
Citation: Fonseca, A.; Marshall, M.T.;

Salama, S. Enhanced Detection of

Artisanal Small-Scale Mining with

Spectral and Textural Segmentation of

Landsat Time Series. Remote Sens.

2024, 16, 1749. https://doi.org/

10.3390/rs16101749

Academic Editors: Meisam Amani,

Arsalan Ghorbanian, Sadegh Jamali,

Feng Tian, Per-Ola Olsson and

Torbern Tagesson

Received: 4 March 2024

Revised: 24 April 2024

Accepted: 26 April 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Enhanced Detection of Artisanal Small-Scale Mining with
Spectral and Textural Segmentation of Landsat Time Series
Alejandro Fonseca 1 , Michael Thomas Marshall 2,* and Suhyb Salama 3

1 IABG Industrieanlagen-Betriebsgesellschaft, Hermann-Reicheltelt-Straße 3, 01109 Dresden, Germany
2 Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation, University of

Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
3 Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of

Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
* Correspondence: m.t.marshall@utwente.nl

Abstract: Artisanal small-scale mines (ASMs) in the Amazon Rainforest are an important cause of
deforestation, forest degradation, biodiversity loss, sedimentation in rivers, and mercury emissions.
Satellite image data are widely used in environmental decision-making to monitor changes in the
land surface, but ASMs are difficult to map from space. ASMs are small, irregularly shaped, unevenly
distributed, and confused (spectrally) with other land clearance types. To address this issue, we
developed a reliable and efficient ASM detection method for the Tapajós River Basin of Brazil—an
important gold mining region of the Amazon Rainforest. We enhanced detection in three key ways.
First, we used the time-series segmentation (LandTrendr) Google Earth Engine (GEE) Application
Programming Interface to map the pixel-wise trajectory of natural vegetation disturbance and
recovery on an annual basis with a 2000 to 2019 Landsat image time series. Second, we segmented
26 textural features in addition to 5 spectral features to account for the high spatial heterogeneity in
ASM pixels. Third, we trained and tested a Random Forest model to detect ASMs after eliminating
irrelevant and redundant features with the Variable Selection Using Random Forests “ensemble of
ensembles” technique. The out-of-bag error and overall accuracy of the final Random Forest was 3.73
and 92.6%, which are comparable to studies mapping large industrial mines with the normalized
difference vegetation index (NDVI) and LandTrendr. The most important feature in our study was
NDVI, followed by textural features in the near and shortwave infrared. Our work paves the way for
future ASM regulation through large area monitoring from space with free and open-source GEE and
operational satellites. Studies with sufficient computational resources can improve ASM monitoring
with advanced sensors consisting of spectral narrow bands (Sentinel-2, Environmental Mapping and
Analysis Program, PRecursore IperSpettrale della Missione Applicativa) and deep learning.

Keywords: deforestation; forest degradation; Amazon; remote sensing; machine learning; LandTrendr;
Google Earth Engine

1. Introduction

Global deforestation has slowed in the past few decades because of widespread
afforestation campaigns in high-income countries outside the tropics [1]. Forest loss in low-
income tropical countries offsets the gains. Countries in South America have experienced
the largest declines despite improved forest management and the expansion of protected
areas [2]. Gold mining near protected areas caused much of this loss because of a surge
in gold prices leading up to the global economic crisis of 2008 [3]. The analysis of satellite
image data plays an integral role in monitoring industrial mines because it captures surface
conditions consistently and frequently over large areas through time [4].

The detection of artisanal small-scale mines (ASMs) with satellite image data is chal-
lenging for three main reasons [5]. First, pixels are mixed at the ground sampling distance
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(GSD) of moderate-resolution (~30 m) monitoring satellites. Second, ASMs are irregularly
shaped and unevenly distributed. Third, the spectral response is like that of other land
clearance types.

Studies involving the pixel-wise detection of ASMs with satellite image data typically
consist of two main phases: (i) the transformation of spectral information into meaningful
environmental indicators and (ii) classification or probabilistic mapping derived from these
indicators with simple decision trees or more advanced data mining techniques. Image
transformation compensates for mixed pixel effects and the irregular shape of the ASMs.
The most common transformations are vegetation indices (VIs) such as the normalized
difference vegetation index (NDVI) [6]. Other transformations include orthogonal rotation
with principal components analysis [7] or spectral mixture analysis [3,8]. Isidro et al. [5]
fused higher spatial resolution panchromatic imagery with coarser resolution multispectral
broadband imagery (i.e., pan-sharpening) to improve ASM detection. Forkuor et al. [9]
developed simple thresholds of ASM occurrence from summary statistics of Sentinel-1
backscatter metrics. Spatial image segmentation has also been widely used to extract
ASM boundaries from spectral information [10]. More advanced data mining techniques
determine ASM occurrence without or in concert with spatial image segmentation. These
include support vector machines [11,12], classification and regression trees [13], canonical
correlation analysis [14], and deep convolutional neural networks [15]. Distance to river
networks, soil properties, and topographic features are sometimes included as covariates
because of the close proximity of ASMs to water bodies [16].

The footprints of ASMs extend beyond a single pixel and consist of vegetation, pits,
mounds of deposited soil, and standing pools of water, mercury, and amalgamated gold [3].
This makes them spatially heterogeneous. The pixel-wise detection of ASMs with spectral
information could therefore be improved by considering spatial dependencies in neighbor-
ing pixels [17] through texture analysis. Textural metrics have been used alongside spectral
metrics to segment single-date images to identify ASMs [5]. They have not been used for
ASM detection in satellite image time series (SITS).

The pixel-wise segmentation of time series (i.e., time-series segmentation) is increas-
ingly used to detect abrupt and gradual changes in vegetation [18]. This is due in large
part to the availability of dense archives of free and open-access Landsat SITS and cloud-
computing platforms such as Google Earth Engine (GEE) [19]. Time-series segmentation
has not been applied to ASM detection, but results are promising from mapping industrial
mining and mining impacts. Time-series segmentation of spectral information yielded accu-
racies above 80% for the detection of large open-cast (coal, mineral) mines and soil moisture
declines caused by mining [20–22]. Temporally segmented spectral metrics derived from
SITS better capture changes in forest cover through time when textural metrics are included
as covariates [23]. The integration of temporally segmented spectral and textural features
could therefore enhance ASM detection, but such an evaluation has not been previously
reported.

We present a reliable and efficient ASM mapping method with the time-series segmen-
tation of spectral and textural features derived from Landsat SITS. The method was tested
in the most important gold mining region of the Brazilian portion of the Amazon Rainforest.
The method involved building a Random Forest (RF) with Landsat-based detection of
Trends in Disturbance and Recovery (LandTrendr) [18] segmented spectral and textural
metrics, as well as proximity and topographic features. Our study utilized the Google Earth
Engine (GEE) LandTrendr Application Programming Interface (API), which we modified
for texture analysis. The study identified the most important spectral, textural, proximity,
and topographic features and their functional relationships with the probability of ASM
occurrence. We evaluated the model with ASM polygons derived from ground-based
surveys and digitized manually from high spatial resolution imagery in the study area.
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2. Study Area

The study area was in the Amazon Rainforest in the southeast corner of the Pará state
of Brazil (Figure 1). The area spans 370 km2 and falls within Landsat scene path 228, row
64. It is part of the Tapajós-Xingu moist forest ecoregion and includes the downstream
contributing area of the Tapajós River, which is among the largest tributaries of the Amazon
River. The Tapajós River Basin is predominantly covered by dense tropical rainforest, which
serves as a major global carbon sink and critical habitat for numerous plant and animal
species. The elevation varies widely, ranging from low-lying floodplains to mountainous
terrain. The basin encompasses parts of the Amazon rainforest and the Brazilian Shield,
with elevations ranging from sea level to over 2000 m. The climate in the Tapajós River Basin
is typical tropical rainforest, which is characterized by high temperatures and humidity
throughout the year. Precipitation is abundant, with a distinct wet season from December
to May. The area undergoes a major flood pulse from February to May. The dry season
occurs from June to September.
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Figure 1. The Pará state and Tapajos River basin. The background of the area of interest (AOI) is a
true color Landsat 8 image composite captured on 27 October 2020. The inset of the AOI b highlights
ASM polygons in one of the three tiles sampled for model training and validation.

ASM activities in Pará state have significantly altered the landscape over the past
60+ years [24]. The first major gold rush began in 1958 and quickly made Pará state the
principal gold producer of Brazil [25]. A new gold rush began in the early 1980s, which led
the Brazilian government to create a gold mining reserve to support local miners and slow
the impact of mining on the environment [26]. Gold mining not only causes forest loss. It
is traditionally performed by removing topsoil near rivers or dragging out the sediments
from river bottoms using suction and separating the gold by gravity [27]. Both techniques
discharge sediments composed chiefly of fine organic particles and trace amounts of mer-
cury used to amalgamate gold [28]. Mercury is also carried by air and deposited in waters
further downstream. In water, mercury is methylated by microorganisms, which bioaccu-
mulates in fish, humans, and other animals. It is an endocrine disruptor that interferes with
genetic and enzyme systems and damages the nervous system and developing embryos.

Creporizinho and Creporizão are the two main settlements in the study area. Both are
located close to the Transgarimpeira road (06◦50′14.1′′S–56◦35′00.0′′W). The establishment
of Creporizão is directly linked to the construction of the Transgarimpeira in the late
1980s. It is the local center of commerce because it connects the road to a landing on
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the river. Creporizinho, on the other hand, is a typical gold-mining village. Creporizinho
emerged in the early 1960s with the first artisanal extractions in the gold-mining district and
increased in the 1980s when miners started to work with some machinery for processing
alluvial–colluvial terraces.

3. Material and Methods

The technical workflow consisted of five main steps: (i) data acquisition from GEE
and other online sources; (ii) pre-processing and transformation of spectral, textural, prox-
imity, and topographic features; (iii) temporal segmentation with LandTrendr; (iv) feature
selection with the Variable Selection Using Random Forests (VSURF) algorithm [29]; and
(v) RF classification [30] of occurrence and non-occurrence (Figure 2).
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3.1. Geospatial Data Acquisition and Processing

We accessed Landsat 7 Enhanced Thematic Mapper (ETM+) and Landsat 8 Operational
Land Imager (OLI) surface reflectance (Level-2) images, WGS-84 in GEE, from 2000 to 2019
to develop annual spectral and textural features for temporal segmentation. Landsat has a
16-day return frequency and a GSD of 30 m. Compositing was performed for the low-water
period corresponding to the dry season from June to September when ASM alluvium
is more easily detected remotely [16]. Six Landsat bands (Table 1) were considered for
the analysis. All pre-processing steps were performed in GEE. This included Landsat 7
and 8 image harmonization; the removal of pixels with cloud, cloud shadow, and other
poor-quality pixels; and compositing. Coefficients taken from Roy et al. [31] linearly
transformed Landsat 7 spectral bands to minimize radiometric inconsistencies with Landsat
8. Cloud and cloud shadow were flagged and masked with the CFmask algorithm [32].
The unmasked pixels were composited on an annual basis using the medoid method [33].
The medoid method is commonly used to generate time series for LandTrendr [34]. The
composites were filtered for pixels containing more than 50% cloud or cloud shadow.

Table 1. Description of Landsat 7 and 8 spectral bands.

Sensor Designation Spectral Range (nm)

Landsat 7 (8) BLUE 450–520 (450–510)
GREEN 520–600 (530–590)

RED 630–690 (640–670)
Near-infrared/NIR 770–900 (850–880)

Shortwave infrared 1/SWIR 1 1550–1750 (1570–1650)
Shortwave infrared 2/SWIR 2 2090–2350 (2110–2290)
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We downloaded the National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory Shuttle Radar Topography Mission V3 digital elevation model
(DEM) at a resolution of 1 arcsecond (approximately 30 m on the equator) in WGS-84 [35].
This product includes derived products from the DEM—aspect, elevation, hill shade,
and slope.

The input data for the distances to roads and streams were derived from the 2019 an-
nual Landsat image composite. The Brazilian geo web service at the Institute of Geography
and Statistics Monitroamento da Cobertura e Uso da Terra do Brasil [36] roads and water
bodies datasets aided the interpretation of the composite. Euclidean distance was used for
proximity, which was defined as the nearest orthogonal distance from each ASM site to
either roads or streams.

3.2. Spectral Transformations

We used eight spectral vegetation indices (VIs) for model building (Table 2). VIs are
more robust than raw spectral bands for changing atmospheric and surface conditions [37].
Three of the indices (NBR, NDMI, NDVI) are standard functions in the LandTrendr API.
We also segmented EVI, LSWI, MNDWI, NDPI, and NDWI because of their sensitivity to
changes in vegetation growth and development. EVI uses coefficients and the blue band to
reduce the effects of varying soil backgrounds and atmospheric constituents that adversely
affect NDVI. LSWI includes a SWIR band, which is sensitive to the moisture content of
canopies and soil background. The NIR band in LSWI increases as the abundance and
complexity of vegetation increases. The NIR band also acts to normalize the sensitivity
of the SWIR band to noise. The NDWI and MNDWI indices both enhance water features
using the visible green band. Water reflects more strongly in the visible green compared
to longer wavelengths. MNDWI normalizes the green band with an SWIR band. NDPI
employs red, NIR, and SWIR bands. Chlorophyll in vegetation absorbs strongly in the
red [38]. The red band, however, is sensitive to soil moisture, so the index includes an SWIR
band to correct this effect. NDPI is scalable and able to spectrally separate water bodies
from other surfaces.

Table 2. Spectral vegetation indices for temporal segmentation.

Spectral Vegetation Index Formula Source

Enhanced Vegetation Index EVI =
2.5 ∗ (NIR−RED)

(NIR+6∗RED−7.5∗BLUE+1)
[37]

Land Surface Water Index LSWI = (SWIR 1−NIR)
(SWIR1+NIR)

[39]

Modified Normalized Difference Water Index MNDWI = (GREEN−SWIR 1)
(GREEN+SWIR 1)

[40]

Normalized Burn Ratio NBR = (NIR−SWIR 2)
(NIR+SWIR 2)

[41]

Normalized Difference Moisture Index NDMI = (NIR−SWIR 1)
(NIR+SWIR 1)

[42]

Normalized Difference Phenology Index NDPI = (NIR−SWIR 1)
(NIR+SWIR 1)

[43]

Normalized Difference Vegetation Index NDVI = (NIR−RED)
(NIR+RED)

[6]

Normalized Difference Water Index NDWI = (GREEN−NIR)
(GREEN+NIR)

[44]

3.3. Textural Transformations

We used twelve grey-level co-occurrence matrix (GLCM) textural metrics [45,46] for
model building (Table 3). The metrics were calculated for each Landsat band with GLCM,
yielding a total of 72 textural features. GLCMs establish the frequency of occurrence of
angular relationships and spatial dependence between image pixel pairs. The features are
essentially statistical inferences of the frequency distributions. The features were calculated
in GEE with a directional averaging kernel of 3 × 3 (90 × 90 m2). Kernel size was based on
the smallest patch size of an ASM in the training dataset (~1 ha) and the GSD of the Landsat
imagery. Angular second momentum is an indication of textural uniformity in the grey
levels [47]. Contrast shows local differences in high and low pixel values. The higher the
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contrast, the higher the difference in these values. Correlation measures the linear strength
of the relationship between a given pixel with a point in the image. Variance measures the
overall deviation of gray levels from the mean. High variance tends to correspond to high
contrast in grey levels. Cluster prominence is a measure of asymmetry. Inertia is indicative
of the contrast in intensity between a pixel and its neighbors. Cluster shade accounts for
grayscale matrix skewness and uniformity [48].

Table 3. Textural metrics for temporal segmentation.

Texture Metric Designation Description

Angular Second Moment Asm Measures the number of repeated pairs

Contrast Con Measures the local variability of an
image

Correlation Corr Measures the linear dependency
between pixel pairs

Variance Var Measures the spread of the grey-level
distribution

Inverse Difference Moment IDM Measures the homogeneity

Entropy Ent Measures the randomness of the
gray-level distribution

Difference Variance Dvar Measures the variance of the gray-level
distribution

Difference Entropy DEN
Measures the difference in the
randomness of the gray-level

distribution

Cluster Prominence Prom Measures clusters by the gray-level
occurrence

Dissimilarity Diss Measures the variation between pairs
of pixels

Inertia Iner Measures the intensity between a pixel
and its neighborhood

Shade Shade Measures the cluster shade of
gray-level distribution

3.4. Temporal Segmentation with LandTrendr

We used the LandTrendr version and procedure described by Kennedy et al. [49] to
segment the spectral and textural annual Landsat time series on a pixel basis. LandTrendr
detects abrupt or gradual pixel-wise changes according to a set of breakpoints and line
segments defined by the time series. The curve shown in Figure 3 represents the trajectory
and LandTrendr segmentation of a 20-year NDVI time series representing a pixel that likely
experienced ASM encroachment in 2008. The figure illustrates LandTrendr’s ability to
detect interannual noise as well as the timing and magnitude of vegetation disturbance
and recovery. LandTrendr employs piecewise linear regression to determine the best-fitting
trajectory along breakpoints or vertices in the time series. Like other time series analytical
techniques, model tuning is required, which can lead to under- or over-fitting. Eight control
parameters are required for LandTrendr to define the breakpoints and for line segment
fitting. These include the maximum number of segments, spike threshold, vertex count
overshoot, prevent one-year recovery (true/false), recovery threshold, p-value threshold,
best model proportion, and minimum observations needed. LandTrendr uses root mean
square error (RMSE) to identify the “best” model fit. Multiple combinations and different
values for the eight control parameters were tested, and the set of eight parameters with
the lowest RMSE was chosen for the time series analysis.
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Figure 3. Temporal segmentation of a 20-year NDVI time series from an ASM disturbed pixel
(6◦50′35.2′′S 56◦36′40.7′′W) using LandTrendr. The dotted dashed red lines represent the delta by
loss drop in magnitude and disturbance duration.

Only the magnitude (MAG) of spectral and textural features was considered for
Random Forest. MAG in LandTrendr is calculated as the greatest delta by loss drop in
magnitude and disturbance duration, representing the largest rate of change over the time
series. Ultimately, the final output included 80 MAG features (12 textures per 6 raw spectral
bands plus 8 vegetation indices).

3.5. Ancillary Geospatial Information

Six ancillary data predictors were considered for model building to boost the predictive
power of the spectral and textural features. These included the Euclidean distance to roads
and streams, aspect, elevation, slope, and the topographic wetness index (TWI) [50]. TWI
is indicative of the upstream contributing area. A high (low) TWI corresponds to stream
beds (hillslopes) where water accumulation is high (low).

3.6. Feature Selection with VSURF and Random Forest Classification

RF is an ensemble machine learning technique widely used in satellite image classifi-
cation [30]. RF takes the ensemble mean of a number of “weak” bootstrapped independent
decision tree classifications, which tends to yield higher accuracies for land cover change
detection than other classification methods [51]. RF is prone to over-fitting, however, when
the number of features is high [52]. We therefore removed redundant and irrelevant fea-
tures with the VSURF package in the R software version 4 environment [29] before model
building. VSURF is essentially an “ensemble of ensembles” technique. It consists of three
main steps: (i) thresholding; (ii) interpretation; and (iii) prediction. The first stage uses
50 iterations of RF to determine a cut-off threshold for features based on the standard
deviation of feature importance. Highly irrelevant features are eliminated because they
have small standard deviations. In the second stage, 25 iterations of RF are performed to
identify important explanatory variables that yield a parsimonious model with low error.
Some redundancy in features can remain after the interpretation stage, so the prediction
stage removes any remaining redundancies in a stepwise fashion with 25 iterations of RF.
Each RF consisted of 500 trees and the number of variables per split was set to the square
root of the input bands as recommended by [53]. Partial dependence plots (PDPs: [54])
were extracted from the Random Forest with the PDP package in the R software version
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4 environment [55]. PDPs express the relationship between ASM occurrence and a target
feature, irrespective of the other features.

3.7. Random Forest Model Training and Testing

We acquired the ground reference data for RF modeling from the Rede Amazônica
de Informação Socioambiental (RAISG) [56]. RAISG consists of civil societies in countries
of the Amazon concerned with the health and sustainability of the Amazon rainforest. It
produces vectorized data on the geolocation of mining in the Amazon basin. The dataset
is a compilation of more than two decades of multidisciplinary fieldwork. We subset the
dataset for mine type (gold and tin) from 2000 to 2019 to coincide with the SITS. The subset
consisted of 826 “point” samples and 182 polygons. We utilized very high-resolution
imagery from Google Earth to identify and digitize mine polygons based on the point data.
The combination of hand-digitized polygons and RAISG polygons resulted in more than
1000 polygons in total for the analysis. We employed a pixel-stratified sampling framework
to ensure spatial representativeness and prevent autocorrelation. The spatial disjoining
involved dividing the entire sample set into three main tiles according to their cardinal
direction in the area of interest (east, west, south). Two of the tiles were used for training
and one was used for validation. Considering the nature of the problem and limitations
with ground truth data, we addressed class imbalance and overfitting by employing a dual
strategy [57]. All the occurrence pixels from mine polygons were used for training, which
was balanced by an under-sampling of the non-occurrence class.

We used the out-of-bag (OOB) error and confusion matrix to assess model performance.
RF includes an internal validation. At each iteration, RF uses a portion of the data for
calibration. The unused portion is the out-of-bag sample. The OBB is the prediction error of
approximately 1/3 of the samples not used in each iteration to build a Random Forest. The
OBB is averaged over all iterations to give an unbiased estimate of model performance [58].
The confusion matrix expresses the frequency of correctly and misclassified samples. The
diagonal of the matrix indicates the number of correctly calculated samples. Overall
accuracy is calculated by summing the diagonal and dividing it by the total number of
samples classified. The off-diagonals report the error of omission (Type 1 error) and error
of commission (Type II error).

We converted ASM occurrence to the probability of occurrence to aid decision-makers
who may need to focus resources in “hot spots” (i.e., areas of high probability of ASM
occurrence). In RF, the probability of occurrence is calculated with logistic regression,
probability machines, or vote counting [59]. We selected vote counting. The probability is
interpreted as the proportion of votes in favor of the majority class (i.e., non-occurrence),
which tends to reduce noise and increases recognition accuracy for binary classification [60].

4. Results
4.1. Temporal Segmentation with LandTrendr

LandTrendr produced maps that integrated the full temporal range of ASM distur-
bances over the study period (2001–2019). This is illustrated for NDVI MAG and occurrence
year (YoD) in Figure 4. The occurrence year represented the year in which the temporal
segment showed the first significant drop in NDVI. For example, we see near the urban
areas of Creporizao and Creporizinho the expansion of the ASMs, evident by large declines
in NDVI. Areas representing agricultural expansion and other forms of land clearance (e.g.,
logging, topsoil removal, bushfires) experienced much smaller and/or earlier (pre-2000)
declines in NDVI. Other forested areas remained largely intact as they showed no change
from 2000 to 2019. The occurrence of ASM expansion varied but mainly followed the global
economic crisis of 2008, as can be seen in Figure 5. The figure depicts the temporal segmen-
tation according to a red–green–blue (RGB) color composite to summarize spatial patterns.
In this representation, red indicates changes occurring in the year 2000, green represents
changes in 2010, and blue signifies changes in 2019. Consequently, pixels appearing yellow
denote changes within the initial decade of the timeframe and purple denotes the last ten
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years. The inset at the bottom of the figure depicts the temporal segmentation of an ASM
pixel. It was generated from NDVI in LandTrendr to improve the interpretation of changes
when they occurred according to the RGB composite. Thirty-five percent of the ASM pixels
occurred before 2008. From 2008 to 2010, detected ASM pixels dropped to 25%. This figure
increased to 40% after 2010.

We evaluated the performance of 86 proximity, spectral, textural, and topographic
features with VSURF. Thresholding (phase 1) and interpretation (phase 2) eliminated more
than half of the predictors (49 out of 86). The model at the end of these phases had an
average OBB error and overall accuracy of 3.76% and 92.6%. The prediction phase reduced
the number of features to 33. The overall accuracy increased by 3.33% and the OBB error
decreased by 0.03%, even though an additional 16 features were removed from the model.
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Figure 4. NDVI MAG (A) and YoD (B) calculated with LandTrendr. NDVI was expressed as an
integer (×1000) in GEE LandTrendr to reduce computational demand. The insets illustrate ASM
activity around the towns of Creporizão and Creporizinho.

Figure 6 shows the final subset of features we used for model building. We display only
the 18 most important features for visualization purposes. NDVI ranked first. Removing
it from the model led to an increase in OBB MSE of 0.086. Textural features were the next
most important. If they were removed from the model, textural features led to an increase
in OBB MSE of 0.066. The features included textural properties of the NIR and SWIR bands
(B7 Var, B5 Prom, B5 Shade, B6 Shade, B6 contrast).
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Figure 5. NDVI year of occurrence using a red–green–blue (RGB) 2000–2010–2019 composite. The
inset shows the trajectory of a pixel experiencing change due to ASM activity with respect to the RGB
coloring scheme. The disturbance occurred between 2010 and 2019, so the pixel appears purple in
the map.
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Figure 6. Features in descending order of importance versus the change in MSE that occurred if the
feature was eliminated from the model.

4.2. Random Forest Classification

The overall accuracy of the Random Forest for the hold-out sample set was 85.2% for
the binary classification (Table 4). Type I errors were higher in occurrence (6.4%) than non-
occurrence (2.0%). Type II errors, on the other hand, were higher for non-occurrence (5.2%)
than occurrence (2.4%). The distribution of the categories was approximately balanced
as occurrence and non-occurrence represented 40.6% and 59.3% of the hold-out sample
set, respectively. Type I errors for occurrence were relatively high because ASMs exhibited
similar spectral and textural characteristics of other land clearance types. The binary
classification was able to distinguish ASMs mainly along streams and roads that connect
informal settlements. ASMs cluster along streams because it is relatively easy to develop
mining ponds for mineral treatment and extraction. ASMs are clustered along roads to
facilitate storage and transportation in a strategy locally known as “garimperios.”
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Table 4. Confusion matrix (classified versus reference samples) reported for the hold-out sample set.

Classification

Reference

Class Occurrence Non-occurrence Total

Occurrence 76% 24% 6402

Non-occurrence 5% 95% 6367

Total 5194 7575 12,769

4.3. Probabilistic Classification

The probability of occurrence provides a more nuanced interpretation of the binary
classification (Figure 7). In the figure insets, it appears only the core areas of the ASM
clusters especially along stream networks are likely mines (probability ≥ 70%). Probabilities
tend to drop off sharply away from the core areas. Forest disturbances and other land
clearance types unrelated to ASM activity correspond to probabilities below 50%. Some of
these areas were misclassified as ASMs in the binary classification.
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high frequency of ASM occurrence along streams.

4.4. Partial Dependence of Important Features

The relationships between the six most important features and the probability of
ASM occurrence are shown in Figure 8. We only show six because the PDPs became less
meaningful as the contribution of a feature to the predictive power of the RF declined. The
probability of occurrence steadily rose as NDVI increased from 0.10 to 0.45. Values below
0.1 represent bare soils, burned areas, or some other type of non-vegetative surface. The
probability gradually declined as pixels became more vegetated and NDVI increased be-
yond 0.5. Similarly, the likelihood of an ASM increased as differences in pixel grey levels in
the SWIR increased. At extreme differences in grey levels (>500), however, ASM likelihood
declined. ASMs tended to occur where NIR and SWIR shade were low (100–200 MAG).
Shade is a skewness indicator; lower values represent a lack of spatial symmetry, while
higher values represent spatial uniformity. On the other hand, high cluster prominence
(B5 Prom) indicates high variation (contrast) in grayscale levels according to the peak of
the mean in the GCLM matrix. Local (i.e., within the processing window) variations in the
SWIR increased the likelihood of an ASM until around 100. Beyond 400, the probability of
an ASM declined.
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5. Discussion

The results showed that the ASMs can be mapped with high accuracy at 30 m resolu-
tion with temporally segmented Landsat spectral and textural features using free and open
source GEE. The analysis made three important observations. First, temporal segmentation
confirmed large and widespread increases in ASM-driven natural vegetation disturbance
in the study area following the global financial crisis of 2008. Second, NDVI, the traditional
LandTrendr input, was the most important feature in ASM detection. However, textural
features in the NIR and SWIR boosted model performance. Other spectral, topographic,
and proximity features, which are commonly used to map various land cover types, were
not as important. Lastly, feature selection with VSURF and balanced sampling increased
the robustness of the RF model.

The performance of our RF model classification was quite high considering the small
footprint of ASMs and the mixed pixel effect. Studies in inner Mongolia, China [21] and
KwaZulu-Natal, South Africa [20], employed LandTrendr and Landsat SITS to interrogate
disturbance caused by large open cast (coal, mineral) industrial mines. Both studies used
NDVI as a model input only for RF. The models were assessed with high spatial resolution
image interpretation in Google Earth. The former yielded an overall accuracy of 86.5%,
while the latter yielded an overall accuracy of 99.0%. NDVI is effective at separating,
spectrally, vegetative from non-vegetative surfaces. It is therefore widely used to monitor
land degradation [61] caused by droughts [62], soil erosion [63], deforestation [64], and
prescribed burning [65]. In this study, the PDPs revealed a proportional response of
NDVI to ASM occurrence until 0.45. NDVI beyond this threshold was indicative of dense
vegetation such as forest. ASMs, unlike other forms of land degradation, however, do not
have a consistent spatial distribution or well-defined shape. Textural information, which
characterizes the spatial structure of a landscape, can enhance the predictive power of
spectral information. Meng et al. [23] used textural metrics derived from NBR to map
the restoration of forests in China from orchards and other land cover types. NBR, like
NDVI, is commonly used to monitor forest disturbance and recovery. The accuracy of the
model improved from 20% to 63% when the temporally segmented GLCM-based texture
metrics were included. We analyzed the raw spectral bands only. NBR is a ratio-based
index with NIR and SWIR as input. NIR and SWIR bands were important texture metrics
in our study. NIR is sensitive to changes in canopy structure, while SWIR is sensitive
to changes in soil/canopy moisture. The high variance and cluster prominence together
with low shade corresponded to increased ASM occurrence. This is logical since increases
in these metrics are indicative of high spatial heterogeneity in terms of vegetation and
moisture. Other spectral, topographic, and proximity features were likely not as critical to
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ASM detection because they exhibited strong collinearity with NDVI and textural NIR and
SWIR metrics. These variables were either removed during rigorous feature selection or
only accounted for a small portion of the feature space after more important variables were
added to the model.

Cluster Prominence, Cluster Shade, Variance, and Contrast were the most important
textural features for ASM detection. They have large separations and small standard
deviations compared to other metrics [48]. Cluster shade and prominence are indicative
of local spectral asymmetry/heterogeneity. As both increase, the likelihood that pixels
represent multiple land uses over small areas increases [66]. The second most important
feature was variance in the SWIR-2 band (B7 Var). Var is a measure of the deviation of the
values around the mean, indicating how spread out the sum of the gray level of a pixel pair
is. Var accounts for the local gray-level variations (smoothness) of an image. Smoother
images yield lower Var. Variance measures the variability by the sum of the squares of
the differences between the intensity of the central pixel and its neighbors. Areas with
high variance are prone to be high in contrast and thus are direct indicators of irregular
shapes and image heterogeneity. Cluster Prominence texture (B5 Prom) was the third most
important feature. This texture is an asymmetry indicator. SWIR-1 shade (B5 Shade) and
SWIR-2 shade (B6 Shade) were the fourth and fifth most important features. Contrast
(ranked sixth most important) identified local variations while calculating the differences
between a pixel and neighboring pixels over an entire image.

The spatial distribution of the ASMs in the study area was dynamic and multifaceted,
influenced by various factors that reflected the interplay of environmental, socioeconomic,
and regulatory factors shaping where and when mining activities occur. ASMs tend to be
concentrated in areas where geological formations indicate the presence of gold-bearing
deposits. In our study, miners clearly targeted riverbeds, floodplains, and areas with visible
signs of mineralization, such as quartz veins or altered rocks. The accessibility of mining
sites plays a crucial role since miners may prefer areas with relatively easy access, such as
along rivers or existing road networks. To a much lesser extent, ASM operations were in
remote and difficult-to-reach areas. Miners face logistical challenges in these areas but also
benefit from reduced competition and regulatory oversight. Many current mining sites are
located near historical gold rushes, reflecting the continuity of mining traditions and the
persistence of gold-bearing deposits.

Commission errors in the classification could be reduced by following two approaches:
(i) applying strict data sampling criteria so that only the core (≥70% probability) mining
pixels are used for training the RF classifier and (ii) eliminating uncertain samples based
on local probabilities of class membership (i.e., proximity). A similar approach using
TM/ETM+ images for mapping burned areas is described in Bastarrika et al. [67].

The integration of other sensors and analytical approaches into the technical workflow
could improve the accuracy of ASM detection but would incur a loss of efficiency. We used
Landsat 5 TM and 8 OLI whenever possible, but some Landsat 7 ETM+ image data were
used to fill gaps in the time series. The SLC-off (i.e., null data) issue with Landsat 7 ETM+
was still noticeable in the final LandTrendr outputs even though LandTrendr applies an
interpolation routine to correct for SLC-off. Sentinel-2 through the Harmonized Landsat and
Sentinel-2 project [68] or new experimental (ENMAP, PRISMA) and planned (ESA CHIME,
NASA SBG) hyperspectral missions could be added to overcome this and other spatial,
spectral, and temporal limitations of Landsat. The Sentinel-2 constellation (a+b) has been
acquiring images since 2015 with a higher spatial resolution (20 m) and return frequency
(5 days) than Landsat [69]. It includes four additional narrow (<=20 nm) bands in the red
edge and NIR. These bands are particularly sensitive to changes in vegetation growth and
development. SWIR was an important region for ASM detection. Hyperspectral missions
retrieve spectral information at ≤10 nm intervals in the SWIR, which is much higher
than Landsat or Sentinel-2. The tropics experience persistent cloud cover, which limits
the application of optical sensors such as these, particularly during the growing season.
Polarimetric indices derived from cloud-penetrating Sentinel-1 or other synthetic aperture
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radar overcome this challenge. This could further improve ASM detection by providing
additional spectral information during the growing season when spectral differences
between vegetation and other land cover types are most striking [70]. The analytical
approach could be re-oriented toward semantic segmentation with convolutional neural
networks (i.e., deep learning), given the importance of both spectral and textural features as
well as the abundance of reference data. These approaches were recently demonstrated for
ASM detection in Ghana [15]. The temporal dimension was not addressed in the Ghanaian
study, possibly due to the computational demand of deep learning. A deep learning
approach that more efficiently integrates time series, such as long short-term memory
networks, could be a powerful new direction for monitoring ASMs.

The accurate and efficient detection of ASMs via a monitoring system could help
government agencies, non-governmental organizations, and other decision-making bodies
to intervene to achieve the following positive outcomes:

• Environmental Protection: ASMs often involve harmful practices such as deforestation,
mercury pollution, and habitat destruction.

• Regulatory Enforcement: ASMs typically do not comply with environmental and land
use laws, which leads to the illegal exploitation of natural resources.

• Community Health and Safety: ASMs have adverse effects on nearby communities,
including health risks from exposure to toxic substances such as mercury as well as
safety hazards from unstable mining structures.

• Human Rights: ASMs are often associated with human rights abuses such as forced
labor, child labor, and exploitation.

• Conflict Prevention: In some regions, ASMs fuel conflicts and contribute to instability.

6. Conclusions

Mapping ASMs is challenging because they are small, spatially heterogeneous, and
difficult to separate spectrally from other land cover/use types. We demonstrate a reliable
and efficient method for ASM binary and probabilistic classification over a 20-year period
(2000–2019) in the Pará state of Brazil—an important gold mining region of the Amazon
River Basin. Previous studies mostly provide image snapshots of large industrial mines
using the spatial segmentation of spectral and textural features with or without machine
learning. More recent studies used time-series segmentation of NDVI derived from Landsat
SITS to detect large industrial mines. Our study integrated the time-series segmentation
of several Landsat spectral and textural features into an RF to detect ASMs. More than
1000 polygons were vectorized from a series of RAISG field surveys collected in the study
area from 2000 to 2019. It employed rigorous feature selection with VSURF—an ensemble
of ensembles technique—to eliminate all but 33 (38%) of the most important features.
Feature selection increased the overall accuracy by 3.33% and decreased the OBB error by
0.03%. The final model produced an overall accuracy of 92.6%, which was 6.1% higher
than a study mapping large industrial mines with the time-series segmentation of NDVI.
Like other mining studies, NDVI was the most important feature in our study. However,
textural features (variance, prominence, shade, contrast) in the NIR and SWIR regions of
the electromagnetic spectrum enhanced model performance. The PDPs of the RF showed
that as vegetation abundance (NDVI) decreased and the spatial heterogeneity in NIR and
SWIR bands within ASMs and between ASMs and other land use types increased, the
likelihood of a ASM activity increased.

Author Contributions: Conceptualization, A.F., M.T.M. and S.S.; Methodology, A.F., M.T.M. and S.S.;
Software, A.F.; Validation, A.F.; Formal analysis, A.F.; Investigation, A.F.; Resources, A.F.; Writing—
original draft, A.F., M.T.M. and S.S.; Writing—review & editing, A.F., M.T.M. and S.S.; Visualization,
A.F.; Supervision, M.T.M. and S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Remote Sens. 2024, 16, 1749 15 of 17

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: This publication was largely based on the MSc thesis of the lead author: Detecting
Artisanal Small-Scale Gold mines with LandTrendr multispectral and textural features at the Tapajós
river basin, Brazil. We would like to thank Roshanak Darvish and Harald van der Werff at ITC—
University of Twente for their contributions to the MSc thesis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sloan, S.; Sayer, J.A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in

poor tropical countries. For. Ecol. Manag. 2015, 352, 134–145. [CrossRef]
2. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the

FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [CrossRef]
3. Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution

monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [CrossRef] [PubMed]
4. Werner, T.T.; Mudd, G.M.; Schipper, A.M.; Huijbregts, M.A.J.; Taneja, L.; Northey, S.A. Global-scale remote sensing of mine areas

and analysis of factors explaining their extent. Glob. Environ. Chang. 2020, 60, 102007. [CrossRef]
5. Isidro, C.M.; McIntyre, N.; Lechner, A.M.; Callow, I. Applicability of Earth Observation for Identifying Small-Scale Mining

Footprints in a Wet Tropical Region. Remote Sens. 2017, 9, 945. [CrossRef]
6. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Scientific and

Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974; Volume 351, p. 309.
7. Almeida-Filho, R.; Shimabukuro, Y.E. Digital processing of a Landsat-TM time series for mapping and monitoring degraded

areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [CrossRef]
8. Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest

Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [CrossRef]
9. Forkuor, G.; Ullmann, T.; Griesbeck, M. Mapping and Monitoring Small-Scale Mining Activities in Ghana using Sentinel-1 Time

Series (2015–2019). Remote Sens. 2020, 12, 911. [CrossRef]
10. Simionato, J.; Bertani, G.; Osako, L.S. Identification of artisanal mining sites in the Amazon Rainforest using Geographic

Object-Based Image Analysis (GEOBIA) and Data Mining techniques. Remote Sens. Appl. Soc. Environ. 2021, 24, 100633. [CrossRef]
11. Ibrahim, E.; Lema, L.; Barnabe, P.; Lacroix, P.; Pirard, E. Small-scale surface mining of gold placers: Detection, mapping, and

temporal analysis through the use of free satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102194. [CrossRef]
12. Ngom, N.M.; Mbaye, M.; Baratoux, D.; Baratoux, L.; Ahoussi, K.E.; Kouame, J.K.; Faye, G.; Sow, E.H. Recent expansion of

artisanal gold mining along the Bandama River (Côte d’Ivoire). Int. J. Appl. Earth Obs. Geoinf. 2020, 112, 102873. [CrossRef]
13. Lobo, F.D.L.; Souza-Filho, P.W.M.; de Moreas Novo, E.M.L.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the Brazilian

Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [CrossRef]
14. Snapir, B.; Simms, D.M.; Waine, T.W. Mapping the expansion of galamsey gold mines in the cocoa growing area of Ghana using

optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 225–233. [CrossRef]
15. Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting

artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sens. Environ. 2020, 248, 111970.
[CrossRef]

16. Lobo, F.; Costa, M.; Novo, E.; Telmer, K. Distribution of Artisanal and Small-Scale Gold Mining in the Tapajós River Basin
(Brazilian Amazon) over the Past 40 Years and Relationship with Water Siltation. Remote Sens. 2016, 8, 579. [CrossRef]

17. Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-
contextual Information. Eur. J. Remote Sens. 2014, 47, 2279–7254. [CrossRef]

18. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1.
LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [CrossRef]

19. Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat
sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [CrossRef]

20. Dlamini, L.Z.D.; Xulu, S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr
Algorithm and Landsat Data. Sustainability 2019, 11, 6916. [CrossRef]

21. Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using
Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote
Sens. 2020, 12, 1612. [CrossRef]

22. Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-term Landsat monitoring of mining subsidence based on
spatiotemporal variations in soil moisture: A case study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102,
102447. [CrossRef]

23. Meng, Y.; Liu, X.; Wang, Z.; Ding, C.; Zhu, L. How can spatial structural metrics improve the accuracy of forest disturbance and
recovery detection using dense Landsat time series? Ecol. Indic. 2021, 132, 108336. [CrossRef]

https://doi.org/10.1016/j.foreco.2015.06.013
https://doi.org/10.1016/j.foreco.2015.06.014
https://doi.org/10.1073/pnas.1318271110
https://www.ncbi.nlm.nih.gov/pubmed/24167281
https://doi.org/10.1016/j.gloenvcha.2019.102007
https://doi.org/10.3390/rs9090945
https://doi.org/10.1016/S0034-4257(01)00237-1
https://doi.org/10.3390/rs10121903
https://doi.org/10.3390/rs12060911
https://doi.org/10.1016/j.rsase.2021.100633
https://doi.org/10.1016/j.jag.2020.102194
https://doi.org/10.1016/j.jag.2022.102873
https://doi.org/10.3390/rs10081178
https://doi.org/10.1016/j.jag.2017.02.009
https://doi.org/10.1016/j.rse.2020.111970
https://doi.org/10.3390/rs8070579
https://doi.org/10.5721/EuJRS20144723
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2016.02.060
https://doi.org/10.3390/su11246916
https://doi.org/10.3390/rs12101612
https://doi.org/10.1016/j.jag.2021.102447
https://doi.org/10.1016/j.ecolind.2021.108336


Remote Sens. 2024, 16, 1749 16 of 17

24. Berzas Nevado, J.J.; Rodríguez Martín-Doimeadios, R.C.; Guzmán Bernardo, F.J.; Jiménez Moreno, M.; Herculano, A.M.; do
Nascimento, J.L.M.; Crespo-López, M.E. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environ. Int. 2010, 36,
593–608. [CrossRef] [PubMed]

25. Villas Bôas, R.C.; Beinhoff, C.; da Silva, A.R.B. Mercury in the Tapajos Basin; CYTED: Rio de Jeniro, Brazil, 2001; 198p.
26. Roulet, M.; Lucotte, M.; Canuel, R.; Farella, N.; De Freitos Goch, Y.G.; Pacheco Peleja, J.R.; Guimarães, J.-R.D.; Mergler, D.;

Amorim, M. Spatio-temporal geochemistry of mercury in waters of the Tapajós and Amazon rivers, Brazil. Limnol. Oceanogr.
2001, 46, 1141–1157. [CrossRef]

27. Lobo, F.L.; Costa, M.P.F.; Novo, E.M.L.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted
by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [CrossRef]

28. Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007.
[CrossRef] [PubMed]

29. Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33.
[CrossRef]

30. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8

reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [CrossRef]
32. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow

detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [CrossRef]
33. Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5,

6481–6500. [CrossRef]
34. Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance

detection. Remote Sens. Environ. 2018, 205, 131–140. [CrossRef]
35. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The

shuttle radar topography mission. Rev. Geophys. 2007, 45, 2004. [CrossRef]
36. Instituto Brasileiro de Geografia e Estatística (IBGE). Cartas e Mapas de Bases Cartograficas Continuas. 2020. Available online:

http://geoftp.ibge.gov.br/ (accessed on 4 May 2021).
37. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
38. Xu, D.; Wang, C.; Chen, J.; Shen, M.; Shen, B.; Yan, R.; Li, Z.; Karnieli, A.; Chen, J.; Yan, Y.; et al. The superiority of the normalized

difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sens. Environ. 2021, 264, 112578.
[CrossRef]

39. Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore Iii, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of
paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022.
[CrossRef]

40. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

41. Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18,
116–126. [CrossRef]

42. Kaptué, A.T.; Hanan, N.P.; Prihodko, L. Characterization of the spatial and temporal variability of surface water in the Soudan-
Sahel region of Africa. J. Geophys. Res. 2013, 118, 1472–1483. [CrossRef]

43. Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of
vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [CrossRef]

44. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

45. Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610–621.

46. Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators (Sunnyvale,
California). Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [CrossRef]

47. Ramola, A.; Shakya, A.K.; Van Pham, D. Study of statistical methods for texture analysis and their modern evolutions. Eng. Rep.
2020, 2, e12149. [CrossRef]

48. Yang, X.; Tridandapani, S.; Beitler, J.J.; Yu, D.S.; Yoshida, E.J.; Curran, W.J.; Liu, T. Ultrasound GLCM texture analysis of radiation-
induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity. Med. Phys. 2012, 39,
5732–5739. [CrossRef] [PubMed]

49. Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. 5 LT-GEE Outputs|LT-GEE Guide [WWW
Document]. Kennedy RE Yang Z Gorelick N Braaten J Cavalcante Cohen WB Heal. 2018 Implement. LandTrendr Algorithm
Google Earth Engine. Remote Sens. 2018, 10, 691. [CrossRef]

50. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de
zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [CrossRef]

https://doi.org/10.1016/j.envint.2010.03.011
https://www.ncbi.nlm.nih.gov/pubmed/20483161
https://doi.org/10.4319/lo.2001.46.5.1141
https://doi.org/10.1016/j.rse.2014.04.030
https://doi.org/10.1111/gcb.13173
https://www.ncbi.nlm.nih.gov/pubmed/26700407
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2015.12.024
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.3390/rs5126481
https://doi.org/10.1016/j.rse.2017.11.015
https://doi.org/10.1029/2005RG000183
http://geoftp.ibge.gov.br/
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/j.rse.2021.112578
https://doi.org/10.1080/01431160110107734
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1071/WF07049
https://doi.org/10.1002/jgrg.20121
https://doi.org/10.1016/j.rse.2017.04.031
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1016/0734-189X(84)90197-X
https://doi.org/10.1002/eng2.12149
https://doi.org/10.1118/1.4747526
https://www.ncbi.nlm.nih.gov/pubmed/22957638
https://doi.org/10.3390/rs10050691
https://doi.org/10.1080/02626667909491834


Remote Sens. 2024, 16, 1749 17 of 17

51. Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine
learning classifiers for satellite observations-A review. Remote Sens. 2020, 12, 1135. [CrossRef]

52. Chavent, M.; Genuer, R.; Saracco, J. Combining clustering of variables and feature selection using random forests. Commun. Stat.
Simul. Comput. 2021, 50, 426–445. [CrossRef]
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