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Abstract: Winter wheat is a significant global food crop, and it is crucial to monitor its distribution
for better agricultural management, land planning, and environmental sustainability. However, the
distribution style of winter wheat planting fields is not consistent due to different terrain conditions.
In mountainous areas, winter wheat planting units are smaller in size and fragmented in distribution
compared to plain areas. Unfortunately, most crop-mapping research based on deep learning ignores
the impact of topographic relief on crop distribution and struggles to handle hilly areas effectively. In
this paper, we propose a cross-modal segmentation network for winter wheat mapping in complex
terrain using remote-sensing multi-temporal images and DEM data. First, we propose a diverse
receptive fusion (DRF) module, which applies a deformable receptive field to optical images during
the feature fusion process, allowing it to match winter wheat plots of varying scales and a fixed
receptive field to the DEM to extract evaluation features at a consistent scale. Second, we developed
a distributed weight attention (DWA) module, which can enhance the feature intensity of winter
wheat, thereby reducing the omission rate of planting areas, especially for the small-sized regions in
hilly terrain. Furthermore, to demonstrate the performance of our model, we conducted extensive ex-
periments and ablation studies on a large-scale dataset in Lanling county, Shandong province, China.
Our results show that our proposed CM-Net is effective in mapping winter wheat in complex terrain.

Keywords: deep learning; winter wheat; semantic segmentation; remote sensing image; attention
block

1. Introduction

Winter wheat is one of the world’s major food crops, and it plays an important
role in ensuring food security and stabilizing national economic development. However,
the production of winter wheat is facing various challenges due to climate change, land
use change and crop rotation in some regions. Therefore, it is important to monitor the
distribution of winter wheat cultivation for better agricultural management, land planning
and environmental sustainability [1,2].

With the rapid development of remote sensing (RS) technology, RS imagery has been
widely adopted in agriculture as an effective means of acquiring recurrent, large-area
data [3]. This technology enables the monitoring of changes in agricultural production
and resource utilization, providing timely information to support macro-level decision
making [4]. Temporal information is a widely used feature for crop mapping due to
the growth cycle of crops. Different crops exhibit varying growth stages and unique
spectral scattering characteristics in different seasons. Numerous research studies have
demonstrated that offering a model interpretation associated with crop growth features is
essential in assessing the dependability of crop-mapping techniques. Therefore, most of
researches distinguish winter wheat from other crops using temporal features with machine
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learning classifiers, such as support vector machine (SVM) [5], random forest (RF) [6,7],
and decision trees (DT) [8,9], which achieves accurate winter wheat mapping.

In recent years, deep learning has developed rapidly, and has proven a superior
learning ability and a strong feature presenting ability. Compared to conventional ma-
chine learning classifiers, deep learning (DL) techniques show outstanding performance in
various remote sensing-related tasks, such as change detection [10] and land cover classifi-
cation [11,12]. Deep learning architectures for crop mapping employ two main approaches:
pixel-based classification and semantic segmentation. Pixel-based classification tasks typi-
cally start by training a CNN classifier on small image patches, then using a sliding window
method to predict the category of the central pixel [13–15], of which the drawback is that
the trained network only predicts the central pixel of the input image, leading to low
classification efficiency. Semantic segmentation, which aims to assign a specific class label
to each pixel in an image with high process efficiency, is gradually gaining attention in the
crop-mapping field [16]. For example, Zhang et al. [17] combined a pyramid scene parsing
network (PSPNet) [18] and GaoFen satellite images for cropland mapping. Wei et al. [19]
formulated rice mapping as a task of semantic segmentation and used Unet to generate
a map of rice distribution by exploiting the correlation among multi-temporal data. Ma
et al. [20] proposed a rice-planting area identification attention U-Net (RIAU-Net) model to
map rice with Sentinel-1 images obtained in specific months. Sai et al. [21] proposed a deep
learning model that employs an over-complete representation, integrated with a backbone
transfer learning-based encoder–decoder architecture to solve weed detection.

Recently, some researchers have explored multi-modal networks to improve the accu-
racy of semantic segmentation tasks; for instance, Garnot et al. [22] assessed the advantages
of multi-modality in various tasks, and their findings indicate that by utilizing optical
and radar time series data, temporal attention-based models that incorporate multiple
modalities can outperform models using a single modality in terms of performance and
the ability to withstand cloud cover. Li et al. [23] proposed a semantic segmentation model
of multisource data fusion (MCANet). The backbone network of feature extraction in
the network consists of two independent branches for the feature extraction of optical
and SAR images. Optical and SAR data are complementary to each other in land-use
classification, and better extraction results can be obtained by combining their advantages.
Hazirbas et al. [24] proposed the FuseNet algorithm, which is based on SegNet [25] to
directly add the features from both RGB and depth images to segment different objects in
natural images, and they achieved an acceptable accuracy. Zhang et al. [26] proposed a
feature-level fusion network named the hybrid attention-aware fusion network (HAFNet).
Primarily, it enhances information fusion from multiple modalities through an attention-
aware mechanism, leading to more accurate and robust classification results, which are
particularly useful in complex environments. However, it can be computationally complex
to implement, which may pose challenges in scaling to large study areas.

Although existing multi-modal semantic segmentation methods have achieved good
segmentation results in fields such as urban areas or natural images, they are not suitable
for crop mapping, especially in hilly areas. Due to different terrain conditions, the soil
size, distribution, and texture of winter wheat planting fields are not consistent. Compared
with plain areas, the planting units of winter wheat in mountainous areas are smaller in
size and fragmented in distribution, and the growth cycle of winter wheat in mountainous
areas differs from that in plain areas due to low temperatures [27,28]. Therefore, most crop-
mapping research based on deep learning only focuses on temporal or spectral features’
representation from optical remote sensing images and ignores the impact of topographic
relief in crop distribution, so that the existing models of semantic segmentation cannot deal
with the hilly area very well. To sum up, though the results of these previous studies show
that cross-modal deep learning can improve the accuracy of semantic segmentation, there
is still some room for improvement for crop mapping with complex topographic conditions.
The following issues can be discussed.
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(1) In complex terrains, both plains and hilly areas are suitable for the cultivation of
winter wheat. Current cross-modal algorithms typically employ a fixed receptive
field across two modal branches to extract features. These approaches overlook the
fact that different modal data types offer varying perspectives on wheat features.
For instance, optical remote sensing images provide insights into the growth status
and require a flexible receptive field due to the varying scales of planting sizes.
On the other hand, Digital Elevation Models (DEM) present terrain information,
including slope details and so on, necessitating a stable receptive field for accurate
computation. Consequently, the unified receptive field utilized in the present model
fails to accommodate the characteristics of the dual-modal data, thereby posing
challenges to its effective application in extracting the distribution of winter wheat in
areas with complex terrain.

(2) In hilly regions, the small-scale planting areas, which occupy fewer pixels in the
images and carry limited information, pose a significant challenge. During the down-
sampling and upsampling processes of the encoder–decoder convolutional neural
network, the resolution of these small targets is further diminished and their feature
information progressively weakens. This makes it difficult to effectively recover the
information of these small targets, leading to a higher rate of omission in the mapping
of winter wheat in hilly regions.

To address the problems above, we study a common network for winter wheat map-
ping in complex terrain. The primary contributions of this article are as follows:

• We propose a novel network named a Cross-Modal Segmentation Network (CM-
Net), which has the capability to integrate temporal, spatial, and terrain features for
enhanced image segmentation.

• A Diverse Receptive Fusion (DRF) module is proposed. This module applies a de-
formable receptive field to optical images during the feature-fusion process, allowing
it to match winter wheat plots of varying scales and a fixed receptive field to the DEM
to extract evaluation features at a consistent scale.

• We developed a novel spatial attention module, the Distributed Weight Attention
(DWA) module. This module is specifically designed to enhance the feature intensity
of our objects, thereby reducing the omission rate of planting areas, especially for the
small-sized regions.

The remainder of this article is structured as follows: Section 2 details the proposed CM-
Net and its constituent components. Section 3 provides an overview of the experimental
data and setup. In Section 4, we present comparative experiments and ablation studies,
as well as a detailed analysis of the CM-Net. Finally, we make concluding remarks in
Section 5.

2. Methodology

This section delves into our proposed Cross-Modal Segmentation Network (CM-
Net) as shown in Figure 1, a quintessential encoder–decoder structure. The CM-Net
accepts digital elevation models (DEM) and multi-temporal remote sensing images as the
inputs to extract and fuse the multimodal features. The core structure of the network is
designed to extract features from both data types, culminating in the segmentation image
of winter wheat.

The encoder with a dual-branch structure is comprised of a Diverse Receptive Fusion
(DRF) module and a downsampling module to extract the temporal–spatial–terrain features
from the multi-modal data. The decoder segment is made up of upsampling modules,
and a Distributed Weight Attention (DWA) modular, which are based on attention mech-
anisms. The output module is composed of a 1 × 1 convolutional layer and a sigmoid
activation layer.
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Figure 1. Structure of the CM-Net model.

2.1. Diverse Receptive Fusion Module

This paper proposes a Diverse Receptive Fusion (DRF) module as shown in Figure 2.
During the feature-fusion process, a deformable receptive field is utilized on optical images,
enabling the matching of winter wheat plots of various scales. Concurrently, a fixed
receptive field is applied to the DEM to consistently extract evaluation features. The diverse
receptive field employed in our model is designed to cater to the attributes of dual-modal
data, thereby facilitating the effective extraction of the winter wheat distribution in regions
with complex terrain.

The basic structure of the DRF consists of two branches, which extract features from
different modal data. The left branch takes the original image of the DEM, called the
elevation branch, while the right branch takes the original image of the multi-temporal
optical data, called the optical branch. The feature maps are downsized to half of their
original size in both the width and height directions after passing through the DRF module,
while the channel direction is doubled.

Figure 2. The Diverse Receptive Fusion (DRF) module.
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The elevation branch comprises a fixed receptive field convolution block. When
extracting features from the DEM data, a fixed perception can accurately capture the terrain
elevation information related to the cultivation style of the winter wheat. That is, it can
determine what type of terrain is suitable for wheat cultivation, what scale of cultivation is
appropriate for the terrain type, and so on. This information serves as supplementary data
for semantic segmentation.

Suppose that the input of the elevation branch in the multimodal fusion module of
stage i is xi

dem, and the output is expressed as yi
dem. The calculation process of the CNN

block is as follows:

yi
dem = ReLU(BN(Conv2d(xi

dem))) (1)

The optical branch consists of a deformable convolution block with flexible receptive
field, a concatenate operation, and a residual module. The input of the optical branch
is multi-temporal optical images, which are fused with the features extracted from the
elevation branch after going through the DCN (Deformable Convolutional Networks)
block and then input into the residual module. The distribution characteristics of wheat
in mountainous and plain areas are different. In mountainous and hilly regions, wheat
distribution is fragmented, while in plain areas, wheat is usually distributed in large
blocks, with varying sizes of wheat-planting areas. However, the receptive field of the
conventional convolutional kernels is fixed and cannot adapt to geometric transformations
in the spatial domain. By contrast, deformable convolution incorporates trainable offsets in
the convolution module, which enables the convolution sampling points to shift, resulting
in a receptive field that automatically adapts to changing sampling positions. In each
layer of the CM-Net network, deformable convolution modules are added to introduce
variability and automatically adjust the receptive field, thereby enhancing the perception of
winter wheat at both large and small scales and achieving the accurate extraction of winter
wheat with varying scales.

Specifically, assuming that the input of the optical branch in the i-th stage of the
multimodal fusion module is represented as xi

opt:

yi
dcn = ReLU(BN(DCNv2(xi

opt)))

yi
cat = concatenate(yi

dem, yi
dcn)

yi
res = ResBlock(yi

cat)

(2)

yi
dcn is the output of DCN Block. After that, yi

dcn is spliced with the feature matrix yi
dem

output from the elevation branch along the channel direction to obtain yi
cat, and finally yi

res
is obtained by ResBolck.

2.2. Distributed Weight Attention Module

A distributed weighted attention module (DWA) was designed to enhance the feature
intensity in the decoding process of winter wheat. By using global pooling and expanding
the range of the activation function, the intensity of target features can be enhanced while
the intensity of non-target features is suppressed, so as to effectively recover the information
of small planting areas.

As shown in Figure 3, the DWA does not alter the shape of the feature map. Assuming
that the size of the feature map input into the DWA is C (channel) × H (height) × W (width),
the feature map undergoes channel-based global max pooling and global mean pooling,
resulting in two 1 × H × W feature maps. These feature maps are then concatenated along
the channel dimension and passed through a convolutional layer with a kernel size of
3 × 3 and a sigmoid activation layer, resulting in a 1 × H × W spatial-attention weight
matrix Wsam.
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Figure 3. The distributed weighted attention (DWA) module.

y = concatenate(AvgPool(x), MaxPool(x))
Wsam = Sigmoid(Conv2d(y))

(3)

x is the input feature map to the pooling layers. After that, y is the concatenated output
resulting from the application of both average pooling and max pooling operations to x.
The aforementioned operations are the computation process of spatial attention, where the
feature map is subjected to average pooling and max pooling along the channel dimension.
The global max pooling operation extracts the maximum value for each pixel of the feature
map C × H × W in the channel direction. The global mean pooling calculates the average
value for each pixel of the feature map C × H × W in the channel direction.

Spatial attention learns a weight for each pixel on the feature map, enhancing the
representation of important regions while suppressing unimportant regions, resulting in
weighted features.

Considering that the input feature map x of the DWA contains information for ex-
tracting winter wheat from the DEM and multispectral images, each channel of the feature
map has a corresponding role and cannot be simply suppressed or activated. Therefore,
the 1 × H × W spatial attention weight matrix cannot be directly multiplied with the
C × H × W input feature map x. Thus, DAM remaps all information through an activation
function to obtain the overall distribution of the discrete feature map.

The DAM uses the activation function tanh() + 1 to map the value range of feature
maps to 0–2, resulting in a matrix Wt of the shape C × H × W. This matrix, Wt, is then
multiplied with the weight matrix Wsam, where values smaller than 1 decrease the weights
of the pixel corresponding to Wsam, and values larger than 1 increase the weights of the pixel
corresponding to Wsam. This process generates a final matrix Wdwa of the shape C × H × W.
By “loosening” the features before multiplying with the weight map, important informa-
tion can be highlighted and redundant information can be reduced. Additionally, while
preserving the information from each channel of the input features, W is adjusted to obtain
attention weights for each channel. The calculation process is as follows:
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Wt = tanh(x) + 1
Wdwa = Wt ∗ Wsam
ydwa = Wdwa × x

(4)

3. Experimental Data and Setup
3.1. Introduction of the Wheat Dataset

The experimental study area is located in Lanling County, Linyi City, Shandong
Province, China, between 117◦41′′∼118◦18′′ east longitude and 34◦37′′∼35◦06′′ north lati-
tude. It belongs to the warm temperate monsoon continental climate zone, with long and
dry winters and hot and humid summers. The main variety of wheat planted is winter
wheat. The terrain of Lanling County gradually decreases from northwest to southeast,
including low mountains, hills, plains, and depressions. The terrain is relatively complex.
Wheat in mountainous areas is distributed in a fragmented manner, while wheat in plain
areas is distributed in large blocks and is relatively flat.

This experiment used two modalities of data, remote sensing data acquired by the
Sentinel-2 satellite and corresponding digital elevation model (DEM) data.

Sentinel-2 is a high-resolution multispectral imaging satellite developed by the Euro-
pean Space Agency. It carries a multispectral imaging instrument (MSI) and consists of two
satellites, Sentinel-2A and Sentinel-2B, which are placed at opposite sides of the Earth with
an orbital difference of 180◦. The revisit period of each satellite is 10 days, and 5 days for
both. The Sentinel-2 satellite covers 13 working bands, with ground resolutions of 10 m,
20 m, and 60 m for different bands. In this study, 10 bands with a resolution of 10 m were
used. The Google Earth Engine (GEE) platform provides global-scale geospatial analysis
services, which support the extraction of agricultural information and provide convenient
data and feature collection functions for Sentinel-series remote sensing images.

To enhance computational efficiency, we selected images from two key growth periods
of winter wheat as the optical branch inputs for the network, each with a size of 5282 × 6767.
The 10-channel remote sensing images acquired on 18 December 2017 and 15 April 2018
were stacked along the channel direction to obtain a dual-temporal remote sensing image
with 20 bands. This complete remote sensing image was then divided into patches of size
256 × 256, with patches located outside the Lanling County area being discarded, resulting
in a total of 629 image patches. The proportion of wheat in each remaining image patch
was calculated, and data-augmentation methods such as flipping and scaling were used
to enhance the patches according to the proportion. Finally, these processed patches were
utilized to compile the dataset, yielding a total of 2274 image patches. The dataset was
divided into training, testing, and validation sets at a ratio of 6:2:2.

Digital elevation model (DEM) data represent ground elevation in the form of an
ordered array of numerical values. This enables the digital simulation of ground terrain
based on limited terrain elevation data. The DEM data used in this experiment are from the
second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM), with a resolution of 30 m. The DEM was
then upsampled with ENVI to a resolution of 10 m.

The ground-truth map of winter wheat in Lanling County was provided by Qingdao
Geosea Sky Information Co., Ltd., Qingdao, China which was plotted based on actual
investigation in the spring of 2018.

3.2. Settings of Experiments

The experiments were conducted on a Linux server equipped with two Nvidia GeForce
RTX 3080 graphics processing units (GPUs). The Adam optimizer was used in the experi-
ments with a learning rate of 0.0001, and the training was performed using cosine annealing.
The batch size was set to 10, and a total of 200 epochs were trained. The model with the
best performance on the validation set was selected for testing on the test set. The input
image size for the network was set to 256 × 256.
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The network employs a cross-entropy loss function. In the experiments, the number
of classification categories is represented by M, and the number of samples is denoted by
N. The formula for the cross-entropy loss function is provided below:

Loss = − 1
N

N

∑
i=1

M

∑
c=1

yi,c log(pi,c) (5)

yi,c is the label of the i-th sample category c, whose value is 0 or 1; pi,c is the probability
of the i-th sample category c.

3.3. Evaluation Metrics

In this paper’s semantic segmentation experiments, the samples were divided into
two categories: winter wheat and background excluding winter wheat. In order to evaluate
the semantic segmentation performance, the IOU, accuracy, and F1-score were used as
evaluation indicators for the winter wheat category in the experimental results, and overall
accuracy, average accuracy (AA), and mean intersection over union (MIoU) were used as
evaluation indicators for the overall segmentation performance. The confusion matrix was
used to calculate the above evaluation indicators. The confusion matrix is a contingency
table that summarizes the prediction results of a classification model in machine learning.
True Positive (TP) represents the number of positive samples predicted as positive, False
Negative (FN) represents the number of positive samples predicted as negative, False
Positive (FP) represents the number of negative samples predicted as positive, and True
Negative (TN) represents the number of negative samples predicted as negative. Positive
samples refer to the winter wheat category, and negative samples refer to the background
category. Below are the formulas for each indicator:

F1 − score = 2TP
2TP+FP+FN (6)

IOU = TP
FP+FN+TP (7)

mIOU = 1
2 (

TP
FP+FN+TP + TN

FP+FN+TN ) (8)

OA = TP+TN
TP+FP+TN+FN (9)

AA = 1
2 (

TP
TP+FP + TN

TN+FN ) (10)

4. Experiment and Analysis
4.1. Comparative Tests

In this paper, we compare our proposed model with classic semantic segmentation
models, such as the UnetFormer [29], DeepLabv3+ [30], Segnet [25], Pspnet [18], Uper-
net [31], and (MS)2-Net [32] models. Among them, DeepLabv3+, Segnet, Pspnet, and
Upernet are single-modality networks that take the dual-temporal remote sensing data
and DEM data concatenated along the channel dimension as input, with a total of 21 input
channels. (MS)2-Net is a dual-modality network specifically designed for remote-sensing
data segmentation, where the 20-channel dual-temporal data and 1-channel DEM data are
fed into two separate branches of the network.

The (MS)2-Net is a new network designed for segmenting multi-modal remote sensing
data. It uses a multi-stage fusion module to combine different types of information and a
multi-source attention module to enhance the discriminability of features from different
modalities. As shown in Table 1, (MS)2-Net achieved an F1-score of 92.34% for the winter
wheat category. DeepLabv3+, a classic semantic segmentation network introduced in 2017,
addresses the challenge of segmenting objects at multiple scales. It utilizes an Atrous
Spatial Pyramid Pooling (ASPP) module to capture multi-scale contextual information and
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incorporates a decoder module, inspired by the U-Net architecture, for up-sampling to
refine the edge precision. When applied to the semantic segmentation of winter wheat in
remote sensing images, DeepLabv3+ achieves an F1-score of 89.80% for the winter wheat
category. The Pyramid Scene Parsing Network (PSPNet) aggregates contextual information
from different regions, enabling the model to understand global contextual information.
For winter wheat segmentation, we selected DenseNet as the backbone for PSPNet and
achieved an F1-score of 86.54% for the winter wheat category. SegNet, proposed in 2015,
consists of an encoder and a decoder. In this study, we used ResNet as the backbone
for winter wheat segmentation and achieved an F1-score of 86.45% for the winter wheat
category. unetFormer introduced a Global–Local Transformer Block (GLTB) based on
transformers, which efficiently captures global and local contextual information for the real-
time semantic segmentation of urban scenes. When applied to winter wheat segmentation,
unetFormer achieved an F1-score of 90.39% for the winter wheat category. UPerNet is
a unified perceptual resolution network for scene understanding based on the Feature
Pyramid Network (FPN). When used for winter wheat segmentation, UPerNet achieved an
F1-score of 90.30% for the winter wheat category.

However, our proposed CM-Net network, specifically designed for winter wheat
semantic segmentation, outperformed the other models with a segmentation F1-score of
93.55%. In addition to the F1-score, CM-Net also performed the best in IOU and F1-score
for the winter wheat category, and its overall segmentation evaluation metrics such as OA
and MIOU were superior to the other networks.

The segmented results of the CM-Net and other comparison networks on the test set
are shown in Figure 4, primarily depicting the winter wheat predictions in mountainous
and hilly regions. It can be observed that, overall, the CM-Net network achieved the
best prediction performance for sparsely distributed winter wheat, followed by (MS)2-
Net. CM-Net effectively captured various details in wheat distribution, while (MS)2-Net
also performed well. On the other hand, unetFormer, DeepLabv3+, and UPerNet could
predict the general distribution of winter wheat but exhibited average performance in
terms of detail prediction. SegNet and PSPNet, however, demonstrated poor performance
in segmenting details, with evident instances of both false-positive and false-negative
detections in the prediction results.

Table 1. Comparison of our proposed model with classic semantic segmentation models.

Model
Overall Winter Wheat

OA AA MIoU IoU F1

Ours 94.67 94.52 89.60 87.88 93.55

(MS)2-Net [32] 93.66 93.47 87.76 85.77 92.34

unetFormer [29] 92.04 91.77 84.87 82.47 90.39

UperNet [31] 91.98 91.73 84.75 82.31 90.3

DeepLabv3p [30] 91.57 91.31 84.04 81.50 89.8

SegNet [25] 88.73 88.34 79.27 76.13 86.45

PSPNet [18] 88.67 88.21 79.22 76.27 86.54
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Figure 4. From left to right in the figure are the original multispectral remote sensing image, the
ground truth map of wheat distribution (the white area represents winter wheat, and the black
area represents other land cover types), and the results predicted by CM-Net, (MS)2Net, UnetF-
prmer, UperNet, DeepLabv3+, SegNet, and PSPNet. The red squares highlight the visual effects of
different methods.

4.2. Ablation Experiments

To verify the effectiveness of each module, control variable ablation experiments were
conducted, and the results are shown in Table 2. Experiments CM-Net, Net1, Net2, and
Net3 verified the effectiveness of each module mentioned in Section 2 under the condition
of inputting dual-temporal remote sensing data and DEM data. CM-Net is the proposed
network, Net1 and Net2 were compared without and with DRF, and Net3 is without
adding the DWA module. The experiment showed that DRF performed slightly better. The
comparison between Net1 and Net3, as well as CM-Net and Net2, verified that the DWA
module helps to improve the semantic segmentation effect of winter wheat.

The experimental results of CM-Net, Net1, Net2, and Net3 showed that the model
using the DRF module in the encoding stage and the DWA module in the decoding stage
performed the best. Experiments Net4 and Net5 continued to explore the impact of different
data on the task based on CM-Net. It can be seen that the segmentation performance of
dual-temporal data plus DEM data was the best.

Figure 5 shows the prediction results of winter wheat distribution in a part of Lanling
County from ablation experiments CM-Net to Net5. From left to right, Figure 5 shows the
remote sensing image of a certain area in Lanling County in 2018, the ground truth map of
winter wheat distribution in that area, and the predicted winter wheat distribution results
of experiments CM-Net to Net5 in that area. The white area in the figure represents winter
wheat, and the black area represents other land cover types.
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Figure 5. From left to right in the figure are the original multispectral remote sensing image, the
ground truth map of wheat distribution (the white area represents winter wheat and the black area
represents other land cover types), and the prediction results of experiments CM-Net, Net1, Net2,
Net3, Net4, and Net5. The red squares highlight the visual effects of different methods.

Table 2. The results of various ablation experiments.The bold font indicates optimal precision. “o”
indicates the modules or data contained in the current model.

Data Model Overall Winter Wheat

Single-
Temporal

+ Dem

Bi-
Temporal

Bi-
Temporal

+ Dem
DRF DWA OA mIOU AA IoU F1

CM-Net o o o 94.67 89.60 94.52 87.88 93.55
Net1 o 94.52 89.31 94.35 87.56 93.37
Net2 o o 94.56 89.39 94.40 87.65 93.42
Net3 o o 94.58 89.44 94.43 87.70 93.45
Net4 o o o 93.93 88.25 93.72 86.35 92.68
Net5 o o o 93.93 88.24 93.75 86.33 92.66

4.2.1. Ablation for the DRF

To verify the effectiveness of DRF modular, we replaced the deformable convolution
block with a regular convolution module, resulting in the same receptive filed in multi-
modal data. Experiments Net1 and Net2 compare the performance of the DRF module
without the Dynamic Weighted Aggregation (DWA) module. In experiment Net2, the
prediction results for the winter wheat category show improvements 0.09 and 0.05 percent-
age points in terms of intersection over union (IOU) and F1-score, respectively, compared
to Net1.

Experiments CM-Net and Net3 involve comparing the encoder structures based on the
DRF, with the addition of the DWA module at the decoder stage. In experiment CM-Net, the
prediction results for the winter wheat category show improvements 0.18 and 0.1 percentage
points in the IOU and F1-score, respectively, compared to Net3. The experimental results
demonstrate that incorporating diverse receptive fields in the multi-modal structure yields
better results than using the same receptive filed.
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In Figure 5, the top two rows depict narrow roads. In experiment Net1, several road
areas were not segmented properly, while in experiment Net2 with the DRF module, the
segmentation performance improved, allowing for the recognition of more road information
compared to Net1. The comparison of segmentation results between CM-Net and Net3
also indicates that the DRF module can identify more detailed information.

4.2.2. Ablation for the DWA

In experiments Net1 and Net3, two experiments were conducted in the decoder
stage, one without adding the DWA module and one with adding the DWA module. The
comparison of the experimental results of Net1 and Net3 showed the effect of adding the
DWA module. The overall and winter wheat category segmentation performance of Net3
was better than that of Net1. In terms of the segmentation performance of the winter wheat
category, the IOU and F1 indicators of Net3 were respectively 0.14% and 0.08% higher than
those of Net1.

In experiments CM-Net and Net2, the DRF was used in the encoder part, and two
experiments were conducted in the decoder stage, one without adding the DWA module
and one with adding the DWA module. In experiment CM-Net, the segmentation effect
was better, and the IOU and F1 indicators of the winter wheat category’s segmentation
results were respectively 0.23% and 0.13% higher than those of Net2.

From Figure 5, it can be observed that experiment CM-Net had the best overall
segmentation effect compared to the other experiments shown in the figure. Figure 5 shows
that CM-Net identified road information that was not identified by Net2 and performed
better for relatively fragmented wheat distributions.

4.2.3. Ablation for the Data Source

Experiments CM-Net, Net4, and Net5 were conducted using the same network struc-
ture but with different dataset configurations. CM-Net used dual-temporal remote sensing
data and DEM data, with DEM data as input to the elevation branch and dual-phase remote
sensing data as input to the optical branch. Net4 only used dual-phase data, with 2017
remote sensing data as input to the elevation branch and 2018 remote sensing data as
input to the optical branch. Finally, the dual-phase data of 2017 and 2018 were input to
the network. Net5 used single-phase data and DEM data, with DEM data as input to the
elevation branch and 2018 remote sensing data as input to the optical branch.

Experiments CM-Net and Net4 in Table 1 verified the contribution of multimodal
data to the task. In terms of winter wheat category segmentation results, the IOU and F1
indicators of the CM-Net were respectively 1.53% and 0.87% higher than those of Net4.
Experiments CM-Net and Net5 verified the advantages of dual-phase data compared
to single-phase data. In terms of winter wheat category segmentation results, the IOU
and F1 indicators of the CM-Net were respectively 1.55% and 0.89% higher than those of
Net5. The experimental results show that the combination of dual-phase remote sensing
data and DEM multimodal data in CM-Net had the best performance for winter wheat
semantic segmentation.

From the predicted results shown in Figure 5, it can be observed that there were
misclassifications or omissions in the segmentation results of Net4 using only dual-phase
remote sensing data and Net5 using single-phase remote sensing data and DEM data. The
performance of Net4 and Net5 was inferior to that of experiment CM-Net.

5. Conclusions

In this paper, we introduce a deep network called CM-Net that can segment objects
using cross-modal multi-temporal optical images and DEM images. The network achieves
excellent segmentation results by leveraging two key aspects:

(1) The Diverse Receptive Fusion (DRF) module is proposed. This module applies a
deformable receptive field to optical images during the feature fusion process. It
allows the network to match winter wheat plots of varying scales by adapting to



Remote Sens. 2024, 16, 1775 13 of 14

their characteristics using a fixed receptive field for DEM images. This enables
the extraction of evaluation features at a consistent scale, accommodating the dual-
modal data.

(2) The distributed weighted attention module (DWA) has been meticulously engineered
to optimize feature intensity during the crucial decoding phase of winter wheat seg-
mentation. By integrating sophisticated global pooling techniques with a broadened
scope of activation functions, the DWA adeptly enhances the salience of essential fea-
tures specific to winter wheat. Concurrently, it effectively diminishes the presence of
irrelevant features. This dual capability of selective enhancement and suppression is
vital for accurately extracting minute yet significant details from small planting areas.

Comparative experiments and ablation studies demonstrated that CM-Net exhibits
strong competitive performance and generalization capabilities.
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