Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Datasets
2.2. Construction of Field Plots
2.3. Variable Extraction and Selection
2.3.1. Satellite Image Processing and Metric Extraction
Abbr. | Description | Equation | Reference |
---|---|---|---|
, , , | Raw optical image bands | ||
PC1, PC2, PC3 | Extraction of the three band of PCA | ||
MNF1, MNF2, MNF3 | Extraction of the three band of MNF transformation | ||
EVI | Enhanced vegetation index | [17] | |
NDVI | Normalized difference vegetation index | [18] | |
RVI | Ratio vegetation index | [19] | |
DVI | Differential vegetation index | [20] | |
SAVI | Soil-adjusted vegetation index | [21] | |
MSAVI | Modified soil-adjusted vegetation index | [22] | |
ARVI | Atmospherically resistant vegetation index | [23] |
2.3.2. ALS Data Processing and Variable Extraction
2.3.3. Selection for Satellite Imagery and ALS Data Variables
2.4. Regression Models
3. Experiments Results
3.1. Variables Selection Results
3.2. Performance of the Four Regression Methods
3.2.1. AGB Prediction Using Only Image Variables
3.2.2. AGB Prediction Using Only ALS Variables
3.2.3. AGB Prediction Using Multi-Source Data
3.2.4. Cost and Performance of AGB Modeling
4. Discussion
4.1. Data Source Selection for AGB Modeling
4.2. Variable Selection for AGB Modeling
4.3. Improvement of AGB Modeling Performance
4.4. Cost vs. Performance
4.5. Potential of Large Scale AGB Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, C.; Song, T.; Shi, R.; Hou, Z.; Wu, N.; Zhang, H.; Zhuo, W. Estimating the Forest Carbon Storage of Chongming Eco-Island, China, Using Multisource Remotely Sensed Data. Remote Sens. 2023, 15, 1575. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y.; et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 2017, 8, 151. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- de Almeida, C.T.; Galvao, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.; de Jesus Silva, C.V.; Ferreira-Ferreira, J.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Li, Y.; Shi, J.; Yan, M.; Ji, Y. Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sens. 2022, 14, 1608. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. Interdiscip. J. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Ramachandran, N.; Saatchi, S.; Tebaldini, S.; d’Alessandro, M.M.; Dikshit, O. Mapping tropical forest aboveground biomass using airborne SAR tomography. Sci. Rep. 2023, 13, 6233. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of urban vegetation biomass in combination with LiDAR and high-resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 964–985. [Google Scholar] [CrossRef]
- Cao, L.; Pan, J.; Li, R.; Li, J.; Li, Z. Integrating airborne LiDAR and optical data to estimate forest aboveground biomass in arid and semi-arid regions of China. Remote Sens. 2018, 10, 532. [Google Scholar] [CrossRef]
- Momo Takoudjou, S.; Ploton, P.; Sonké, B.; Hackenberg, J.; Griffon, S.; De Coligny, F.; Kamdem, N.G.; Libalah, M.; Mofack, G.I.; Le Moguédec, G.; et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 2018, 9, 905–916. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, G.; Tang, X. Carbon Stocks in China’s Forest Ecosystems: A Biomass Equation; Science Press: Beijing, China, 2018. [Google Scholar]
- Dai, W.; Kan, H.; Tan, R.; Yang, B.; Guan, Q.; Zhu, N.; Xiao, W.; Dong, Z. Multisource forest point cloud registration with semantic-guided keypoints and robust RANSAC mechanisms. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103105. [Google Scholar] [CrossRef]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic forest mapping at individual tree levels from terrestrial laser scanning point clouds with a hierarchical minimum cut method. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef]
- Dai, W.; Yang, B.; Liang, X.; Dong, Z.; Huang, R.; Wang, Y.; Li, W. Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS J. Photogramm. Remote Sens. 2019, 156, 94–107. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Birth, G.S.; McVey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009; pp. 532–538. [Google Scholar] [CrossRef]
- Ioki, K.; Tsuyuki, S.; Hirata, Y.; Phua, M.H.; Wong, W.V.C.; Ling, Z.Y.; Saito, H.; Takao, G. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. For. Ecol. Manag. 2014, 328, 335–341. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: A case study of the Dabie Mountain Region, China. Remote Sens. 2021, 14, 176. [Google Scholar] [CrossRef]
- Rana, P.; Gautam, B.; Tokola, T. Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 52–62. [Google Scholar] [CrossRef]
- Apollo Mapping. Apollo Mapping: The Image Hunters. 2022. Available online: http://www.apollomapping.com/ (accessed on 10 August 2022).
- Yang, Q.; Su, Y.; Hu, T.; Jin, S.; Liu, X.; Niu, C.; Liu, Z.; Kelly, M.; Wei, J.; Guo, Q. Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes. For. Ecosyst. 2022, 9, 100059. [Google Scholar] [CrossRef]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Del Frate, F.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the biomass of maize with hyperspectral and LiDAR data. Remote Sens. 2016, 9, 11. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D. Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data-The superiority of deep learning over a semi-empirical model. Comput. Geosci. 2021, 150, 104737. [Google Scholar] [CrossRef]
- Price, B.; Waser, L.T.; Wang, Z.; Marty, M.; Ginzler, C.; Zellweger, F. Predicting biomass dynamics at the national extent from digital aerial photogrammetry. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102116. [Google Scholar] [CrossRef]
- Eid, T.; Gobakken, T.; Næsset, E. Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand. J. For. Res. 2004, 19, 512–523. [Google Scholar] [CrossRef]
- Montaghi, A.; Corona, P.; Dalponte, M.; Gianelle, D.; Chirici, G.; Olsson, H. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 288–300. [Google Scholar] [CrossRef]
Area | Tree Species | Plots |
---|---|---|
Guigang | Masson pine | 20 |
Laibin-1 | Masson pine | 12 |
Laibin-2 | Eucalyptus | 16 |
Laibin-2 | Masson pine | 20 |
Tree Species | Part | |||
---|---|---|---|---|
Masson pine | Stems | 0.1615 | 2.2989 | 0.88 |
Branches | 0.0763 | 1.8402 | 0.88 | |
Leaves | 0.3248 | 0.935 | 0.65 | |
Eucalyptus | Stems | 0.0702 | 2.5253 | 0.84 |
Branches | 0.0452 | 1.794 | 0.74 | |
Leaves | 0.7392 | 0.2565 | 0.02 |
Abbr. | Description |
---|---|
C | Canopy cover. |
Maximum height of first returns above 2 m | |
Mean height of first returns above 2 m | |
Height standard deviation of first returns above 2 m. | |
Height coefficient of variation (%) of first returns above 2 m. | |
, , , , | (25, 50, 60, 70, 75 or 95th) percentile of height distribution of first returns above 2 m |
FR | Percentage of first return points to total points |
Maximum of ALS tree height | |
Average of ALS tree height | |
Minimum of ALS tree height |
(n = 68) | RMSE (Mg/ha) | rRMSE | bias (Mg/ha) | ||
---|---|---|---|---|---|
GF2 model | SRM | 0.57 | 43.61 | 29.18% | −0.0003 |
Boosting | 0.54 | 44.21 | 29.58% | −4.38 | |
SVM | 0.61 | 40.72 | 27.24% | −1.50 | |
Bagging | 0.59 | 41.82 | 27.98% | 0.16 | |
LS8 model | SRM | 0.44 | 50.01 | 33.46% | −0.0002 |
Boosting | 0.49 | 46.97 | 31.42% | −5.81 | |
SVM | 0.42 | 49.88 | 33.38% | −1.19 | |
Bagging | 0.52 | 45.40 | 30.38% | 0.71 | |
ALS model | SRM | 0.78 | 31.85 | 21.31% | 0.00008 |
Boosting | 0.71 | 35.23 | 23.57% | −5.09 | |
SVM | 0.67 | 37.63 | 25.18% | −2.00 | |
Bagging | 0.70 | 36.04 | 24.11% | 1.01 | |
GF2-ALS model | SRM | 0.82 | 28.85 | 19.30% | 0.0002 |
Boosting | 0.68 | 37.18 | 24.88% | −4.01 | |
SVM | 0.66 | 38.29 | 25.62% | −4.05 | |
Bagging | 0.74 | 33.69 | 22.54% | −1.42 | |
LS8-ALS model | SRM | 0.78 | 31.85 | 21.31% | 0.00008 |
Boosting | 0.74 | 33.69 | 22.54% | −6.27 | |
SVM | 0.65 | 39.21 | 26.23% | −2.48 | |
Bagging | 0.70 | 35.93 | 24.04% | 1.22 |
Source | Sensors | RMSE (Mg/ha) | rRMSE | Costs (Dollars/ha) | Tree Species | |
---|---|---|---|---|---|---|
Rana et al. [27] | ALS | 0.77 | 56 | 0.31 | 3.50 | Mixed forests such as shorea robusta |
RapidEye | 0.37 | 93 | 0.52 | 0.01 | ||
Landsat 5 TM | 0.33 | 96.10 | 0.54 | 0 | ||
Han et al. [26] | Gaofen1(GF1) | 0.56 | 19.66 | Unknown | 0.02 | Mix forest such as picea |
GF1 + Sentinel1 | 0.70 | 16.26 | Unknown | 0.02 | ||
de Almeida et al. [4] | Airborne hyperspectral imagery + ALS | 0.70 | 57.70 | 0.31 | 3.50 | Mixed forest such as palms |
Zhang and Shao [9] | WorldView3 + ALS | 0.69 | 26.98 | 0.44 | 3.84 | Unknown |
Yang et al. [29] | UAV + Sentinel2 | 0.70 | 70.03 | Unknown | 1 | Mixed forest such as Coniferous |
LS8 | 0.44 | 45.40 | 0.30 | 0 | ||
GF2 | 0.57 | 40.72 | 0.27 | 0.05 | ||
This paper | ALS | 0.78 | 31.85 | 0.21 | 3.50 | Eucalyptus and masson pine |
GF2 + ALS | 0.82 | 28.85 | 0.19 | 3.55 | ||
LS8 + ALS | 0.78 | 31.85 | 0.21 | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Tian, J.; Knoke, T.; Yang, B.; Liang, F.; Dong, Z. Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass. Remote Sens. 2024, 16, 1804. https://doi.org/10.3390/rs16101804
Fan W, Tian J, Knoke T, Yang B, Liang F, Dong Z. Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass. Remote Sensing. 2024; 16(10):1804. https://doi.org/10.3390/rs16101804
Chicago/Turabian StyleFan, Wen, Jiaojiao Tian, Thomas Knoke, Bisheng Yang, Fuxun Liang, and Zhen Dong. 2024. "Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass" Remote Sensing 16, no. 10: 1804. https://doi.org/10.3390/rs16101804
APA StyleFan, W., Tian, J., Knoke, T., Yang, B., Liang, F., & Dong, Z. (2024). Investigating Dual-Source Satellite Image Data and ALS Data for Estimating Aboveground Biomass. Remote Sensing, 16(10), 1804. https://doi.org/10.3390/rs16101804