Critical Threshold-Based Heat Damage Evolution Monitoring to Tea Plants with Remotely Sensed LST over Mainland China
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data
3.1.1. MODIS LST Products
3.1.2. Tea Planting Distribution
3.1.3. Historical HD Descriptions in the Yearbook of Meteorological Disasters
3.1.4. Disaster Reports via Web News
3.2. Methodology
3.2.1. The Critical LST Threshold for HD to Tea Plants
3.2.2. Reconstruction for Gap-Filled MODIS LST Values
3.2.3. Spatiotemporal Evolution Tracking of HD
3.2.4. HD Characteristics
4. Results
4.1. Annual Dynamics of HD Ratios for Tea Plants from 2002 to 2022
4.2. Temporal Dynamics of HD Ratios for Tea Plants in Two Typical HD Years
4.2.1. Daily Dynamics in Mainland China
4.2.2. Daily Dynamics of HD Extent at Regional Scale
4.2.3. Daily Dynamics of HD Extent at Provincial Scale
4.3. Spatial Characteristics of Number of HD Days for Tea Plants in Typical HD Years
4.4. Spatiotemporal Tracking of HD Geographical Centroids in Two Typical HD Years
5. Discussion
5.1. Spatiotemporal Distribution of HD
5.2. Applicability of the LST-Weighted Centroid Method
5.3. Applications of Tracking Method
5.4. Availability of LST Products
5.5. The Area of Tea Gardens
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Database; FAO: Rome, Italy, 2022; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 July 2022).
- Wang, P.J.; Ma, Y.P.; Tang, J.X.; Wu, D.R.; Chen, H.; Jin, Z.F.; Huo, Z.G. Spring frost damage to tea plants can be identified with daily minimum air temperatures estimated by MODIS land surface temperature products. Remote Sens. 2021, 13, 1177. [Google Scholar] [CrossRef]
- Tang, J.X.; Wang, P.J.; E, Y.H.; Ma, Y.P.; Wu, D.R.; Huo, Z.G. Climatic suitability zoning of tea planting in Mainland China. J. Appl. Meteorol. Sci. 2021, 32, 397–407. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Eyshi Rezaei, E.; Siebert, S.; Manderscheid, R.; Müller, J.; Mahrookashani, A.; Ehrenpfordt, B.; Haensch, J.; Weigdl, H.; Ewert, F. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res. 2018, 217, 93–103. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef]
- Dong, X.; Guan, L.; Zhang, P.H.; Liu, X.L.; Li, S.J.; Fu, Z.J.; Tang, L.; Qi, Z.Y.; Qiu, Z.G.; Jin, C.; et al. Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agric. For. Meteorol. 2021, 303, 108378. [Google Scholar] [CrossRef]
- Shi, P.H.; Zhu, Y.; Tang, L.; Chen, J.L.; Sun, T.; Cao, W.X.; Tian, Y.C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ. Exp. Bot. 2016, 132, 28–41. [Google Scholar] [CrossRef]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Liu, L.L.; Tang, L.; Cao, W.X.; Zhu, Y. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob. Chang. Biol. 2016, 22, 1890–1903. [Google Scholar] [CrossRef]
- Osman, R.; Zhu, Y.; Cao, W.X.; Ding, Z.F.; Wang, M.; Liu, L.L.; Tang, L.; Liu, B. Modeling the effects of extreme high-temperature stress at anthesis and grain filling on grain protein in winter wheat. Crop J. 2021, 9, 889–900. [Google Scholar] [CrossRef]
- Yan, Y.L.; Jeong, S.; Park, C.; Mueller, N.D.; Piao, S.L.; Park, H.; Joo, J.; Chen, X.; Wang, X.H.; Liu, J.G.; et al. Effects of extreme temperature on China’s tea production. Environ. Res. Lett. 2021, 16, 044040. [Google Scholar] [CrossRef]
- Song, L.C.; Fan, Y.D. Yearbook of Meteorological Disasters in China (2013); China Meteorological Press: Beijing, China, 2014. [Google Scholar]
- Jin, Z.F.; Yao, Y.P. Research on Key Technique of Meteorological Support for the Tea Production in Regions South of the Yangtze River; China Meteorological Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Reig, F.; Beguería, S.; Tomas-Burguera, M.; Latorre, B.; Peña-Angulo, D.; Noguera, I.; Rabanaque, I.; Luna, Y.; et al. A near real-time drought monitoring system for Spain using automatic weather station network. Atmos. Res. 2022, 271, 106095. [Google Scholar] [CrossRef]
- Seyednasrollah, B.; Domec, J.C.; Clark, J.S. Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time. Agric. For. Meteorol. 2019, 269–270, 220–230. [Google Scholar] [CrossRef]
- Yousaf, W.; Awan, W.K.; Kamran, M.; Ahmad, S.R.; Bodla, H.U.; Riaz, M.; Umar, M.; Chohan, K. A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan. Agric. Water Manag. 2021, 243, 106443. [Google Scholar] [CrossRef]
- Sadri, S.; Pan, M.; Wada, Y.; Vergopolan, N.; Sheffield, J.; Famiglietti, J.S.; Kerr, Y.; Wood, E. A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sens. Environ. 2020, 246, 111864. [Google Scholar] [CrossRef]
- Olsson, P.; Lindström, J.; Eklundh, L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Tang, X.J.; Bullock, E.L.; Olofsson, P.; Estel, S.; Woodcock, C.E. Near real-time monitoring of tropical forest disturbance: New algorithms and assessment framework. Remote Sens. Environ. 2019, 224, 202–218. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kondragunta, S.; Schmidt, C.; Kogan, F. Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmos. Environ. 2008, 42, 6959–6972. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Huang, Z.J.; Qu, J.M.; Jia, G.L.; Wu, L.L.; Liu, H.L.; Lu, M.H.; Fan, M.; Wei, J.; Chen, L.F.; et al. Near-real-time estimation of hourly open biomass burning emissions in China using multiple satellite retrievals. Sci. Total Environ. 2022, 817, 152777. [Google Scholar] [CrossRef]
- Chugg, B.; Anderson, B.; Eicher, S.; Lee, S.; Ho, D.E. Enhancing environmental enforcement with near real-time monitoring: Likelihood-based detection of structural expansion of intensive livestock farms. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102463. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, H.; Han, Q.L.; Gu, J.H.; Zhao, Y.D. Real-time monitoring of water and ice content in plant stem based on latent heat changes. Agric. For. Meteorol. 2021, 307, 108475. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.A.; Daughtry, C.D.; Karnieli, A.; Hively, D.; Kustas, W. A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens. Environ. 2020, 242, 111752. [Google Scholar] [CrossRef]
- Hu, X.B.; Ren, H.Z.; Tansey, K.; Zheng, Y.T.; Ghent, D.; Liu, X.F.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Lin, S.P.; Moore, N.J.; Messina, J.P.; DeVisser, M.H.; Wu, J.P. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 128–140. [Google Scholar] [CrossRef]
- Zhu, W.B.; Lű, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Dorman, M.; Schwartz, J.; Navack, V.; Just, A.C.; Kloog, T. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Isreal. Environ. Res. 2017, 159, 297–312. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. JSPRS Jpn. Soc. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Lu, N.; Liang, S.L.; Huang, G.H.; Qin, J.; Yao, L.; Wang, D.D.; Yang, K. Hierarchical bayesian space-time estimation of monthly maximum and minimum surface air temperature. Remote Sens. Environ. 2018, 211, 48–58. [Google Scholar] [CrossRef]
- Wang, P.J.; Tang, J.X.; Ma, Y.P.; Wu, D.R.; Yang, J.Y.; Jin, Z.F.; Huo, Z.G. Mapping threats of spring frost damage to tea plants using satellite-based minimum temperature estimation in China. Remote Sens. 2021, 13, 2713. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Flores, A.; Griffin, R.E.; Sedah, A.; Nyaga, J.; Mugo, R.; Limaye, A.; Irwin, D.E. Mapping threats to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 131–139. [Google Scholar] [CrossRef]
- Hori, M. Near-daily monitoring of surface temperature and channel width of the six largest Arctic rivers from space using GCOM-C/SGLI. Remote Sens. Environ. 2021, 263, 112538. [Google Scholar] [CrossRef]
- Yu, B.; She, J.; Liu, G.X.; Ma, D.Y.; Zhang, R.; Zhou, Z.W.; Zhang, B. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data: A case study of Midong Districts, Urumqi, China. JSPRS Jpn. Soc. Photogramm. Remote Sens. 2022, 190, 144–164. [Google Scholar] [CrossRef]
- Hu, T.; Renzullo, L.J.; van Dijk, A.I.J.M.; He, J.; Tian, S.Y.; Xu, Z.H.; Zhou, J.; Liu, T.J.; Liu, Q.H. Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sens. Environ. 2020, 236, 111419. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.Q. Rapid rises in the magnitude and risk of extreme regional heat wave events in China. Weather Clim. Extrem. 2021, 34, 100379. [Google Scholar] [CrossRef]
- Cao, D.R.; Xu, K.; Huang, Q.L.; Tam, C.Y.; Chen, S.; He, Z.Q.; Wang, W.Q. Exceptionally prolonged extreme heat waves over South China in early summer 2020: The role of warming in the tropical Indian Ocean. Atmos. Res. 2022, 278, 106335. [Google Scholar] [CrossRef]
- Wan, Z.M.; Zhang, Y.L.; Zhang, Q.C.; Li, Z.L. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12Q2) Product. 2018. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf (accessed on 7 July 2021).
- Lu, R.Y.; Xu, K.; Chen, R.D.; Chen, W.; Li, F.; Lv, C.Y. Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos. Ocean. Sci. Lett. 2023, 16, 100290. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.J.; Tang, J.X.; Yang, J.Y.; Ma, Y.P.; Wu, D.R.; Huo, Z.G. Method on heat damage identification of tea plants and threshold verification over tea regions in Southern Yangtze River and South China. Chin. J. Ecol. 2024, 43, 1183–1191. [Google Scholar]
- Mirzargar, M.; Whitaker, R.T.; Kirby, R.M. Curve boxplot: Generalization of boxplot for ensembles of curves. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2654–2663. [Google Scholar] [CrossRef]
- Niu, L.X.; van Gelder, P.H.A.J.M.; Zhang, C.K.; Guan, Y.Q.; Vrijling, J.K. Statistical analysis of phytoplankton biomass in coastal waters: Case study of the Wadden Sea near Lauwersoog (The Netherlands) from 2000 to 2009. Ecol. Inform. 2015, 30, 12–19. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vasilakos, C.; Tzoraki, O. Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices. Agric. Water Manag. 2017, 193, 55–70. [Google Scholar] [CrossRef]
- Rao, W.Q.; Qu, Y.; Gao, L.R.; Sun, X.; Wu, Y.F.; Zhang, B. Transferable network with Siamese architecture for anomaly detection in hyperspectral images. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102669. [Google Scholar] [CrossRef]
- Schwertman, N.C.; Owens, M.A.; Adnan, R. A simple more general boxplot method for identifying outliers. Comput. Stat. Data Anal. 2004, 47, 165–174. [Google Scholar] [CrossRef]
- Blank, P.S.; Sjomeling, C.M.; Backlund, P.S.; Yergey, A.L. Use of cumulative distribution functions to characterize mass spectra of intact proteins. J. Am. Soc. Mass Spectrom. 2002, 13, 40–46. [Google Scholar] [CrossRef]
- Bartolino, V.; Maiorano, L.; Colloca, F. A frequency distribution approach to hotspot identification. Popul. Ecol. 2011, 53, 351–359. [Google Scholar] [CrossRef]
- Park, S.R.; Kolouri, S.; Kundu, S.; Rohde, G.K. The cumulative distribution transform and linear pattern classification. Appl. Comput. Harmon. Anal. 2018, 45, 616–641. [Google Scholar] [CrossRef]
- Wang, P.J.; Li, X.; Tang, J.X.; Yang, J.Y.; Ma, Y.P.; Wu, D.R.; Huo, Z.G. Determining the critical threshold of meteorological heat damage to tea plants based on MODIS LST products for tea planting areas in China. Ecol. Inform. 2023, 77, 102235. [Google Scholar] [CrossRef]
- Rao, Y.H.; Liang, S.L.; Wang, S.D.; Yu, Y.Y.; Song, Z.; Zhou, Y.; Shen, M.G.; Xu, B.Q. Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau. Remote Sens. Environ. 2019, 234, 111462. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.X.; Gao, F.; Anderson, M.C.; Song, L.S.; Wang, L.M.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Diaz, V.; Perez, G.A.C.; Van Lanen, H.A.J.; Solomatine, D.; Varouchakis, E.A. An approach to characterize spatio-temporal drought dynamics. Adv. Water Resour. 2020, 137, 103512. [Google Scholar] [CrossRef]
- Quan, J.L.; Chen, Y.H.; Zhan, W.F.; Wang, J.F.; Voogt, J.; Wang, M.J. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Han, Z.M.; Huang, Q.; Huang, S.Z.; Leng, G.Y.; Bai, Q.J.; Liang, H.; Wang, L.; Zhao, J.; Fang, W. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 2021, 244, 106540. [Google Scholar] [CrossRef]
- Ding, T.; Ke, Z.J. Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor. Appl. Climatol. 2015, 122, 651–665. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Jia, X.L.; Zhao, X.C. Analysis on the extreme heat wave over China around Yangtze River region in the summer of 2013 and its main contribution factors. Adv. Meteorol. 2015, 2015, 706713. [Google Scholar] [CrossRef]
- Chyi, D.; He, L.F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J. Appl. Meteor. Sci. 2023, 34, 385–399. [Google Scholar] [CrossRef]
- Huntley, B.; Collingham, Y.C.; Willis, S.G.; Green, R.E. Potential impacts of climatic change on European breeding birds. PLoS ONE 2008, 3, e1439. [Google Scholar] [CrossRef] [PubMed]
- Watts, M.J.; Fordham, D.A.; Akçakaya, H.R.; Aiello-Lammens, M.E.; Brook, B.W. Tracking shifting range margins using geographical centroids of metapopulations weighted by population density. Ecol. Modell. 2013, 269, 61–69. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Xin, Q.C.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- Meroni, M.; Fasbender, D.; Rembold, F.; Atzberger, C.; Klisch, A. Near real-time vegetation anomaly detection with MODIS NDVI: Timeless vs. accuracy and effect of anomaly computation options. Remote Sens. Environ. 2019, 212, 508–521. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.L.; Wu, X.S.; Chen, J.; Guo, S.L.; Zhang, Z.X. A new framework for tracking flash drought events in space and time. Catena 2020, 194, 104763. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Ban, Y.F.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series. Remote Sens. Environ. 2021, 261, 112467. [Google Scholar] [CrossRef]
- Wang, P.J.; Gao, F.; Masek, J.G. Operational data fusion framework for building frequent Landsat-like imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7353–7365. [Google Scholar] [CrossRef]
- Chu, D.; Shen, H.F.; Guan, X.B.; Chen, J.M.; Li, X.H.; Li, J.; Zhang, L.P. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sens. Environ. 2021, 264, 112632. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Xie, D.H.; Anderson, M.C.; Chen, R.Q.; Yang, Y.; Yang, Y.; Chen, Z.X. Reconstructing daily 30 m NDVI over complex agricultural landscapes using a crop reference curve approach. Remote Sens. Environ. 2021, 253, 112156. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, S.B. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. Remote Sens. Environ. 2020, 247, 111931. [Google Scholar] [CrossRef]
- Song, L.S.; Bateni, S.M.; Xu, Y.H.; Xu, T.R.; He, X.L.; Seo, J.K.; Liu, S.M.; Ma, M.G.; Yang, Y. Reconstruction of remotely sensed daily evapotranspiration data in cloudy-sky conditions. Agric. Water Manag. 2021, 255, 107000. [Google Scholar] [CrossRef]
- Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.A.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar] [CrossRef]
- Qian, Y.L.; Yang, Z.W.; Di, L.P.; Rahman, M.S.; Tan, Z.Y.; Xue, L.; Gao, F.; Yu, E.G.; Zhang, X.Y. Crop growth condition assessment at county scale based on heat-aligned growth stages. Remote Sens. 2019, 11, 2439. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.A.; Hively, W.D. Detecting cover crop end-of-season using VENµS and Sentinel-2 satellite imagery. Remote Sens. 2020, 12, 3524. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alsina, M.M.; Hain, C.R.; Alfieri, J.G.; Prueger, J.H.; Gao, F.; Mckee, L.G.; Sanchez, L.A. Using high-spatiotemporal thermal satellite ET retrievals for operational water use and stress monitoring in a California vineyard. Remote Sens. 2019, 11, 2124. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; Mckee, L.G.; Nieto, H.; et al. Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Yang, Z.D.; Lu, N.M.; Shi, J.M.; Zhang, P.; Dong, C.H.; Yang, J. Overview of FY-3 payload and ground application system. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4846–4853. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Li, X.; Tang, J.; Wu, D.; Pang, L.; Zhang, Y. Critical Threshold-Based Heat Damage Evolution Monitoring to Tea Plants with Remotely Sensed LST over Mainland China. Remote Sens. 2024, 16, 1784. https://doi.org/10.3390/rs16101784
Wang P, Li X, Tang J, Wu D, Pang L, Zhang Y. Critical Threshold-Based Heat Damage Evolution Monitoring to Tea Plants with Remotely Sensed LST over Mainland China. Remote Sensing. 2024; 16(10):1784. https://doi.org/10.3390/rs16101784
Chicago/Turabian StyleWang, Peijuan, Xin Li, Junxian Tang, Dingrong Wu, Lifeng Pang, and Yuanda Zhang. 2024. "Critical Threshold-Based Heat Damage Evolution Monitoring to Tea Plants with Remotely Sensed LST over Mainland China" Remote Sensing 16, no. 10: 1784. https://doi.org/10.3390/rs16101784
APA StyleWang, P., Li, X., Tang, J., Wu, D., Pang, L., & Zhang, Y. (2024). Critical Threshold-Based Heat Damage Evolution Monitoring to Tea Plants with Remotely Sensed LST over Mainland China. Remote Sensing, 16(10), 1784. https://doi.org/10.3390/rs16101784