Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Source
2.1.1. TROPOMI Tropospheric NO2 Data
2.1.2. Ground Monitoring Station NO2 Data
2.1.3. Auxiliary Data
2.2. Methodology
2.2.1. Reconstruction of Missing Remote Sensing Data
2.2.2. Remote Sensing Estimation of Near-Surface NO2 Concentration
2.2.3. Experimental Grouping
3. Results and Discussion
3.1. Results of Reconstructing Remote Sensing Products
3.2. Evaluation of Model Performance
3.3. Analysis of Mapping Results
3.3.1. Comparison of Daily Spatial Distribution of Near-Surface NO2 Concentration
3.3.2. Comparison of Urban–Rural Spatial Distribution of Near-Surface NO2 Concentration
3.3.3. Comparison of Holiday Spatial Distribution of Near-Surface NO2 Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.D.; Qin, D.; Manning, M.; Chen, Z.; Miller, H.L. Climate Change 2007: The physical science basis. Working Group I contribution to the fourth assessment report of the IPCC. In Intergovernmental Panel on Climate Change Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- De Craemer, S.; Vercauteren, J.; Fierens, F.; Lefebvre, W.; Meysman, F.J.R. Using Large-Scale NO2 Data from Citizen Science for Air-Quality Compliance and Policy Support. Environ. Sci. Technol. 2020, 54, 11070–11078. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar] [CrossRef]
- He, T.; Tang, Y.; Cao, R.; Xia, N.; Li, B.; Du, E. Distinct urban-rural gradients of air NO2 and SO2 concentrations in response to emission reductions during 2015–2022 in Beijing, China. Environ. Pollut. 2023, 333, 122021. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, S.; Li, Z.; Liu, C.; Qin, K.; Liu, X.; Pinker, R.T.; Dickerson, R.R.; Lin, J.; Boersma, K.F.; et al. Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environ. Sci. Technol. 2022, 56, 9988–9998. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, H.; Wang, M.; Qian, Y.; Steenland, K.; Caudle, W.M.; Liu, Y.; Sarnat, J.; Papatheodorou, S.; Shi, L. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2021, 776, 145968. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, H.; Huang, S.; Qian, Y.; Steenland, K.; Xie, Y.; Papatheodorou, S.; Shi, L. Short-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Environ. Res. 2021, 202, 111766. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, B.; Wang, J.; He, L.; Wang, Z.; Yan, Z.; Lao, X.; Zhang, F.; Liu, R.; Du, Z. Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals. Environ. Pollut. 2021, 273, 116456. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Lin, J.; Chen, L.; Zhang, Y.; Yan, Y.; Liu, M.; Ni, R.; Liu, Z.; Weng, H. Considerable Unaccounted Local Sources of NOx Emissions in China Revealed from Satellite. Environ. Sci. Technol. 2022, 56, 7131–7142. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhan, Y.; Yang, F. A review of machine learning for modeling air quality: Overlooked but important issues. Atmos. Res. 2024, 300, 107261. [Google Scholar] [CrossRef]
- Martin, R.V.; Chance, K.; Jacob, D.J.; Kurosu, T.P.; Spurr, R.J.D.; Bucsela, E.; Gleason, J.F.; Palmer, P.I.; Bey, I.; Fiore, A.M.; et al. An improved retrieval of tropospheric nitrogen dioxide from GOME. J. Geophys. Res. Atmos. 2002, 107, ACH 9-1–ACH 9-21. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Martin, R.V.; van Donkelaar, A.; Steinbacher, M.; Celarier, E.A.; Bucsela, E.; Dunlea, E.J.; Pinto, J.P. Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. J. Geophys. Res. 2008, 113, D16308. [Google Scholar] [CrossRef]
- Hystad, P.; Setton, E.; Cervantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M.; van Donkelaar, A.; Lamsal, L.; Martin, R.; Jerrett, M.; et al. Creating national air pollution models for population exposure assessment in Canada. Environ. Health Perspect. 2011, 119, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A.G. A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environ. Res. 2014, 135, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Gulliver, J.; de Hoogh, K.; Hansell, A.; Vienneau, D. Development and Back-Extrapolation of NO2 Land Use Regression Models for Historic Exposure Assessment in Great Britain. Environ. Sci. Technol. 2013, 47, 7804–7811. [Google Scholar] [CrossRef] [PubMed]
- Larkin, A.; Geddes, J.A.; Martin, R.V.; Xiao, Q.; Liu, Y.; Marshall, J.D.; Brauer, M.; Hystad, P. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. Environ. Sci. Technol. 2017, 51, 6957–6964. [Google Scholar] [CrossRef] [PubMed]
- GB 3095-2012; Environmental Air Quality Standards. Ministry of Environmental Protection of PRC; General Administration of Quality Supervision, Inspection and Quarantine of PRC: Beijing, China, 2012.
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Zhu, L.; Zhang, L. Estimating daily full-coverage near surface O3, CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI and GEOS-FP. ISPRS J. Photogramm. Remote Sens. 2021, 175, 311–325. [Google Scholar] [CrossRef]
- Araki, S.; Shima, M.; Yamamoto, K. Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Sci. Total Environ. 2018, 634, 1269–1277. [Google Scholar] [CrossRef]
- You, J.; Zou, B.; Zhao, X.; Xu, S.; He, R. Estimating ground-level NO2 concentrations across mainland China using random forests regression modeling. Chin. J. Environ. Sci. 2019, 39, 969–979. [Google Scholar]
- Chi, Y.; Fan, M.; Zhao, C.; Yang, Y.; Fan, H.; Yang, X.; Yang, J.; Tao, J. Machine learning-based estimation of ground-level NO2 concentrations over China. Sci. Total Environ. 2022, 807, 150721. [Google Scholar] [CrossRef]
- Kim, M.; Brunner, D.; Kuhlmann, G. Importance of satellite observations for high-resolution mapping of near-surface NO2 by machine learning. Remote Sens. Environ. 2021, 264, 112573. [Google Scholar] [CrossRef]
- Li, L.; Wu, J. Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks. Remote Sens. Environ. 2021, 254, 112257. [Google Scholar] [CrossRef]
- Cohen, J.B. Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett. 2014, 9, 114018. [Google Scholar] [CrossRef]
- Li, M.; Wu, Y.; Bao, Y.; Liu, B.; Petropoulos, G.P. Near-Surface NO2 Concentration Estimation by Random Forest Modeling and Sentinel-5P and Ancillary Data. Remote Sens. 2022, 14, 3612. [Google Scholar] [CrossRef]
- Fan, C.; Li, Z.; Li, Y.; Dong, J.; van der A, R.; de Leeuw, G. Variability of NO2 concentrations over China and effect on air quality derived from satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7723–7748. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Geffen, J.V.; Boersma, K.F.; Eskes, H.; Sneep, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Uppala, S.M.; Dee, D.; Kobayashi, S.; Berrisford, P.; Simmons, A. Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsl. 2008, 115, 12. [Google Scholar]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature. 2014, 7523, 434. [Google Scholar]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 12, 1839–1856. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Sirjacobs, D.; Lenartz, F.; Beckers, J.M. Data Interpolating Empirical Orthogonal Functions (DINEOF): A tool for geophysical data analyses. Mediterr. Mar. Sci. 2011, 12, 5–11. [Google Scholar] [CrossRef]
- Lin, C.; Cohen, J.B.; Wang, S.; Lan, R. Application of a combined standard deviation and mean based approach to MOPITT CO column data, and resulting improved representation of biomass burning and urban air pollution sources. Remote Sens. Environ. 2020, 241, 111720. [Google Scholar] [CrossRef]
- Hilborn, A.; Costa, M. Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote Sens. 2018, 10, 1449. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J.P.; Nüß, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, J.; Kong, H.; Boersma, K.F.; Eskes, H.; Kanaya, Y.; He, Q.; Tian, X.; Qin, K.; Xie, P.; et al. A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections. Atmos. Meas. Tech. 2020, 13, 4247–4259. [Google Scholar] [CrossRef]
- Cohen, J.B.; Prinn, R.G. Development of a fast, urban chemistry metamodel for inclusion in global models. Atmos. Chem. Phys. 2011, 11, 7629–7656. [Google Scholar] [CrossRef]
- Li, Y.; Qin, K.; Li, D.; Wen-zhi, F.; Qin, H.E.; Abell, R. Estimation of ground-level ozone concentration based on GBRT. China Environ. Sci. 2020, 40, 997–1007. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System; ACM: Ithaca, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Li, X.; Cohen, J.B.; Qin, K.; Geng, H.; Wu, X.; Wu, L.; Yang, C.; Zhang, R.; Zhang, L. Remotely sensed and surface measurement- derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China. Atmos. Chem. Phys. 2023, 23, 8001–8019. [Google Scholar] [CrossRef]
Name | Elements/Abbreviation | Spatial Resolutions | Temporal Resolutions | Source |
---|---|---|---|---|
Ground Monitoring Station data | NO2 | -- | Hourly | CNEMC |
TROPOMI | NO2 | 3.5 × 5.5 km | Daily | Sentinel-5p |
Meteorological data | U10, V10, T2m SP, BLH, TP | 0.25° × 0.25° | Hourly | ERA5 |
Population data | POP | 0.01° × 0.01° | Yearly | WorldPop |
Digital elevation data | DEM | 30 × 30 m | -- | GSCLOUD |
Land use data | LCT | 0.05° × 0.05° | Yearly | Globeland |
NDVI data | NDVI | 0.01° × 0.01° | Yearly | RESDC |
Experimental Grouping | Experimental Areas | TROPOMI Data | Ground NO2 Monitoring Station Data |
---|---|---|---|
Group A | China | S5P_OFFL_L2_NO2 (No reconstruction) | National stations |
Group B | Chengdu | S5P_OFFL_L2_NO2 (No reconstruction) | National, provincial, and municipal stations |
Group C | Chengdu | S5P_HighCoverage_NO2 (Reconstructing data) | National, provincial, and municipal stations |
Experimental Grouping | R2 | RMSE | MAE | |
---|---|---|---|---|
Group A | Test Set | 0.81 | 7.14 | 5.25 |
Training set | 0.84 | 6.60 | 4.87 | |
Group B | Test Set | 0.87 | 5.80 | 4.33 |
Training set | 0.98 | 2.12 | 1.58 | |
Group C | Test Set | 0.87 | 5.36 | 3.96 |
Training set | 0.94 | 3.57 | 2.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; Chen, Y.; Liu, W.; Li, L.; Chen, X.; Tiwari, P.; Qin, K. Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas. Remote Sens. 2024, 16, 1785. https://doi.org/10.3390/rs16101785
Deng F, Chen Y, Liu W, Li L, Chen X, Tiwari P, Qin K. Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas. Remote Sensing. 2024; 16(10):1785. https://doi.org/10.3390/rs16101785
Chicago/Turabian StyleDeng, Fuliang, Yijian Chen, Wenfeng Liu, Lanhui Li, Xiaojuan Chen, Pravash Tiwari, and Kai Qin. 2024. "Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas" Remote Sensing 16, no. 10: 1785. https://doi.org/10.3390/rs16101785
APA StyleDeng, F., Chen, Y., Liu, W., Li, L., Chen, X., Tiwari, P., & Qin, K. (2024). Satellite-Based Estimation of Near-Surface NO2 Concentration in Cloudy and Rainy Areas. Remote Sensing, 16(10), 1785. https://doi.org/10.3390/rs16101785