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Abstract: The chemical distribution on the lunar surface results from the combined effects of both
endogenic and exogenic geological processes. Exploring global maps of chemical composition helps
to gain insights into the compositional variation among three major geological units, unraveling the
geological evolution of the Moon. The existing oxide abundance maps were obtained from spectral
images of remote sensing and geochemical data from samples returned by Apollo and Luna, missing
the chemical characteristics of the Moon’s late critical period. In this study, by adding geochemical
data from Chang’e (CE)-5 lunar samples, we construct inversion models between the Christiansen
feature (CF) and oxide abundance of lunar samples using the particle swarm optimization–extreme
gradient boosting (PSO-XGBoost) algorithm. Then, new global oxide maps (Al2O3, CaO, FeO, and
MgO) and Mg# with the resolution of 32 pixels/degree (ppd) were produced, which reduced the
space weathering effect to some extent. The PSO-XGBoost models were compared with partial
least square regression (PLSR) models and four previous results, indicating that PSO-XGBoost
models possess the capability to effectively describe nonlinear relationships between CF and oxide
abundance. Furthermore, the average contents of our results and the Diviner results for 21 major
maria demonstrate high correlations, with R2 of 0.95, 0.82, 0.95, and 0.86, respectively. In addition, a
new Mg# map was generated, which reveals different magmatic evolutionary processes in the three
geologic units.

Keywords: lunar surface; LRO Diviner; Christiansen feature; lunar oxide; Chang’e-5

1. Introduction

Al, Ca, Fe, and Mg, as major components of lunar regolith, reflect a variety of complex
geological processes, including volcanism and impact events, providing insight into the
petrological characteristics and geological evolution of the Moon. Although chemical
abundance within lunar samples can be assessed through laboratory measurements, the
limited geochemical information from lunar samples represents only a small range of
their composition [1–3]. It is not yet possible to gain an overall understanding of the
compositional distribution across the Moon through limited sample data.

Nowadays, remote sensing techniques, including high-energy and optical techniques,
such as Lunar Prospector (LP) gamma ray spectroscopy (GRS) data [4–7], LP neutron
spectroscopy data [8–12], Clementine ultraviolet/visible (UV/VIS) data [1,13–15], Lunar
Reconnaissance Orbiter wide angle camera (WAC) ultraviolet/visible (UV/VIS) data [16],
KAGUYA multiband imager (MI) data [2,17–20] and Chang’e-1 (CE-1) interference imag-
ing spectrometer (IIM) data [3,21–24], are widely used in oxide abundance inversion on
the lunar surface. Compared with high-energy techniques, optical techniques offer the
advantage of higher resolution, which has led to their predominant use for lunar surface
oxide abundance inversion in existing studies [13,22]. However, they also present some
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problems that need to be considered. (1) Sensitivity of visible near-infrared (VNIR) data:
Only Fe and Ti, as transition metals, possess the ability for ligand field transitions that
have absorption diagnostic features in the visible to near-infrared range [25–27]. Previous
models for FeO and TiO2 have relied on reflectance and a two-band ratio targeting the
1 micron iron band [15]. (2) Limitations of previous models: The use of band ratio methods,
which rely on only two bands to describe the non-linear relationship between reflectance
and oxide abundance, has limited capability in accurately estimating oxide content [23].
The accuracy of oxide content estimation is highly dependent on the inversion model [3,23].
(3) Photometric effects on reflectance values: Differences in solar elevation angle at different
times of the lunar day result in varying terrain shadow effects, which have an impact on the
reflectance of the lunar surface and consequently increase the uncertainty in oxide content
inversion [28]. Additionally, the topographic effects also contribute to lower coverage in
optical images [23], particularly in polar regions [3,23].

To overcome these problems, many studies have turned their attention to thermal
infrared (TIR) remote sensing [28–34]. The thermal infrared spectra of silicate minerals
exhibit a prominent emissivity maximum near 8 µm, known as the Christiansen feature
(CF). The CF can be used as an indicator for identifying the composition of silicate minerals,
such as plagioclase, pyroxene, and olivine [35], compensating for the limitations of visible
and NIR remote sensing [36]. Additionally, the wavelength position of the CF is closely
related to the degree of polymerization of silicate minerals and the content of cations in the
minerals [29,37,38]. Therefore, the CF map derived by Lucey et al. [32], with the correction
of space weathering effects and a resolution of 32 pixels/degree (ppd), provides a different
perspective for quantitative inversion of oxide abundance on the lunar surface.

In addition to remote sensing data, geochemical information from returned lunar
samples and in situ measurements are also the basis of compositional inversion, providing
a reliable ground truth for compositional modeling of the lunar surface. The lunar regolith
samples used in previous studies were obtained from six Apollo and three Luna missions,
which represent chemical features only from 3.1–4.3 Ga [39,40], missing the later stage of
lunar evolution. In November 2020, the Chang’e-5 (CE-5) mission returned lunar regolith
samples from the Mons Rümker in the northern Oceanus Procellarum (43.06◦N, 51.92◦W),
with a radiometric age of 2.0 Ga [41–43]. The CE-5 sample represents the youngest volcanic
eruption, and its inclusion holds significant importance in updating the lunar surface
oxide maps.

The distribution of oxides on the lunar surface exhibits significant heterogeneity, which
is particularly evident in samples from the highlands and maria, with corresponding dif-
ferences in the number of samples from these regions [7]. This heterogeneity, combined
with the inconsistency in sample quantities, imposes potential limitations in predicting
using single-model algorithms. However, ensemble machine learning algorithms can help
alleviate these limitations by integrating multiple models to improve the accuracy and
robustness of predictions [44]. Among these, the extreme gradient boosting (XGBoost)
algorithm, as an efficient integrated learning technique, has demonstrated excellent per-
formance in several fields [45–47]. Meanwhile, the partial least squares regression (PLSR)
algorithm, as a well-established linear regression analysis method, is particularly suitable
for datasets in which the number of predictor variables is larger than the number of ob-
served samples, and it has been widely used in soil spectral analysis [48–50]. Therefore, we
choose the results of the PLSR model as the control group for the XGBoost model, aiming to
explore the feasibility of machine learning algorithms to estimate the abundance of oxides
and improve the accuracy of the inversion results.

Given the above limitations and challenges, this study aims to (1) employ the particle
swarm optimization–extreme gradient boosting (PSO-XGBoost) algorithm to construct
inversion models for exploring updated maps of oxide (Al2O3, CaO, FeO, and MgO)
abundance, (2) evaluate the predictive accuracy of our model in comparison to the PLSR
model and other previous work, (3) investigate the new Mg# map that delineates the lunar
surface into three geological units (maria, highlands, and SPA basin) with distinct Mg#
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features, and discuss the differences in the magmatic processes undergone in these units.
According to the results, the oxide distribution maps in this work provide valuable data
support for understanding the geological evolution of the Moon.

2. Data
2.1. Christiansen Feature

CF refers to the phenomenon in the spectra of silicate samples involving a strong mini-
mum reflectance and maximum emission near 8 µm [35]. The CF feature is mainly related
to the Si-O stretching vibrations in the crystals. Although fine grain sizes characteristic
of lunar soil can somewhat suppress the spectral contrast of vibrational features [51], the
CF and its wavelength sensitivity to composition still persist, making the CF important
in lunar remote sensing [32]. Plagioclase, pyroxene, olivine, and ilmenite are the major
minerals on the Moon, all of which, except for ilmenite, are silicate minerals and exhibit
distinctly different CF values. Among them, the CF values of plagioclase, pyroxene, and
olivine are 7.84 µm, 8.25 µm, and 8.67 µm, respectively [31].

2.2. Diviner CF Map

Diviner is a nine-channel radiometer carried on the Lunar Reconnaissance Orbiter
(LRO) satellite, with a wavelength range from ultraviolet to far-infrared, approximately
0.35–400 µm [52,53]. Diviner’s three narrow channels near 8 µm were utilized to estimate
the spectral position of maximum emission, known as CF [33]. The CF maps were based
on three-point spectral data from Diviner and there are uncertainties relating to those CF
positions based on the position of the Diviner spectral filters. Recently, Lucey et al. [32]
corrected the effects of space weathering and generated a new CF map with a resolution of
32 ppd (948 m/pixel at the equator), providing strong support for chemical (Al2O3, CaO,
FeO, and MgO) inversion (Figure 1).
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2.3. Lunar Sampling Sites

Lunar sample data are the basis of compositional inversion and also the standard
of model accuracy evaluation. In this study, forty-nine lunar samples from the Apollo,
Luna, and Chang’e projects [3,19,20,28] were utilized to represent the ground truth of oxide
content (Table 1). Additionally, the CF value of CE-5 was extracted based on the criteria
stated by Ma et al. [28] and the other CF values were derived from Ma et al. [28].



Remote Sens. 2024, 16, 1812 4 of 17

Table 1. Four oxide (Al2O3, CaO, FeO, and MgO) contents and CF positions of 49 lunar sampling
sites. Abundances are shown in wt.%, and CF values are shown in µm.

Site Al2O3 CaO FeO MgO CF

A11 13.45 12.01 15.80 7.81 8.286
A12 13.86 10.58 15.40 9.66 8.255

A14-LM 17.69 10.32 10.53 9.52 8.214
A14-Cone 17.50 11.00 10.30 9.60 8.209
A15-LM 14.45 10.25 14.95 10.65 8.257
A15-S1 13.15 10.58 15.79 10.81 8.253
A15-S2 17.52 11.75 11.52 10.54 8.290
A15-S4 13.22 10.46 15.96 11.19 8.272
A15-S6 16.47 11.29 12.14 10.51 8.247
A15-S7 15.92 10.12 12.37 11.17 8.247
A15-S8 14.46 10.38 14.98 10.35 8.257
A15-S9 12.54 10.31 16.61 10.98 8.250
A15-S9a 10.31 9.39 20.19 11.36 8.250
A16-LM 27.60 15.42 5.44 5.70 8.165
A16-S1 26.60 15.60 5.40 6.10 8.177
A16-S2 27.00 15.60 5.50 6.00 8.177
A16-S4 27.60 15.70 4.60 5.40 8.176
A16-S5 26.20 15.10 5.90 6.20 8.170
A16-S6 27.10 16.40 6.00 6.90 8.170
A16-S8 26.50 15.40 5.40 6.20 8.203
A16-S9 26.30 15.50 5.70 6.30 8.203
A16-S11 28.60 16.70 4.20 4.50 8.180
A16-S13 27.70 15.80 4.66 5.32 8.145
A17-LM 12.10 11.10 16.60 9.80 8.257
A17-S1 10.90 10.80 17.80 9.60 8.279
A17-S2 20.70 12.80 8.70 9.90 8.201
A17-S3 20.40 12.90 8.70 10.20 8.220
A17-S5 10.90 10.80 17.70 9.60 8.260
A17-S6 18.30 12.20 10.70 10.80 8.224
A17-S7 17.30 11.90 11.60 10.10 8.228
A17-S8 16.60 11.80 12.30 10.20 8.223
A17-S9 13.90 11.30 15.40 10.00 8.286

A17-LRV1 12.60 11.20 16.30 9.40 8.281
A17-LRV2 16.10 11.90 13.40 10.30 8.223
A17-LRV3 14.40 11.30 14.80 10.40 8.223

A17-LRV4/S2a 21.40 12.80 8.50 9.60 8.216
A17-LRV5 19.90 12.80 9.80 8.90 8.220
A17-LRV6 19.40 12.50 10.30 9.90 8.241
A17-LRV7 12.80 10.70 16.10 10.30 8.259
A17-LRV8 13.50 11.30 15.70 9.90 8.266
A17-LRV9 14.30 11.30 14.60 9.80 8.276

A17-LRV10 17.50 12.10 11.20 10.50 8.224
A17-LRV11 16.30 11.90 12.70 10.00 8.267
A17-LRV12 11.20 10.80 17.40 9.40 8.251

Luna16 15.24 12.50 16.70 8.80 8.295
Luna20 22.90 14.50 7.50 9.20 8.203
Luna24 11.10 11.10 20.50 10.20 8.296

CE-3 11.90 10.60 21.60 9.60 8.301
CE-5 10.80 10.90 22.20 6.48 8.280

3. Methods
3.1. Oxide Inversion Model

We used PSO-XGBoost and PLSR algorithms to construct mathematical models for
describing the relationship between the four oxide contents and CF values. The XGBoost algo-
rithm is one of the supervised machine learning models proposed by Chen and Guestrin [44]
and is essentially a gradient boosting decision tree (GBDT) model. The fundamental idea of
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the XGBoost algorithm is to integrate multiple weak estimators into a strong estimator [54],
demonstrating excellent performance in parallel computing efficiency, handling missing
values, controlling overfitting, and predicting generalization ability [55,56].

There are two important parameters in the XGBoost model: n_estimators and learn-
ing_rate. The n_estimators parameter represents the number of trees built during training.
The larger the n_estimators value, the better is the learning capacity of the model and the
easier is the overfitting. The other parameter is learning_rate, also known as shrinkage,
which controls the iteration rate and can be used to prevent overfitting. After each iteration,
the XGBoost algorithm determines the weights of new features to control the weights of
the subtrees and mitigate overfitting [47].

The PSO algorithm, proposed by J. Kennedy and R. Eberhart [57], is a stochastic search
algorithm based on collective collaboration, which was developed through simulating the
foraging behavior of birds [57,58]. In the PSO algorithm, each potential solution is called a
particle [54] and consists of the velocity vector and geometric position vector [59]. The core
of the PSO algorithm is to update the velocity and position of the particles, enabling the
continuous search for the optimal solution within the search space [60]. The PSO algorithm
helps to find the optimal combination of parameters which can improve the performance
of the XGBoost model.

In addition, the PLSR algorithm is a linear regression model proposed by de Jong [61].
The core idea of PLSR is to find a new space that can simultaneously explain the varia-
tion in both the predictor and response variables [62]. In the PLSR model, coefficients
and intercepts are two important parameters. PLSR simplifies the model by extracting
latent variables and captures the relationships between variables through coefficients and
intercepts, thereby enhancing the model’s predictive power.

3.2. Model Parameters and Evaluation Index

In this study, the oxide abundances and CF values of 49 lunar samples were input into
the PSO-XGBoost and PLSR algorithms to construct oxide inversion models. To ensure the
training effectiveness of the designed oxide inversion models, it was necessary to optimize
relevant parameters of the models. In each oxide model constructed by the PSO-XGBoost
algorithm, the optimal values of two hyperparameters were obtained through iteratively
updating the location vectors and velocity vectors of the PSO (Table 2). The optimal
parameters of the oxide model based on the PLSR algorithm are shown in Table 3. Based
on these optimal parameters, the functional relationships between CF values and oxide
abundances were constructed. In addition, random sampling was adopted to select 80% of
the 49 lunar samples (39 samples) as the training set and 20% of the 49 samples (10 samples)
as the testing set.

Table 2. Optimal values of parameters for four major oxides based on the PSO-XGBoost algorithm.

Parameters Al2O3 CaO FeO MgO

n_estimators 582 518 530 584
learning_rate 0.1 0.1 0.1 0.1

Table 3. Optimal values of parameters for four major oxides based on the PLSR algorithm.

Parameters Al2O3 CaO FeO MgO

intercept 1067.8859 355.0624 −831.7237 −247.5031
coefficient −127.5548 −41.6391 102.4634 31.1801

To assess the performance of the oxide inversion models, the determination coefficient
(R2) and the root mean square error (RMSE) were utilized as evaluation indicators and
calculated as follows:
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R2 = 1 − ∑m
i=1(či − ci)

2

∑m
i=1(ci − ci)

2 (1)

RMSE =

√
∑m

i=1(či − ci)
2

n
(2)

where či, ci and ci denote the true, predicted, and mean values of the ith sample, respectively,
and n denotes the number of samples.

Finally, the corrected CF values of the Moon (70◦N/S) were used as input for predicting,
and the Al2O3, CaO, FeO and MgO abundances of the Moon (70◦N/S) were output, respectively.

4. Results
4.1. Correlation Coefficients between Oxides and CF Values

Correlation analysis of CF values and oxide abundances at 49 sampling sites showed
high Pearson correlation coefficients (Figure 2). In general, Al2O3 and CaO exhibited nega-
tive correlation with CF values, whereas FeO and MgO demonstrated positive correlation.
Among them, the linear correlation between CF values and FeO abundance was 0.7737, and
the nonlinear correlation between CF values and abundance of oxides (Al2O3, CaO, and
MgO) were maintained at 0.8110, 0.7360, and 0.6641, respectively. However, the relationship
between CF values and oxide content was not always univariate linear regression. For some
oxides (e.g., Al2O3, CaO, and MgO), it was difficult to describe their complex relationship
with CF values using traditional univariate regression.
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4.2. Model Accuracy Evaluation

The prediction accuracies of the PSO-XGBoost models are shown in Figure 3. The
R2 values of the oxide (Al2O3, CaO, FeO, and MgO) abundance prediction models were
0.8806, 0.754, 0.8755, and 0.79, respectively, all greater than 0.75. The RMSE for these
predictive models was also notably low, at 2.2698, 1.0392, 2.1327, and 0.9922. In contrast,
the PLSR models (Figure 4), while possessing some predictive capability, demonstrate
slightly inferior R2 values of 0.769, 0.5116, 0.6827, and 0.2569, and relatively higher RMSE
values of 3.1577, 1.4643, 2.2641, and 1.8664, respectively. Therefore, compared with the
PLSR model, the PSO-XGBoost model demonstrated superior performance in capturing
nonlinear relationships, enabling it to provide more precise predictions of oxide abundance.
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4.3. Global Maps of Oxides

The global distribution maps of the four oxides’ abundances with a resolution of
32 ppd were derived from the CF map based on the PSO-XGBoost model, as shown in
Figure 5. From a global perspective, the average abundances of Al2O3, CaO, FeO, and
MgO were 23.63 wt.%, 14.42 wt.%, 7.78 wt.%, and 7.14 wt.% respectively, and the standard
deviations of Al2O3, CaO, FeO, and MgO were 5.64, 2.10, 4.47 and 2.15 (Table 4). Among
them, the highest average of Al2O3 across the global Moon indicates that Al2O3 is present
in a relatively significant proportion in the lunar oxides. Additionally, standard deviation
is a statistical measure that quantifies the amount of variation or dispersion in a set of
values, and the highest standard deviation of Al2O3 implies significant differences in Al2O3
abundance between different regions on the lunar surface.
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Table 4. Average (AVG) and standard deviation (STD) values for the abundance of four oxides and
Mg# in maria, highlands, and SPA basin (wt.%).

Global Maria Highlands SPA

AVG STD AVG STD AVG STD AVG STD

Al2O3 23.63 5.64 14.71 3.98 25.66 3.86 19.80 5.18
CaO 14.42 2.10 11.45 1.18 15.12 1.66 12.74 2.20
FeO 7.78 4.47 15.09 4.31 6.16 2.64 10.01 3.98
MgO 7.14 2.15 9.88 1.10 6.46 1.80 8.81 2.04
Mg# 0.50 5.65 0.41 6.77 0.52 2.90 0.48 5.40
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4.4. Three Geological Units and Interesting Regions of Chemical Abundances

As shown in Table 4, the four oxides’ average abundance in the Moon (70◦N/S) and
the SPA basin follows the order Al2O3 > CaO > FeO > MgO. In maria, the order of four
oxides average abundance is FeO > Al2O3 > CaO > MgO, while the order of the four
oxides’ average abundance in the highlands is Al2O3 > CaO > MgO > FeO. The average
abundances of Al2O3 (25.66 wt.%) and CaO (15.12 wt.%) in the highlands are higher than
(Al2O3: 14.71 wt.% and CaO: 11.45 wt.%) in maria, while the average abundances of
FeO (6.16 wt.%) and MgO (6.46 wt.%) in the highlands are lower than in the maria (FeO:
15.09 wt.% and MgO: 9.88 wt.%). MgO exhibited the lowest average abundance among
these four oxides in maria and the SPA basin, and the average FeO content was the lowest
in the highlands. In the SPA basin, the average contents of each oxide were intermediate
between the maria and highlands.

The average and STD of the four oxides’ abundances in the major lunar maria are
shown in Table 5. Except for the lowest value of Ca, which is in Mare Spumans, the
maximum and minimum values of the other oxides are in Mare Australe and Mare Tran-
quillitatis. Among the 21 major maria, the STD values of Al2O3 and FeO abundances are
larger than those of CaO and MgO content, indicating large changes in the distribution of
Al2O3 and FeO abundances, especially in Mare Orientale.

The compositional distributions of three interesting regions are shown in Figure 6. The
oxide compositions are inconsistent within and around the Kepler impact crater. The high
Al2O3 and CaO contents inside the Kepler crater are similar to those in the highlands, which
may be due to the exposure of plagioclase material after the impact broke through the mare
basalt. The higher FeO content in the interior of the Moscoviense Basin was formed by
the filling of the basin with iron-and titanium-rich basaltic magma after its formation. In
addition, the composition of the Helmet dome is relatively similar to the highland material,
with higher Al2O3 and CaO and lower FeO and MgO.

Table 5. The AVG and STD of oxide abundances in major lunar maria (wt.%).

Mare
Al2O3 CaO FeO MgO

AVG STD AVG STD AVG STD AVG STD

Mare Anguis 19.39 4.91 12.59 1.97 10.34 3.77 9.02 1.85
Mare Australe 19.85 4.72 12.70 2.04 9.87 3.47 8.94 1.91

Mare Cognitum 13.62 2.77 11.16 0.71 16.00 3.26 10.03 0.82
Mare Crisium 13.84 3.19 11.27 0.84 15.94 3.67 9.98 0.91

Mare Fecunditatis 14.24 3.13 11.28 0.78 15.38 3.65 10.02 0.78
Mare Frigoris 15.97 3.12 11.45 0.94 13.18 2.99 10.08 0.67

Mare Humorum 13.47 2.97 11.17 0.89 16.36 3.70 10.03 0.91
Mare Imbrium 13.19 2.71 11.18 0.66 16.85 3.55 10.06 0.75
Mare Marginis 14.34 3.03 11.21 0.83 14.98 3.19 10.01 0.83

Mare Moscoviense 14.84 3.08 11.29 0.84 14.41 3.21 10.04 0.75
Mare Nectaris 16.96 3.95 11.76 1.41 12.28 3.42 9.76 1.21
Mare Nubium 15.49 3.66 11.45 1.13 13.77 3.51 9.91 1.00
Mare Orientale 19.44 5.01 12.64 2.02 10.34 3.79 8.99 1.92
Mare Serenitatis 13.02 2.29 11.15 0.46 16.97 3.20 10.05 0.73

Mare Smythii 13.99 2.73 11.16 0.69 15.39 3.06 10.04 0.78
Mare Spumans 14.05 2.69 11.12 0.70 15.19 2.85 10.04 0.78

Mare Tranquillitatis 12.57 2.26 11.16 0.37 17.93 3.28 10.11 0.58
Mare Undarum 14.42 3.01 11.23 0.78 14.95 3.29 10.04 0.76
Mare Vaporum 13.18 2.79 10.93 1.46 15.90 3.48 9.89 1.45
Mare Insularum 15.51 4.10 11.43 1.58 13.59 3.84 9.77 1.39

Oceanus Procellarum 13.19 2.77 11.21 0.60 16.97 3.65 10.07 0.69
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Kepler crater (8.1◦N, 38.0◦W), Mare Moscoviense (148◦E, 27◦N), and the Helmet dome (16.6◦S, 31.4◦W).

5. Discussion
5.1. Comparison with Previous Studies

The four oxides’ distributions were estimated using LP GRS [7], CE-1 IIM
(~200 m/pixel) [3,23], and LRO Diviner (32 ppd) data [28]. Based on the global maps
of the four oxides, their average content in the Moon (70◦N/S) and its different terrains
can be obtained (Figure 7). Figure 8 illustrates the spatial distribution of maria, highlands,
and SPA basin. Based on the boundaries of different terrains, bar charts (Figure 7) were
produced for comparative analysis by extracting the oxide abundances for the different
geological units (global, maria, highlands, and SPA basin).

The average abundances of the four oxides in this study fell between the ranges of
the other inversion results (Figure 7). For the Moon (70◦N/S), the smallest differences
of average abundances in Al2O3, CaO, FeO, and MgO were 0.16, 0.10, 0.03, and 0.29,
respectively. Apart from CaO derived from LP GRS in maria and the SPA basin and FeO
obtained from Diviner in maria, the average abundance of inversion results in this study
was similar to the other results, especially those from CE-1 [23] and Diviner [28], which
showed the closest resemblance. Relatively significant differences in levels of CaO in maria
and the SPA basin were observed between this study and LP GRS, which may be due to the
different resolution. The LP GRS and the Diviner data exhibit different spatial resolution,
implying a variance in their capacity to discern the smallest pixels. Data characterized by
a lower resolution may not adequately capture the fine-scale characteristics observable
within higher resolution datasets, which could lead to the neglect of subtle variations in the
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CaO distribution. Despite the differences in their absolute abundances, the trends in their
relative abundances are consistent.

We compared the average and standard deviation of oxide abundance in 21 major
maria with previous work conducted by Ma et al. [28], and the scatter plots with error bars
for the four oxide abundances are shown in Figure 9. For the four oxides (Al2O3, CaO,
FeO, and MgO), the average contents determined through this study and the LRO Diviner
maps [28] in each maria demonstrated a relatively proximity to the 1:1 line, with R2 values
of 0.95, 0.82, 0.95 and 0.86, respectively.
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5.2. Implications of the Mg# Map

For the four major oxides estimated in this study, the Mg# (Mg# = mole percent
MgO/(MgO + FeO)) was obtained with a resolution of 32 ppd. The global distribution of
Mg# is shown in Figure 10, and exhibits an obvious trichotomy. The average Mg# values
across the Moon (70◦N/S) and in the three geological units (maria, highlands, and SPA
basin) were 0.50, 0.41, 0.52, and 0.48, which are close to the multiband imager (MI) Mg#
values [19] of 0.53, 0.40, 0.58, and 0.46, respectively. The average Mg# value in the highlands
was higher than in the maria, which is consistent with the fact that FeO was higher than
MgO in the maria regions, while MgO was higher than FeO in the highland regions [3].
In addition, the regions with low Mg# values in the new Mg# map correspond to the
distribution of mare basalts on the Moon [63], which indicates that mare basalts exhibit
low Mg#.

Mg# is an important indicator in lunar petrology for studying the compositional
variation during magma crystallization [28,59], and a higher Mg# value represents an
earlier magma ocean event with more primitive materials [2]. The different Mg# values
observed in these three geological units are similar to those described by Otake et al. [2],
indicating that they have undergone different magma evolution processes resulting in
the lava flow filling with diverse composition and minerals [2,64]. Therefore, the maria
have undergone a higher degree of evolution, primarily crystallized from the iron- and
magnesium-rich magma, while the formation of the highlands marks the early stages
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of the lunar magma crystallization process, formed by the crystallization of relatively
primitive magma.
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5.3. Limitations and Prospects

The limited quantity of lunar samples poses an obstacle to compositional modelling.
A total of 49 samples were utilized, including the Apollo and Luna missions, CE-3 in situ
measurements, and the CE-5 mission, all of which were distributed in the low-latitude
regions on the lunar near side, except for the CE-5 samples. Moreover, the small sample size
and limited geographic coverage led to limitations in both quantity and spatial distribution,
resulting in uncertainties in the prediction results. It is hoped that more samples can be
obtained in the future, especially from the lunar far side and high-latitude regions, which
is expected to improve the accuracy of the inversion results.

The study of minerals through spectral features, particularly the CF, has a long history
in planetary science. Indeed, the CF has demonstrated capability in identifying silicate min-
erals and estimating lunar surface composition [29,30,52]. However, both space weathering
and viewing geometry influence the CF values. Recently, Greenhagen et al. [31] performed
terrain-dependent photometric correction to map the latest -normalized-to-equatorial-noon
(NEN) CF map. Meanwhile, Lucey et al. [32] corrected the effects of space weathering to
generate a new surface optical maturity parameter (OMAT) CF map. With the advance-
ment of remote sensing technology, exploring new methods to mitigate the effects of space
weathering and viewing geometry can help to reduce the uncertainty of inversion results.

In addition, machine learning and deep learning algorithms can be further applied
to lunar oxide inversion. In this paper, the PSO-XGBoost algorithm was used to predict
the abundance of oxides with satisfactory results, although there is still space for further
improvement.

6. Conclusions

Based on previous lunar samples, this study incorporated samples from the CE-5
mission to produce the new maps of oxide abundance and Mg# on the lunar surface.
Except for FeO, the oxide (Al2O3, CaO, and MgO) abundances exhibited complex nonlinear
relationships with CF values, making the PSO-XGBoost model a better choice for inversion.
The higher R2 values and lower RMSE in this study indicate the satisfactory performance
and generalization ability of the models. The distinctive distribution of oxides and Mg#
across the three geological units indicate differences in the source of the magma, resulting in
mare basalts with different composition. Incorporating data from the Chang’e-5 mission has
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supplemented and refined our understanding of the Moon’s late-stage magmatic activities,
enabling updating of the lunar oxide distribution maps.
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