, and subsequently proposed an approach for the auto-
matic generation of training samples using an enhanced distance measure. Cao et al. [13]
introduced a comprehensive fused cross-task transfer learning method (FFCTL) that effec-
tively utilizes crowdsourced building data and high-resolution satellite images to address
the issue of expensive real samples in building change detection. Lv et al. [7] presented
an iterative training sample augmentation (ITSA) strategy combined with a deep learning
neural network to enhance change detection performance. Li et al. [14] developed a label-
noise active learning sample collection method for multi-temporal land cover classification.
However, these studies did not consider the uncertainty inherent in the training data, which
may introduce errors into the final results. Therefore, addressing the denoising problem
associated with training samples is crucial for accurate change detection [15].

In addition, feature extraction plays a crucial role in object-based change detection.
Deep learning is widely employed in RS image change detection due to its robust feature
extraction and modeling capabilities. For instance, Zhang et al. [16] proposed a deep
learning change detection framework to detect newly built buildings by paying more
attention to the overall features and contextual associations of the change object instances.
Gu et al. [17] introduced a multi-scale convolutional layer feature fusion network to achieve
high-precision image change detection by addressing pseudo-changes and reducing the
loss of details in the detection process. Despite the excellent performance of Convolutional
Neural Networks (CNNs) in extracting relevant multi-scale features from images, they
have limitations in establishing long-range dependencies of self-attention within images.
The Transformer model has made significant advancements in image recognition and com-
puter vision due to its efficient processing of contextual information and global modeling
ability [18–22]. Recent studies have applied Transformer-based architectures to RS tasks,
such as multi-modal image processing [23] and scene classification, which is carried out
utilizing a Vision Transformer (ViT) [24].

Despite the enhanced perspectives ViT offers for image modeling, it frequently faces
challenges related to high computational complexity and memory usage. Addressing this
concern, Chen et al. [20] devised an efficient dual-path Transformer architecture. This
innovative approach has led to achieving state-of-the-art accuracy on benchmark building
extraction datasets. Furthermore, integrating the strengths of CNNs and Transformers to
enhance change detection capability has become a current research focus and has yielded
significant results [25–28]. While these advanced deep learning methods hold significant
promise in image analysis, their application in change detection encounters challenges due
to the inherent complexity of high-resolution RS images. These challenges include, but
are not limited to, diverse ground objects, image noise, and seasonal changes. Specifically,
difficulties arise in high label cost, accurate detection of multi-scale ground objects, data
imbalances, and the substantial demand for computing resources. Consequently, many cur-
rent methods for multi-temporal image change detection, which are based on deep learning,
encounter difficulties in direct applicability to practical tasks. While recent developments
in RS foundation models, such as SAM-enhanced [29], RingMo [30], and RSPrompter [31],
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have exhibited excellent generalization ability and zero-shot learning capability, they still
confront challenges related to reducing human intervention, decreasing computing resource
requirements, and accommodating diverse downstream task applications [21,32].

The effective utilization of prior knowledge, such as vector data, is crucial for change
detection. However, currently, few studies integrate vector and image data for change
detection methods. Vector data contain boundary and categorical information of ground
objects, with a large number of valuable vector polygons amassed by land survey projects
and other endeavors. Unlike image data, it offers essential support for image segmentation,
sample annotation, and classification tasks. Zhang et al. [33] proposed a change detection
method based on vector data and the isolated forest algorithm. This method utilizes vector
constraints with category information from an old time phase to finely segment a new
time-phase RS image, obtaining the plot, and applies the isolated forest to calculate the
change index of the plot. However, its efficacy hinges on the assumption that the proportion
of various ground object change plots is small, and it imposes high computational demands.
Wei et al. [34] replaced the historical RS image with vector data, and introduced a new
method to detect changes from single-phase RS image and vector data using the outlier
index of texture feature space. However, the texture-based approach limits the widespread
adoption of the method.

The automatic generation of labeled samples based on vector boundary constraints has
garnered significant attention from scholars in recent years, holding considerable promise
for application in vector data-aided change detection within the field [35–37]. However, due
to registration errors, semantic gaps among ground objects, land cover changes, variations
in annotation personnel, and other factors, label noise inevitably exists when directly
utilizing vector attributes for sample annotation within RS datasets. Consequently, this
leads to an incomplete capture of the image’s semantic content by the training model
and a subsequent decline in generated feature discrimination ability [35,38–42]. Currently,
denoising methods for samples have been initially developed. Li et al. [43] employed
superpixel segmentation on the image to delineate image objects and extracted spectral and
texture features. They then analyzed the distribution of homogeneity characteristic values
within cultivated land and applied a box plot anomaly detection method to eliminate noisy
samples, which was employed in monitoring the non-agriculturalization of cultivated land.
Kang et al. [44] utilized an energy constraint minimization criterion for hyperspectral image
target detection and effectively corrected training samples. However, these studies only
considered abnormal removal from pixel values and texture features and did not integrate
the actual needs of change detection. In summary, the theory and technology behind the
change detection methods integrating vector data and images are still immature, and the
automatic generation of samples and efficient unsupervised denoising methods are lacking,
requiring further research.

To address the aforementioned issues, this paper proposes a novel change detection
method for detecting changed land cover vector polygons using high-resolution RS images
and deep learning. Figure 1 shows the differences between our method and conventional
change detection methods.

The key contributions of this work are delineated as follows:

• We introduce a framework for detecting changes in vector polygons utilizing single-
temporal high-resolution RS images and deep learning. This framework enables
end-to-end application, encompassing image preprocessing through change detection,
requiring solely up-to-date images and corresponding land cover vector data from the
previous time image. This method offers a comprehensive bottom-up solution.

• For sample construction, we propose boundary-preserved masking Simple Linear
Iterative Clustering (SLIC) for generating superpixels. These are then combined with
land cover vector data to create an adaptive sample cropping scheme. To address noise,
we introduce an efficient Visual Transformer and class-constrained Density Peak-based
(EViTCC-DP) method for noisy label removal, followed by the transformation of noisy
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samples into representative ones using k-means clustering, resulting in the automatic
generation of a high-quality multi-scale sample set.

• To enhance fine-grained scene classification precision, we employ an improved attention-
based multi-scale ConvTransformer network (AMCT-Net) for superpixel cropping
unit classification. By integrating a CNN structure and Transformer, along with the
attention mechanism module, we achieve a more discriminative feature represen-
tation, enhancing the model’s classification accuracy. Additionally, we introduce a
change decisionmaker with various rules, which synergistically combines and post-
processes sample predictions with land cover vector data to effectively extract changed
vector polygons.
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The work is organized as follows. Section 2 introduces the proposed methodology in
detail, consisting of five main parts: Density Peak (DP) clustering, automated generation of
initial samples with vector boundary constraints, initial samples denoising based on DP
clustering algorithm, AMCT-Net, and vector polygons change detection analysis based
on confidence rules. Section 3 provides details of the datasets, describes the experiments,
and analyzes the results. Section 4 presents the discussion. Finally, Section 5 concludes
this paper.

2. Methodology

Most existing change detection algorithms rely heavily on image contrast and require
high-quality training samples, which are often challenging to acquire. This limitation
impedes their effectiveness in large-scale practical change detection scenarios. In this
work, we propose a novel framework for detecting changes in vector polygons using high-
resolution RS images, as illustrated in Figure 2. Our framework comprises an end-to-end
processing architecture consisting of four primary stages. Initially, we employ a boundary-
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preserved masking SLIC [45] algorithm for image superpixel segmentation, leveraging
high-resolution RS images and land cover vector data as inputs. Subsequently, adaptive
cropping is performed on each superpixel unit to generate initial samples, which undergo
denoising via the EViTCC-DP method, and the inclusion of representative training samples
(RTS) is introduced to construct the final high-quality training sample set. These refined
samples are then subjected to fine-grained image classification through an improved
attention-based multi-scale ConvTransformer network (AMCT-Net). Finally, a change
decisionmaker applies various rules to detect and locate changes within vector polygons.
A detailed elaboration of each module will be provided subsequently.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 29 
 

 

DP clustering algorithm, AMCT-Net, and vector polygons change detection analysis 
based on confidence rules. Section 3 provides details of the datasets, describes the experi-
ments, and analyzes the results. Section 4 presents the discussion. Finally, Section 5 con-
cludes this paper. 

2. Methodology 
Most existing change detection algorithms rely heavily on image contrast and require 

high-quality training samples, which are often challenging to acquire. This limitation im-
pedes their effectiveness in large-scale practical change detection scenarios. In this work, 
we propose a novel framework for detecting changes in vector polygons using high-reso-
lution RS images, as illustrated in Figure 2. Our framework comprises an end-to-end pro-
cessing architecture consisting of four primary stages. Initially, we employ a boundary-
preserved masking SLIC [45] algorithm for image superpixel segmentation, leveraging 
high-resolution RS images and land cover vector data as inputs. Subsequently, adaptive 
cropping is performed on each superpixel unit to generate initial samples, which undergo 
denoising via the EViTCC-DP method, and the inclusion of representative training sam-
ples (RTS) is introduced to construct the final high-quality training sample set. These re-
fined samples are then subjected to fine-grained image classification through an improved 
attention-based multi-scale ConvTransformer network (AMCT-Net). Finally, a change de-
cisionmaker applies various rules to detect and locate changes within vector polygons. A 
detailed elaboration of each module will be provided subsequently. 

Existing Vector Polygons

Boundary-preserved 
Masking SLIC

Adaptive 
Cropping Initial Sample Set

A high-quality multi-scale sample set including RTS

AMCT-Net Classification 
results

Change-decision 
maker

Final changed vector polygons

Up-to-Date Images

Construction of initial sample set

Change detection and post-processing

EViTCC-DP approach

Denoising process
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2.1. Density Peak Clustering

In contrast to the k-means algorithm [46,47], which necessitates the specification of the
cluster number, the Density Peak (DP) algorithm [48] can identify cluster centers without
iterative procedures. Operating non-iteratively, it adheres to a straightforward principle
and has showcased outstanding clustering efficacy in handling both spherical clusters and
non-convex datasets. The fundamental principles are as follows:

1. The density around the cluster center should be relatively high;
2. The cluster center should be situated at a considerable distance from points with higher

surrounding density.
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The DP clustering algorithm is based on the aforementioned concept to achieve data
clustering, where local density ρi and relative distance δi are two crucial factors that
significantly influence the outcomes of the DP algorithm.

Figure 3 provides an example that illustrates the fundamental concept of the DP
clustering algorithm. The cluster centers (designated as 1 and 10) are encompassed by
samples from the same class, which exhibit lower local densities compared to the cluster
centers (see Figure 3). Additionally, samples located far from the class centers typically
exhibit very low local densities.
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The main steps of the DP clustering algorithm are outlined as follows. Given a dataset
X ∈ RM, where M represents the number of samples, the Euclidean distance dij between
the samples Xi and Xj can be calculated as follows:

dij =
∥∥Xi − Xj

∥∥2
2. (1)

The local density ρi of each sample can be obtained as follows:

ρi = ∑j ̸=i χ
(
dij − dc

)
(2)

where dc is the cut-off distance and is constrained by a parameter P, which takes a value

between 10 and 30 [48]. In Equation (2), χ(u) =
{

1, u < 0
0, u ≥ 0

.

After computing ρi, δi is defined as follows:

δi =


max

j

(
dij

)
, i f ρi = max(ρ)

min
j:ρj>ρi

(
dij

)
, Otherwise. (3)

Generally, δi refers to the minimum distance between sample i and other samples with
a higher density than sample i. In special cases, δi refers to the maximum distance between
sample i and samples other than sample i. Samples with relatively higher ρi and δi values
will be identified as clustering centers. Therefore, an index γi is defined as follows:

γi = ρi × δi. (4)

The samples with higher γi values are more likely to be clustering centers. Therefore,
the clustering center in the dataset can be easily found using a sorting algorithm. In
Equation (2), outlier samples are detected by a hard index constraint, such as dc. In
accordance with previous studies [39,40], this paper adopts a soft Gaussian kernel function
to detect the outlier probability of samples, which is defined as follows:
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ρi = ∑j e−(
dij
dc

)
2

. (5)

The advantage of the soft Gaussian function is that it can reduce the negative impact
of statistical errors caused by fewer samples in some categories.

2.2. Automated Generation of Initial Samples with Vector Boundary Constraints
2.2.1. Automatic Generation of Initial Samples

The quality of sample generation and the accuracy of vector polygons change detection
in subsequent stages are directly influenced by the segmentation results of images. While
the SLIC algorithm can rapidly generate uniform and compact superpixels, it does not
guarantee a perfect fit between superpixels and ground object boundaries, potentially
leading to boundary exceedance situations [49].

To address this issue, we propose a novel approach termed boundary-preserved
masking SLIC. By incorporating prior knowledge of vector boundaries, our approach
significantly enhances the accuracy of image segmentation, as illustrated in Figure 4.
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Figure 4. Steps of boundary-preserved masking SLIC. (a) Original image and corresponding land
cover vector polygon. (b) Seed points are initialized using the farthest point sampling strategy.
(c) Seed point positions are fine-tuned based on the k-means algorithm to ensure a more uniform
distribution. (d) Pixels within the patch are clustered based on the color and spatial distance to the
nearest seed point.

The details of the algorithm are as follows:
1. Given the number of seed points (N), to distribute them uniformly across the region,

each seed point is positioned furthest from the boundary and from any other seed point.
The seed point (P) is calculated as follows:

P = argmax
x

(∥x − y∥2), (6)



Remote Sens. 2024, 16, 1736 8 of 27

where y represents a point on the boundary or a seed point and x represents another point
within the region. The boundary of the region is derived from a polygon. To ensure a
rational spatial distribution of seed points, N is calculated using a ratio, as depicted in (7),
where K denotes the total number of pixels in the mask and C0 denotes the preset cropping
size for the sample. Assuming each superpixel is uniformly square, the edge length is
defined as S, where S = m × C0. The parameter m is introduced to preserve specific
proximity information while ensuring the integrity of the features in the generated data.
Typically, 0 < m ≤ 1.

N = K
∣∣∣(m × C0)

2 (7)

2. The image is converted from RGB color space to CIELAB color space to facilitate
the measurement of color differences. The weighted distance d between color and space,
used in clustering, can assess the similarity between pixels, as expressed in Equation (9),
where w is the weight balancing the color distance (dc) and spatial distance (ds). To min-
imize repeated searches, a circular area with the seed point as the center and a radius
of 2S is defined as the search range during iterative clustering. Subsequently, any iso-
lated small clusters are merged with adjacent larger clusters based on lightness similarity
dl = (µ − µm)

2, where µ and µm are the average lightness of the small cluster and the
neighboring cluster, respectively.

dc =
√

∑n∈l,a,b

(
nj − ni

)2 (8)

d =

√
(dc)

2 + (ds/w)2 (9)

The segmentation accuracy at the image boundary is effectively enhanced by this
method, as demonstrated in Figure 5. Following image segmentation, we employed an
adaptive cropping method to automatically generate initial samples. Figure 6 illustrates
the process of adaptive image cropping. With the initial cropping size C of the sample,
superpixels are utilized as processing units for adaptive cropping, relying on the results
of image superpixel segmentation to generate the sample. Nevertheless, increasing the
cropping scale raises the likelihood of generating samples that contain features from other
land cover types, resulting in a decrease in sample quality. Additionally, when cropping
samples along the edges of imagery, areas extending beyond the image boundaries may
result in null values (Nodata), as shown in Figure 6a. To address these issues, we propose
a sample-adaptive cropping method with a formula for determining the cropping size C
as follows:

C =

{
C0, db > C0
db, db ≤ C0

, (10)

where C0 is the preset size, and db is the shortest distance between the center and bound-
ary. Finally, pure multi-scale samples were generated based on the constraints of vector
polygons boundaries.

2.2.2. Source of Noise Samples

The sources of noise samples primarily encompass the following aspects. Firstly, they
encompass discrepancies between vector boundaries and actual ground object boundaries
due to variations in operating personnel and standards contribute to noise generation, as
shown in Figure 7. Secondly, the formation of vector survey results often takes a certain
time period, leading to disparities between land class attributes derived from vector poly-
gons and those obtained from high-resolution RS images (see Figure 8). Consequently, it
is not feasible to directly extract labeled samples for training solely based on vector poly-
gons depicted on high-resolution RS images. In view of this, DP clustering is introduced
for initial samples denoising with the aim of addressing the issue of automatic sample
set construction.
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Figure 6. Adaptive cropping of images. Part (a) signifies that when the boundary of the image is
cropped, any areas that exceed the original image dimensions will result in null values. Part (b) sug-
gests that as the cropping size expands, the likelihood of the sample incorporating additional land
cover classes also increases. Normal size cropping results (upper) and reduced size cropping re-
sults (lower).
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2.3. Initial Samples Denoising Based on DP Clustering Algorithm

Sample denoising plays a crucial role in acquiring high-quality training samples,
thereby enhancing the classification accuracy of the model [50,51]. Consequently, this paper
introduces the EViTCC-DP approach, as illustrated in Figure 9. The approach comprises
the following steps:

1. Employing boundary constraints of vector polygons and adaptive cropping of RS
images to automatically generate initial samples and train ViT models.

2. Utilizing the pre-trained ViT to extract features from scene samples and inputting
them into the DP clustering algorithm according to class constraints to achieve the
purpose of denoising.

The approach uses the vector polygon attribute to classify the samples, thereby elimi-
nating the need to define the cluster center in the DP clustering algorithm, and can construct
a high-quality multi-scale sample set with minimal manual intervention. In this paper,
we introduce the DP clustering algorithm for removing noise samples in RS image scene
classification for the first time. Additionally, this paper improves classification accuracy
in subsequent stages by transforming noise samples into RTS under the supervision of
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k-means clustering. The k-means algorithm surpasses random selection in terms of select-
ing optimal clustering centers while ensuring consistency between cluster numbers and
label category data, thus obviating the requirement for manual definition.
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The implementation steps are described as follows:
1. Calculating the distance of training samples
Firstly, image feature embeddings are extracted for each sample using a pre-trained

ViT model. Then, let X =
{

X1, X2, · · · , XM
}

refer to the feature embeddings of the initial
samples, where M denotes the number of classes and Xm refers to the training samples
in the mth class. For two training samples belonging to the mth class, i.e., Xj

a and Xj
b, the

distance dm
ab between two samples can be measured. In this paper, Euclidean distance [39] is

used as the distance measurement between training samples, with the distance dj
ab between

Xj
a and Xj

b being able to be calculated as follows:

dj
ab =

∥∥∥Xj
a − Xj

b

∥∥∥2

2
. (11)

Through calculating the distances among the nth scene sample and the scene samples
in the mth class, a distance array dm

n of the nth scene sample can be constructed as follows:

dm
n =

[
dm

n1, dm
n2, · · · , dm

nNm

]T (12)

where Nm refers to the number of samples in the mth class. In this way, a distance matrix
Dm can be constructed as Dm =

{
dm

1 , dm
2 , · · · , dm

Nm

}
.

2. Calculating the local density of the training samples
The cut-off distance dm

c can be calculated as follows:

dm
c = Sm(t)s.t.t = ⟨Nm·(Nm − 1)

100
·P⟩ (13)

where Sm is a matrix that sorts the non-zero elements in the upper triangular matrix of
Dm from the smallest to the largest elements, P is a free parameter that will be analyzed in
Section 4.1, and < · > refers to the round operation.

With the above-obtained dm
c , the local densities ρm =

{
ρm

1 , ρm
2 , · · · , ρm

Nm

}
of the sam-

ples in the mth class can be calculated as follows:

ρm = ∑ e
−(Dm

dm
c
)

2

. (14)

3. Detecting the mislabeled samples in each class
Once the local densities of the training samples in different classes are obtained,

mislabeled samples can be easily detected and removed as follows:
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Ym
i =

{
Xm

i i f ρm
Nm

≥ λ·ρm

∅ Otherwise
(15)

where Y =
{

Y1, Y2, · · · , YM
}

refers to the resulting training set, in which the noisy labels
are detected and removed. λ is a free parameter.

4. Converting the mislabeled samples to representative samples
The scene sample Xj

a represents noise for the mth class; however, it may be a valuable
representative sample for the nth class. In this paper, the final high-quality sample set can
be automatically constructed as follows:

Ŷm
i = Ym

i + k∅j
class (16)

where Ŷ =
{

Ŷ1, Ŷ2, · · · , ŶM
}

refers to the final high-quality training scene sample set in
which the noisy labels are supervised and placed into the correct class using the k-means
clustering algorithm, and k∅j

class represents the k-means clustering algorithm.

2.4. Attention-Based Multi-Scale ConvTransformer Network, AMCT-Net
2.4.1. Overview of the Proposed AMCT-Net

The samples are generated using vector polygons and high-resolution RS images,
where each element requires fine-grained image classification [52]. Traditional methods
for image classification encounter challenges in capturing the intricate features of an im-
age. However, the fusion of the Convolutional Neural Network (CNN) and Transformer
enables the extraction of both global and local features, thereby enhancing classification
accuracy [17,23,27,53]. In this article, we introduce an attention-based multi-scale Con-
vTransformer network (AMCT-Net), depicted in Figure 10. AMCT-Net integrates a spatial
attention mechanism and a multi-scale feature extraction module into the Transformer
architecture to enhance fine-grained classification accuracy.
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The proposed AMCT-Net adopts a Siamese structure for local feature extraction, com-
prising four Encoder Residual Modules (ERMs) that generate feature maps of varying sizes
with channel dimensions of 16, 32, 64, and 128, respectively. Subsequently, to enhance
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model performance, we incorporate an attention mechanism known as the Efficient Con-
volution Spatial Attention Module (ECSAM) at the backend of ERM. ECSAM prioritizes
channel features and effectively leverages low- and high-level features [54]. Finally, EC-
SAM feature maps of different sizes are transformed into flattened feature patch tokens
with uniform shapes. Similar to the original Transformer [55], we flatten the patches and
map them to D dimensions using a trainable linear projection. We refer to the output of
this projection as the patch embeddings. Position embeddings are added to the patch
embeddings to retain positional information. The resulting sequence of embedding vectors
is utilized as input to the Adapter-Scale Transformer Encoder for classification, facilitating
the extraction of global features. Following an overview of the general motivation and
architecture of our proposed method, we proceed to describe each main improved module
in detail.

2.4.2. Module Details

1. Efficient Convolution Spatial Attention Module
Generally, spatial attention mechanisms are employed to assist models in focusing

on crucial image regions. However, computing weights between features across all po-
sitions entails significant computational effort. In this study, drawing inspiration from
the concept of “coordinate separation” [56], we propose the ECSAM to effectively cap-
ture cross-channel relationships and long-range dependencies while incorporating specific
positional information.

The detailed architecture of ECSAM is illustrated in Figure 11. First, the input feature
map, denoted as F ∈ RH×W×C, undergoes horizontal avg-pooling of size (H, 1) and
vertical avg-pooling of size (1, W) for each channel of the feature map, respectively. These
operations are defined as follows:

FH
c (h) =

1
W ∑

0≤x<W
Fc(h, x) (17)

FW
c (w) =

1
H ∑

0≤y<H
Fc(y, w) (18)

where FH
c (h) represents the horizontal avg-pooled feature of the c-th channel at height h,

and FW
c (w) represents the vertical avg-pooled feature of the c-th channel at width w.
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To prevent reduction in channel dimensionality during cross-channel interactions,
ECSAM employs 1D convolution extended to 2D with an adaptive kernel size for gener-
ating attention weights along two spatial directions, respectively. These operations are
formulated as

F̂H
c (h) = ReLU(C2Dk(FH

c (h))) (19)

F̂W
c (w) = ReLU(C2Dk(FW

c (w))) (20)

where F̂H
c (h) denotes the horizontal feature vector of the c-th channel at height h, F̂W

c (w)
denotes the vertical feature vector of the c-th channel at width w, and C2Dk represents 2D
convolution with kernel size of k, where k can be calculated as

k =

∣∣∣∣ log2 (C) + 1
2

∣∣∣∣
odd

(21)

where |t|odd represents the nearest odd number of t, and C denotes the number of channels
in F.

2. Encoder Residual Module
The residual module structure of the encoder is shown in Figure 12a. Initially, the

input features traverse a convolutional layer (Conv), followed by batch normalization (BN)
and rectified linear unit (ReLU) activation. Subsequently, another combination of Conv and
BN is introduced. Ultimately, the output is derived by adding the outcome of the second
BN to the outcome of the initial Conv, followed by another ReLU. The Conv kernels are
sized at 3 × 3. Employing residual connections and activation function layers serves to
accelerate network learning and mitigate the problem of gradient vanishing [25].
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Figure 12. Architecture of the embedded modules. (a) ERM. (b) Adapter-Scale Module.

3. Adapter-Scale Module
The architecture of the Adapter-Scale Module (ASM) is depicted in Figure 12b. It com-

prises three components: Downscale, ReLU, and Upscale. The Downscale segment utilizes
a single Multi-Layer Perceptron (MLP) layer to reduce the dimensionality of the embedding.
Subsequently, the ReLU activation function is applied, and the embedding is restored to its
original dimensionality through another MLP layer in the Upscale segment. Two ASMs are
integrated into the ViT block. The first is positioned before the multi-head attention blocks
and residual connections, while the second is embedded within the residual structure of
the MLP. Additionally, a scale factor of 0.5 is applied to each adapter.

2.5. Vector Polygons Change Detection Analysis Based on Confidence Rules

The set of image polygons generated by the post-processing unit Ri after interpretation
is denoted as

{
Pi

N
}

, where N represents the total number of image polygons. Let yi
N refer to

the classification attribute confidence of Pi
N , with yi

N being able to be calculated by counting
the occurrences of {x}, where {x} is the set of class attribute values. The attribute XPi

N
of
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Pi
N is subsequently computed based on the maximum confidence rule. The operation is

formulated as follows:
XPi

N
= argmax

{
yi

N

}
. (22)

Finally, the vector polygon attribute value Y can be obtained with

Y = argmax{Sx} (23)

where x is the attribute of different types of processing units after interpretation, and Sx is
the area corresponding to x.

The threshold k for change detection can be calculated with

k =
SY

Stotal
× 100% (24)

where SY is the area corresponding to Y, and Stotal is the total area of the vector polygon.
In this experiment, the threshold k was set at 0.9. The changed vector polygons

were identified based on the “prediction category <> initial category” and a developed
change decisionmaker, as illustrated in Figure 13. A detailed explanation of the change
decisionmaker will be provided in Section 3.2.1.
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3. Experiments and Results
3.1. Description of Data Sources and Research Scheme

The RS images and vector data used in this study were provided by the land change
survey project conducted by the Jiangsu Institute of Geology and Surveying. The Nantong
dataset is situated in Nantong Development Zone, Nantong City, Jiangsu Province, China
(see Figure 14). The existing vector data depicted in Figure 14a were collected during the
third land survey conducted in November 2021. The images presented in Figure 14b,c
were obtained from the Beijing-2 satellite with a spatial resolution of 0.8 m in October
2021 and October 2022. Similarly, the Guantan dataset is located in Guantan Town, Xuyi
County, Huai’an City, Jiangsu Province (refer to Figure 15). Moreover, the existing vector
data shown in Figure 15a were also collected during the third land survey conducted
in November 2021. The images presented in Figure 15b,c were acquired from the GF-2
satellite with a spatial resolution of 1m, with images also being taken in October 2021
and October 2022. Temporal image details are illustrated in Figures 14d and 15d, with
land use types within these areas primarily comprising buildings, cropland, forest land,
industrial land, paddy fields, roads, and water bodies. Considering the spatial resolution
of the images, the standard sample size for both datasets in the experiment was set at
96 pixels, with a minimum size of 32 pixels. The final multi-scale sample sizes range from
32 × 32 to 96 × 96 pixels, as depicted in Figures 14e and 15e.

After automatically generating the initial sample set, we obtained a high-quality
training sample set using the EViTCC-DP method. Specifically, the sample categories and
quantities for the two datasets are as shown in Table 1.
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Figure 14. The Nantong dataset obtained from the Nantong Development Zone, Jiangsu, China.
(a) Existing vector updated in November 2021. (b) Image acquired from BeiJing-2 in October 2021.
(c) Image acquired from BeiJing-2 in October 2022. (d) Detailed presentation of two phases of images.
(e) Examples of generated samples in the Nantong dataset.
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Figure 15. Guantan dataset obtained from Guantan, Xuyi, Huai’an, China. (a) Existing vector updated
in November 2021. (b) Image acquired from GF-2 in October 2021. (c) Image acquired from GF-2 in
October 2022. (d) Detailed presentation of two phases of images. (e) Examples of generated samples
in the Guantan dataset.
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Table 1. Sample Information of the Nantong dataset and the Guantan dataset.

Number Land Use Types Nantong Dataset Guantan Dataset

C1 buildings 5243 4849
C2 cropland 2647 1744
C3 forest 3201 3768
C4 industrial 5844 4160
C5 paddy field 4848 5115
C6 road 2738 1240
C7 water 5690 5139

The experiments were conducted on a computer equipped with 64GB of RAM and an
Intel Xeon CPU E-2186M @ 2.9GHz processor. The training process utilized the NVIDIA
GeForce GTX 1080 Ti with 11GB of memory. The source code for the proposed ConvTrans-
former was implemented using PyTorch 1.5.1+cu92 and Python 3.7. During training,
the stochastic gradient descent algorithm was employed, incorporating a momentum
value of 0.9 and a weight decay penalty coefficient of 10−5. The initial learning rate was set
to 0.001 and decayed following a cosine annealing schedule. A batch size of 64 was utilized.

3.2. Results
3.2.1. Change Detection and Post-Processing

There exists a significant semantic disparity between RS images and existing vector
polygons, resulting in the potential inclusion of non-subject objects within the subject
object, thereby leading to impure land classification within vector polygons. To achieve
reliable change detection results in accordance with task requirements, we have developed
a “change decisionmaker” (see Figure 16) that effectively mitigates the influence of non-
subject objects through the implementation of distinct thresholds. As depicted in Figure 16,
vector polygons are categorized into two types, namely ‘sensitive’ and ‘non-sensitive’. The
‘sensitive’ type [see Figure 16a] represents the most stringent change scenario, involving the
presence of new buildings in croplands, which is prohibited by law in certain countries. On
the other hand, other scenarios can be classified as the ‘non-sensitive’ type [see Figure 16b],
which do not violate legal regulations or relevant rules and receive comparatively less
attention than the ‘sensitive’ type.
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Figure 16. Detailed structure of change decisionmaker. (a) Conditions for changed “sensitive” type.
(b) Conditions for changed “non-sensitive” type. Specifically, when C: A/B > threshold, it is regarded
as the change of C, where A is the number of congener data in C whose predicted value is inconsistent
with the initial category, B is the total number of data in C, and C is a vector polygon (as long as one
of the conditions is met, C is determined to be changed).

3.2.2. Evaluation Metrics

To compare the performance of our method with that of traditional models, we
employed overall accuracy (OA), Precision, Recall, F1 score, and specificity as the primary
quantitative metrics. A higher value for each metric indicates superior model performance.
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The F1 score considers both precision and recall of the classification model on a scale
from 0 to 1. Furthermore, tests with high specificity indicate a lower Class I error rate [57].

The definitions of these metrics are outlined as follows:

OA =
TP + TN

TP + FP + TN + FN
(25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1 = 2· Precision·Recall
Precision + Recall

(28)

Specificity =
TN

TN + FP
(29)

where TP denotes true positives, FP denotes false positives, TN denotes true negatives, and
FN denotes false negatives.

3.2.3. Vector Polygons Change Detection Results

The accuracy of subsequent vector polygons’ change detection is directly influenced by
the classification accuracy of the proposed method [58], which adopts a post-classification
comparison approach. To assess the classification performance of the proposed AMCT-Net
model, we conducted comparisons with several other state-of-the-art models, including
ViT [59], MTC-Net [53], and HCTM [25]. Specifically, the ViT model utilizes the encoder
module of the Visual Change Transformer (VcT), MTC-Net combines the advantages of
the multi-scale Transformer with the convolutional block attention module (CBAM), and
HCTM represents a hybrid CNN-Transformer model. Before training the model, 80% of
samples from each dataset are allocated for training purposes, while the remaining 20% are
reserved for accuracy validation.

To validate the effectiveness and robustness of the proposed method in denoising
samples, we conducted comparative experiments using consistent training and test sets. All
models were evaluated under the same baseline conditions, and the classification results
on the two datasets are presented in Table 2.

Table 2. Comparison of the classification metrics of different models for the two datasets.

Model Metrics Nantong Dataset Guantan Dataset

Accuracy 0.9068 0.9165
Precision 0.8938 0.8914

ViT Recall 0.8903 0.9072
Specificity 0.9816 0.9811
F1 Score 0.8921 0.8992

MTC-Net

Accuracy 0.9117 0.9164
Precision 0.9103 0.8969

Recall 0.8904 0.9203
Specificity 0.9824 0.9811
F1 Score 0.8985 0.8996

HCTM

Accuracy 0.9135 0.9292
Precision 0.8975 0.9230

Recall 0.9109 0.9100
Specificity 0.9817 0.9859
F1 Score 0.9182 0.9215

AMCT-Net (ours)

Accuracy 0.9134 0.9351
Precision 0.9179 0.9228

Recall 0.9134 0.9292
Specificity 0.9839 0.9898
F1 Score 0.9201 0.9306

Color convention: best in red; second best in blue.
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We can see the following from Table 2:

• Across both datasets, the baseline model (ViT) exhibits unsatisfactory performance
across the five evaluation metrics, while the enhanced model incorporating attention
mechanisms and a multi-scale convolution module demonstrates a notable improve-
ment in accuracy. Notably, the AMCT-Net model outperforms other architectures
in terms of Recall, specificity, and F1 score. Specifically, on the Nantong dataset,
AMCT-Net achieves a Recall of 0.9134, specificity of 0.9839, and F1 score of 0.9201,
representing a 0.25% increase in Recall compared to the sub-optimal HCTM model
(Recall = 0.9109). On the Guantan dataset, AMCT-Net’s Recall reaches 0.9292, speci-
ficity stands at 0.9898, and F1 score is 0.9306, with a significant 1.92% increase in Recall
compared to the sub-optimal HCTM model (Recall = 0.9100). This underscores the
substantial advancement in classification accuracy achieved by AMCT-Net.

• It is noteworthy that the performance of the model differs between the two datasets.
For instance, the proposed AMCT-Net model only marginally improves accuracy
by 0.66% compared to the baseline model on the Nantong dataset. Conversely, the
model exhibits a much more substantial improvement in accuracy on the Guantan
dataset, with an increase of 1.86% compared to the baseline model. The variation in
performance may be attributed to the urban development context of the Nantong
dataset, where change types are inherently more complex compared to the Guantan
dataset. However, as AMCT-Net integrates the local feature extraction capabilities
of CNN structures with the global information processing characteristics of Trans-
former architecture, supplemented by the introduction of a multi-scale module, these
enhancements prove particularly advantageous for processing the multi-scale sample
set in this study, underscoring its adaptability to diverse dataset features.

Following image classification, the detection of change vector polygons is achieved
through a change decisionmaker and post-processing rules. Figure 17a,c illustrate the
change detection outcomes for the two datasets, while the confusion matrix generated
by the proposed AMCT-Net model in this study is presented in Figure 18. Apart from
confusion between roads and buildings, there are instances of misclassification in industrial
areas. This is due to the spatial distribution, color form, and density similarities between
industrial areas, buildings, and roads, posing a challenge in scene classification. Moreover,
croplands share local semantic characteristics with paddy fields, leading to potential
misclassifications. Taking Figure 18 as an example, only croplands exhibit a classification
accuracy below 90%. Nonetheless, the experimental model effectively identifies other
scene categories with high recognition accuracy. Notably, some forest test samples contain
mixed category information, such as croplands and paddy fields surrounding forest farms,
resulting in a lower classification accuracy for this category. Additionally, for the Guantan
dataset, the classification accuracy of water bodies is not 100% due to aquaculture activities
in the research area, including the phenomenon of digging breeding pits in some croplands,
leading to confusion between paddy fields and breeding pits. Overall, the AMCT-Net in
this study achieves a high classification accuracy, demonstrating satisfactory performance.

The visual interpretation results of the proposed method are illustrated in Figure 19,
showcasing typical examples. Part (a) demonstrates the conversion of cropland into
buildings, part (b) exhibits the construction of a road within the cropland, part (c) dis-
plays the transformation of part of the cropland into an industrial and mining area, and
part (d) reveals traces of earthwork in the region. These aforementioned examples demon-
strate that our proposed method is capable of effectively detecting changes in vector
polygons with support from high-resolution RS images.
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4. Analysis and Discussion
4.1. Analysis of the DP Algorithm Parameters Selections

The influence of the parameters p and λ on the performance of the proposed method
is analyzed in this section. To facilitate this analysis, a simple accuracy evaluation index
called denoising accuracy (DA) was devised in this article.

The DA is calculated as follows:

DA =
NDP

Ntotal + Nnormal
(30)

where NDP is the selected correct noise samples, Ntotal represents all noise samples in a
category, and Nnormal is the selected erroneous noise samples. The range of DA is between
0 and 1, and the larger its value, the better the denoising performance of the proposed
method. Experimental results obtained from the two datasets are presented in Figure 20,
using cropland as an illustrative example. The values of p and λ are selected from the
intervals 10∼30 and 0.03∼0.07, respectively. Based on the experimental results presented
in Figure 20, it can be found that p is actually not related to the number of samples in the
training set N. For instance, despite different sample sizes for the Nantong dataset and
Guantan dataset, a fixed P = 20 consistently achieves optimal denoising performance (see
Figure 20). Moreover, λ emerges as a crucial parameter influencing denoising performance.
Taking Figure 20a as an example, DA exhibits significant variations in response to changes
in parameter λ. It is noted that λ = 0.05 and P = 20 consistently yield relatively optimal
denoising accuracies. Furthermore, the value of λ is associated with the intensity of changes
within the study area contextually considered at this time node (2021–2022), where China
experienced a COVID-19 epidemic, which lead to restricted human activities; hence, there
is no need for excessively large values of λ under such circumstances. Therefore, given a
new dataset, λ = 0.05 and P = 20 are suggested to be used as the default parameters in the
proposed method.

4.2. Influence of Sample Set Denoising

In contrast to conventional sample denoising methods that heavily rely on manual
intervention, the proposed EViTCC-DP approach significantly enhances automation. To
evaluate the impact of mislabeled samples on model training, we compared the accuracy of
the Two-Classifier Cross-Validation (TCCV) [35] and EViTCC-DP before and after denoising
the training samples. As shown in Tables 3 and 4, the OA of the model improved by 2.80%
and 2.56% on the Nantong dataset and Guantan dataset, respectively, after denoising with
EViTCC-DP.
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Figure 20. Influence of the parameters p and λ on the performance of the proposed method. Part
(a): results of cropland in the Nantong dataset. Part (b): results of cropland in the Guantan dataset.
A similar behavior occurred to the one that used other classes in the datasets.

Table 3. Comparison of the classification accuracy of the Nantong dataset before and after sample
denoising (no improvement observed after epoch 82).

Training Set
Epoch

10 20 30 40 50 82

Initial OA 0.8153 0.8459 0.8644 0.8798 0.8984 0.9068

Denoised by TCCV OA 0.8342 0.8709 0.8804 0.8979 0.9079 0.9288
Denoised by EViTCC-DP OA 0.8420 0.8727 0.8875 0.9052 0.9129 0.9348

Table 4. Comparison of the classification accuracy of the Guantan dataset before and after sample
denoising (no improvement observed after epoch 84).

Training Set
Epoch

10 20 30 40 60 84

Initial OA 0.8063 0.8379 0.8595 0.8752 0.8906 0.9165

Denoised by TCCV OA 0.8389 0.8711 0.8888 0.9010 0.9093 0.9333
Denoised by EViTCC-DP OA 0.8441 0.8771 0.8953 0.9089 0.9197 0.9421

The comparison results indicate that EViTCC-DP achieves a higher accuracy with
fewer iterations, highlighting its advantage in mitigating noise interference. Although
EViTCC-DP only slightly outperforms TCCV in accuracy (by 0.6% for the Nantong dataset
and 0.88% for the Guantan dataset), TCCV removes RTS, which is crucial for enhancing
model performance. This emphasizes the superior ability of our method in identifying
relevant instances within the dataset and in effectively removing noise.

In order to enhance the visualization of the denoising effect, t-SNE [60] analysis was
employed to assess the discriminability of high-dimensional sample features before and
after denoising, as depicted in Figure 21. Each dot represents a distinct class, with increased
clustering among dots of the same class indicating reduced noise levels. As illustrated in
Figure 21, samples exhibit a more compact distribution within each class after denoising,
leading to improved homogeneity and facilitating model training.
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Figure 21. Visualization of sample feature distribution before and after denoising. Parts (a,c): results
before denoising for the Nantong and Guantan datasets. Parts (b,d): results after denoising for
the Nantong and Guantan datasets. (Parameter P = 20; denoising ratio set to 5%). Different colors
represent different classes of the scene samples.

4.3. Introducing Representative Training Samples

The crucial role of RTS has been widely acknowledged by researchers [61–65]. The
proposed transformation procedure of RTS is illustrated in Figure 22. Firstly, the detected
mislabeled samples were fed into the ViT model to extract depth features. Subsequently,
using the k-means clustering algorithm, these noisy samples were supervised and trans-
formed into RTS.
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We utilized artificially generated reference data [see Figure 17b,d] to further visually
assess the model’s detection accuracy. Table 5 presents the detection outcomes of the model
on the two datasets. Excluding RTS, the model achieved precision and recall rates of 88.22%
and 91.41%, respectively, in change detection for the Nantong dataset, as well as achieving
precision and recall rates of 89.97% and 92.13%, respectively, for the Guantan dataset.
Interestingly, including RTS improved precision by 2.11% and 1.09% on the Nantong
dataset and Guantan dataset, respectively, while maintaining consistent recall due to its
high-value information, which is conducive to change detection.

Table 5. Comparison of detection accuracy results with and without the inclusion of representative
training samples.

Training Set % Nantong Dataset Guantan Dataset

Denoised
(excluding RTS)

Precision 88.22 89.97
Recall 91.26 92.13

Denoised
(including RTS)

Precision 90.33 91.06
Recall 91.41 92.38

5. Conclusions

The integration of RS images and deep learning in vector polygon change detection
presents a promising solution to streamline data collection and processing, thereby mit-
igating challenges associated with spatial data updating. Despite notable progress in
leveraging vector data for RS image change detection driven by advancements in artificial
intelligence, geospatial big data, and RS interpretation, persistent challenges remain. This
paper introduces a novel change detection method for land cover vector polygons using
high-resolution RS images and deep learning techniques. The method is tailored to update
vector polygons using up-to-date RS images and deep learning, distinguishing itself from
previous approaches by incorporating vector polygons as prior knowledge into the detec-
tion process, thus automating sample construction. The change detection process involves
four phases: segmentation, denoising, classification, and detection. First, RS images are
combined with land cover vector polygons to automatically generate an initial sample set
using boundary constraints. Subsequently, the class-constrained DP clustering algorithm
denoises the initial set while converting filtered samples into RTS using the k-mean algo-
rithm to construct a high-quality multi-scale sample set. Finally, the improved AMCT-Net
model classifies this sample set, which is followed by detecting changed vector polygons
by combining change rules. The effectiveness of our proposed method was validated and
analyzed using real data from two typical regions in Jiangsu Province.

The main conclusions of this paper are as follows:

• The boundary constraint segmentation method utilized in this study accurately seg-
ments the boundaries of ground objects, while the adaptive cropping strategy facili-
tates comprehensive sampling within vector polygons, minimizing confusion among
ground objects in the generated samples. The proposed sample denoising method,
EViTCC-DP, significantly enhances model accuracy, leading to a 2.80% and 2.56%
improvement in OA on the Nantong and Guantan datasets, respectively.

• To enhance classification performance, we introduced multi-scale modules and atten-
tion mechanisms to construct a novel model, AMCT-Net. This network combines the
advantages of CNNs and Transformers, enabling the extraction of more discriminative
features. Experimental results on the two datasets demonstrate the effectiveness of the
proposed method, with the accuracy of the AMCT-Net model reaching 91.34% and
93.51%, respectively, surpassing that of other advanced models.

• Visual interpretation results demonstrate the significance of RTS in enhancing detec-
tion accuracy. The introduction of RTS yields a 2.11% and 1.09% increase in change
detection accuracy for the Nantong and Guantan datasets, respectively. Our approach
enables the swift construction of a high-quality multi-scale scene sample set incor-
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porating RTS, requiring minimal manual intervention. Furthermore, in conjunction
with designed change decision rules featuring adjustable parameters and improved
applicability, the change detection method outlined in this paper effectively identifies
changed vector polygons, offering clear advantages over traditional manual vector
polygons updating methods.

Our future research will focus on incorporating prompt learning into our innovative
change detection method to develop a comprehensive methodology for detecting unau-
thorized land encroachment, evaluating spatial database quality, and monitoring urban
development. Moreover, we will carry out an additional investigation that will explore
the incorporation of sample transfer learning into our proposed method to meet the in-
creased demands for high-resolution RS image change detection across various sensors,
time periods, and resolutions.
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