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Abstract: Wildfires in Mediterranean areas are becoming more frequent, and the fire season is
extending toward the spring and autumn months. These alarming findings indicate an urgent need to
develop fire susceptibility methods capable of identifying areas vulnerable to wildfires. The present
work aims to uncover possible soil moisture and vegetation condition precursory signals of the
largest and most devastating wildfires in Greece that occurred in 2021, 2022, and 2023. Therefore, the
time series of two remotely sensed datasets–MAP L4 Soil Moisture (SM) and Landsat 8 NDVI, which
represent vegetation and soil moisture conditions—were examined before five destructive wildfires in
Greece during the study period. The results of the analysis highlighted specific properties indicative
of fire-susceptible areas. NDVI in all fire-affected areas ranged from 0.13 to 0.35, while mean monthly
soil moisture showed negative anomalies in the spring periods preceding fires. Accordingly, fire
susceptibility maps were developed, verifying the usefulness of remotely sensed information related
to soil moisture and NDVI. This information should be used to enhance fire models and identify
areas at risk of wildfires in the near future.

Keywords: SMAP soil moisture; Landsat 8 NDVI; fire susceptibility mapping; fire precursory signals;
vulnerability to disasters

1. Introduction

Wildfires are increasingly impacting the natural environment and human lives. They
are exhibiting increased frequency and greater destruction, posing significant societal
challenges [1,2]. The impact of climate change on wildfire occurrence has been studied in
many previous works, and researchers have reached a consensus on exceptionally high
global fire activity, with increased burned area and fire frequency [3,4]. Also, a high spatial
variability of fire changes has been observed. Some areas show little or no change or even a
decrease in fire occurrences [1]. The need to study the underlying mechanisms of various
ecological variables involved in wildfires has been identified in previous research, with the
ultimate goal of understanding the expected causes and consequences of future wildfires
and adjusting fire management strategies [1,2,5]. Wildfires also affect the carbon cycle as
they are found to account for almost 35% of global carbon emissions, impacting global
greenhouse gas emissions [6]. They also affect carbon sequestration during the regeneration
processes of burned forests, as increased vegetation productivity is observed in fire-affected
areas after the wildfire events [7].

Previous research has shown that many variables are involved in the outbreak of
wildfires, with weather, fuel, and human activities playing synergistic roles [8]. Thus,
in Mediterranean areas, a prolonged fire season has been found, and changes in fire
frequency and burned areas have been reported [9]. Meteorological conditions have also
been reported to impact extreme fire risk in the Mediterranean, and the Fire Weather Index
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(FWI) was used in previous works to quantify fire danger [10,11]. In Australia, wildfire
activity was found to be impacted by changes in climate variables during the three-month
period preceding the fire season [12]. The warming climate is expected to increase the
vulnerability of ecosystems to wildfires [13]. Indices that quantify fuel properties, such
as fuel accumulation and moisture, are also known to play an important role in wildfire
occurrence [13,14]. Poor forest management has also been identified as a factor contributing
to increased fire occurrence due to the limited budget required for the adoption of fire
prevention measures [15,16].

Determination of areas at high risk of wildfire occurrence is essential to guide forest
management practices and protect ecosystem services. Indices related to vegetation green-
ness, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI), along with other environmental variables like elevation, slope, precipitation,
and temperature, have been extensively analyzed, and their contributing role in wildfire
occurrence has been clarified in many regions around the world [17–23]. Soil moisture has
also been known to play a key role in wildfire occurrence due to the control of vegetation
growth [8,13,24], but the lack of available information at the global scale restricted relevant
research to case studies at the local scale [8]. Recent advances in satellite-based soil moisture
retrievals have enabled scientists to evaluate potential links of soil moisture with wildfires
at larger scales [8,13,24,25]. In this manner, previous works demonstrated the relationship
between earlier snowmelt and associated decreased soil moisture in summer and wildfire
occurrence in Western U.S. [26]. The potential of remotely sensed C-band Sentinel-1A data
to accurately describe the forest fuel moisture content was indicated in previous studies [27].
Moreover, Soil Moisture Active Passive (SMAP) mission soil moisture retrievals are found
to be quite useful in the estimation of Live Fuel Moisture in chaparral areas [28], indicating
their usefulness in acquiring information on vegetation dryness and fire risk. A global
study incorporating a large number of wildfire events indicated that although fire events
are quite complex phenomena and the individual contribution of specific environmental
parameters is challenging, satellite soil moisture can offer improved fire forecasting in the
estimation of the possibility of ignition and the size of affected [8] and improve fire forecast-
ing at the global scale [29]. Analogous findings were reported in Australia and California,
where SMAP soil moisture proved to be a reliable predictor for large wildfires and suitable
for wildfire susceptibility [30]. Another study in nine patches of tallgrass prairie under
patch-burn management in Oklahoma, USA, indicated that the results of grassland fuelbed
models could be improved by incorporating soil moisture observations [31]. Furthermore,
fire forecasting applications for agriculture have successfully implemented SMAP SM into
a global operational crop forecasting system, especially for monitoring drought conditions
in agricultural areas, supporting decision-making for global food security [32].

The motivation of the present work was the increase in fire-affected areas, fire severity
and destructiveness, the lengthening of fire occurrence season, and the diversity of forest
types affected during the last few years, i.e., from 2021 onwards, and their possible relation
to the persistent drought that Greece experienced during this period. Thus, the time series
of the two variables that are indicative of the vegetation and soil moisture conditions were
examined for the five most destructive wildfires in Greece during the study period. The
time series of SMAP Level-4 (L4) SM and the Landsat 8 NDVI were retrieved and evaluated
in the fire-affected areas. Initially, SMAP L4 SM data were compared against in situ soil
moisture measurements from a monitoring network in NE Greece, and results indicated
that SMAP L4 SM is representative of the moisture conditions and that the time series of SM
and NDVI demonstrate specific properties in the fire-affected areas, which can be useful for
fire susceptibility mapping. Furthermore, to highlight the social aspect, the results of the
fire susceptibility mapping in this work were analyzed in conjunction with vulnerability to
disasters in Europe, estimated by the EU Disaster Risk Management Knowledge Center
(DRMKC) [33,34].
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2. Methods
2.1. Description of the Study Area and the Wildfire Events

In the present work, the data related to the 11 most important wildfire events in
terms of area (area affected > 25 km2) and destructiveness in Greece from 2021 to 2023
were collected from the Hellenic Fire Service database [35]. Details on the delineation
methodology of the fire-affected areas and the specific fire impacts on various economic
sectors can be found in Supplementary Material (Table S1). The specific time frame was
selected because of the sharp increase in fire activity that was observed during that period,
according to data provided by the European Forest Fire Information System (EFFIS) [36].
The first five wildfires in Table 1 were used to develop the methodology, while the other six
were used in the verification of the approach. Additionally, smaller fire events detected in
the MODIS Fire Information for Resource Management System (FIRMS) [37] dataset on
active fires were also incorporated in the validation of the developed approach.

Table 1. List of the wildfires and their properties analyzed in the present work.

No. Location Dates Area (km2) Land Cover Cause

1 Evia island
(North Evia) 3 August 2021 511.8

Arable land, permanent crops,
heterogeneous agricultural areas,
forests; shrub and/or herbaceous
vegetation association, and open
spaces with little or no vegetation

Combination of human activities,
increased fuel accumulation, and

meteorological conditions
(burning of agricultural residues)

2
Alexadroupolis-

Dadia
(Evros)

19 August 2023 1000.2

Forests, shrub and/or herbaceous
vegetation association,

heterogeneous agricultural areas,
arable land, permanent crops,

and pastures

Possible thunder activity. A
wildfire started on the 19th of

August early in the morning in a
forest area near Aristino village

(East Macedonia and
Thrace Region).

3
Sostis and

Gratini villages
at Rhodope

21 August 2023 28.3

Mixed forests, arable land, shrub
and/or herbaceous vegetation

association, heterogeneous
agricultural areas, pastures, and

open spaces with little or no
vegetation

Combination of human activities,
increased fuel accumulation, and

meteorological conditions

4
Rhodes Island
(Central and

SE)
1 Julie 2023 178.0

Shrub and/or herbaceous
vegetation association,

heterogeneous agricultural areas,
forests, permanent crops, arable

land, open spaces with little or no
vegetation, and pastures

Combination of human activities
(old dump), increased fuel

accumulation,
and meteorological conditions

5 Lesvos island
(Vattera) 23 Julie 2022 25.5

Arable land, permanent crops,
heterogeneous agricultural areas,
forests, shrub and/or herbaceous
vegetation association, and other

Human activities (burning of
agricultural residues)

6 Papikio Mt at
Rhodope 22 October 2022 25.6

Complex cultivation patterns; land
principally occupied by agriculture,

with significant areas of natural
vegetation; broad-leaved and mixed

forest; natural grassland;
sclerophyllous vegetation;

transitional woodland shrub; and
sparsely vegetated areas

Combination of human activities,
increased fuel accumulation, and

meteorological conditions

7 Varibobi
(Attica) 03 August 2021 83.8

Arable land, permanent crops,
pastures, heterogeneous

agricultural areas, forests, shrub
and/or herbaceous vegetation

association, and open spaces with
little or no vegetation

Electricity network.
From Tuesday 03 August 2021

afternoon, wildfires were raging
in the northeast sector of the

Attica region in Greece.
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Table 1. Cont.

No. Location Dates Area (km2) Land Cover Cause

8
Diavolitsi
(Messinia

Peloponnese)
04 August 2021 51.1

Non-irrigated arable land; olive
groves; pastures; complex
cultivation patterns; land

principally occupied by agriculture;
with significant areas of natural
vegetation; broad-leaved forest;
coniferous forest; mixed forests;

natural grassland; sclerophyllous
vegetation; beaches, dunes, and

sand plains; and sparsely
vegetated areas

Combination of human activities,
increased fuel accumulation,

and meteorological conditions

9 Gerania Mt
(Corinthia) 19 May 2021 69.6

Arable land, permanent crops,
heterogeneous agricultural areas,
forests, shrub and/or herbaceous
vegetation association, and open
spaces with little or no vegetation

Human activities (burning of
agricultural residues);

A large wildfire burning large
areas of pine forest in the area of
Schinos, in Corinthia prefecture.

10 Penteli (Attica) 19 Julie 2022 27.9

Shrub and/or herbaceous
vegetation association, forests,

heterogeneous agricultural areas,
and coniferous forest

Combination of human activities,
increased fuel accumulation, and

meteorological conditions.
A forest fire broke out on the
slopes of Mount Penteli in the
northern suburbs of Athens.

11 Parnitha
(Attica) 22 August 2023 61.9

Forest, pastures, heterogeneous
agricultural areas, open spaces with

little or no vegetation, and shrub
and/or herbaceous vegetation

association. A total of 47% of the
area is protected.

The fire is attributed to a
combination of human activities
and meteorological conditions.

Regarding the causes of most wildfire events, they are generally attributed to heat
waves, which become more frequent due to climate change in combination with the accu-
mulation of dry vegetation, mainly due to poor forest management, as well as to human
activities—either arson or negligence—and also to lightning activity [14]. The varied nature
of land cover types, timing, and prevailing weather conditions make evaluating the fire-
triggering mechanisms of specific events quite challenging as case studies. For example,
both wildfires in the Rhodope area in NE Greece (No. 3 and 6 in Table 1) occurred in mixed
forest areas in a mountain area that had never been impacted in the past by such large fires.
Notably, event No. 6 in Table 1 started in late October 2022 and lasted until the 20th of
November 2022, a period that is outside the fire season, especially for North Greece. The
tables in Supplementary Material Table S1 detail the consequences of each of the eleven
fires. The spatial distribution of wildfires can be seen in Figure 1. From this, it seems that
fire activity is becoming more diverse and affects areas that were not previously considered
susceptible to fire.

2.2. Description of Data and Analysis

In this work, we built upon previous studies that have identified SM and NDVI
as suitable variables to capture the spatial and temporal changes in vegetation condi-
tions [13,14,17,18]. We also focused on a remotely sensed-only approach to exploit the
advantages of remote sensing regarding its spatial coverage and temporal repeat for global
environmental monitoring. To evaluate the possible precursory signal of soil moisture
for fire occurrence, we evaluated remotely sensed SM from SMAP and, more specifically,
the SMAP L4 dataset [38]. Additionally, the USGS Landsat 8 Level 2, Collection 2, Tier 1
product, at 30 m spatial resolution, was used to evaluate monthly NDVI values for the
study period as a proxy for vegetation conditions. Both the SM and NDVI time series were
evaluated for approximately a 2-year period prior to fire occurrence.
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Since remotely sensed SM at a reasonable spatial resolution for such analysis has
only recently been made available, i.e., from 2015 until the present, and not much research
is available on its relationship to wildfire occurrence, we also evaluated the correlation
of the annual averages of SMAP L4 SM over Greece, with the number of fires and size
of impacted areas. Additionally, to verify that SMAP L4 SM provides consistent SM ob-
servations in the study area, a comparison of SMAP L4 surface SM and root zone SM
was conducted with data from three in situ sensors operated by Democritus University of
Thrace in NE Greece, with Sentek Drill and Drop single-point soil moisture and soil tempera-
ture sensors (https://sentektechnologies.com/products/soil-data-probes/drill-drop/, ac-
cessed on 1 March 2024), measuring at a depth of 5–10 cm, from 2021 until today. The in
situ sensors were calibrated prior to their installation using oven drying at 110 ◦C for 24 h
of soil samples, according to the methodology described by the Australian Department
of Sustainable Natural Resources and the Australian National Soil Strategy [39]. The area
where SM sensors operate is Papikio Mt., an area affected twice by wildfires in 2022 and
2023 (events No. 3 and 6 in Table 1). Daily SM values were averaged at the monthly time
step and compared to SMAP acquisitions.

The SMAP L4 soil moisture product [38,40,41] includes surface soil moisture (0–5 cm
vertical average), root-zone soil moisture (0–100 cm vertical average), and additional
modeled parameters like soil temperature, evapotranspiration, and net radiation, along
with meteorological forcing variables. L-band brightness temperature from the SMAP half-
orbit passes at around 6:00 a.m. and 6:00 p.m. local solar time and is assimilated into a land
surface model. SMAP L4 thus provides global 3-hourly time-averaged geophysical data
fields from the assimilation system at 9 km spatial resolution from March 2015 to the present.
Wildfire perimeter polygons were taken from the Hellenic Fire Service database [35] and

https://sentektechnologies.com/products/soil-data-probes/drill-drop/
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then used in the Google Earth Engine platform [42]. The SMAP L4 Global 3-hourly 9 km
Surface and Root Zone Soil Moisture was then retrieved and processed by implementing
a JavaScript code (available in the code availability section of the present work) in order
to estimate average monthly SM values in the affected areas. Monthly anomalies were
then computed as the difference of the asset month relative to the same month averaged
across the time series (from 2015 to the present), excluding the asset year. In a similar way,
Landsat 8 NDVI was extracted for the fire polygons, and time series graphs were prepared.
Based on the properties of SM and NDVI time series prior to fire events, a fire susceptibility
mapping approach was proposed.

To evaluate the social impact, the Vulnerability to Disasters Indicator (VDI) estimated
by the EU DRMKC was examined along with the fire susceptibility mapping of our work.
The VDI is a cross-scale EU-wide indicator that supports the evaluation of disaster risk
from multiple hazards [33,34]. It encompasses five dimensions—the social, economic,
political, environmental, and physical—across three different administrative levels (i.e.,
Country scale, NUTS2, and NUTS3). Scores of the VDI range from 0 to 10. The dataset
corresponding to Greek territory at the NUTS3 level for 2021, 2022, and 2023 was accessed
from the DRMKC Risk Data Hub (RDH) (https://drmkc.jrc.ec.europa.eu/risk-data-hub/
#/dashboardvulnerability, accessed on 10 March 2024). The 2023 VDI data set corresponds
to VDI forecasts by DRMKC, as the actual 2023 VDI estimates were not available by the
time of completion of the present work. The whole process is described in the flow chart of
Figure 2.
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Figure 2. Fire susceptibility map flow chart.

3. Results

Figure 3 demonstrates the time series graphs of country-averaged monthly SMAP L4
SM with the number of fires (Figure 3a) and the size of affected areas (Figure 3b) during
the fire season, i.e., June to August. The correlation coefficient (r) for SM and the number
of fires was found to be −0.57, while the correlation coefficient for SM and the size of

https://drmkc.jrc.ec.europa.eu/risk-data-hub/#/dashboardvulnerability
https://drmkc.jrc.ec.europa.eu/risk-data-hub/#/dashboardvulnerability
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the affected areas was −0.62. Both were found significant at p < 0.001. Details on the
significance tests can be found in Tables S2 and S3 in Supplementary Material. Additionally,
we tested for significance after removing linear trends from the examined time series, and
it was found that significance still holds at p < 0.002 for the detrended time series (Results
on the significance testing of the detrended time series can be found in Tables S4 and S5 in
Supplementary Material)).
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Both negative coefficients indicate inverse correlation, i.e., decreasing values of SM
correspond to increased number of fires and size of affected areas. Moreover, although
the number of fires after 2020 demonstrated a decreasing trend, the size of areas affected
showed a sharp increase from 2021 forward, indicating the enhanced destructiveness of
wildfires. The Alexandroupolis-Dadia mega-fire event in August 2023 is a characteristic
case, being one of the largest wildfires in the history of Europe. Analogous changes in fire
impacts were reported in Spain [4], where since 2014, a smaller number of fires proved to
be capable of destroying larger land areas.

A comparison of the monthly average SMAP L4 root zone SM and surface SM with
the averages of the three monitoring points in Rhodope area (NE Greece) can be found in
Figure 4. Averaging over the three monitoring points was necessary due to the different
footprints of SMAP L4, i.e., 9 km and the point values of in situ SM sensors.
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Figure 4. Comparison of in situ SM data and SMAP L4 surface SM and root zone SM in the Rhodope
area (NE Greece) during the study period.

Analysis of the data in Figure 4 indicated r values of 0.70 for in situ SM and root zone
SMAP SM and r = 0.78 for surface SMAP SM (significant at the p < 0.001 level). To verify
that significance still holds after removing linear trends from the examined time series,
correlation tests were performed at the detrended time series, and the results are significant
at the p < 0.001 level also for the detrended time series (Tables S6 and S7 in Supplementary
Material). Although the comparison corresponds to only a small portion of the country
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area, and the two data sets are quite different in terms of footprint and acquisition approach,
it can still be regarded as an indication of the consistency between ground measurements
and SMAP L4 acquisitions. Moreover, SMAP SM has been extensively validated in many
other areas around the world and is considered a reliable dataset for a wide range of
environmental applications [30,32,43,44]. Surface SMAP SM is better correlated to the in
situ dataset compared with root zone SMAP SM. This is perhaps due to the description of
the entire root zone, i.e., 0–100 cm of the SMAP L4 root zone SM, and not of the top layer,
which is represented by the in situ measurements and is closer to the SMAP L4 surface SM.
Thus, SMAP L4 surface SM was used for the analysis in the present work.

The results of temporal analysis are presented in Figure 5. Regarding NDVI, no
specific temporal trends were observed in the studied fire-affected areas, except for the
expected seasonal fluctuations in the pre-fire occurrence period. However, the mean NDVI
in the periods prior the fire events ranged from 0.13 to 0.35, indicating low moisture
vegetation conditions.

On the contrary, SMAP L4 surface SM demonstrated a distinctive decreasing trend
for at least one year before fire events. A specific pattern observed in average SM is the
occurrence of negative mean SM anomaly, dropping lower than −5%, during the preceding
springs. Even in the case of Rhodes Island, where May 2023 was a relatively wet month,
the mean SM anomaly during spring remained within negative values lower than −5%. In
Figure 6, it is evident that all fire-affected areas are within this negative SM anomaly zone,
with the most indicative cases being the Alexandroupolis-Dadia and Rhodes wildfires (both
in 2023). These indicate how decreased moisture conditions designate areas of increased
fire occurrence risk. Thus, in the present work, based on the above findings, we proposed a
spatial susceptibility mapping approach based on the presence of negative mean SMAP L4
surface SM anomalies in the spring prior to fire occurrence, lower than −5% and within
the specified range of Landsat 8 derived NDVI values, i.e., 0.13–0.35. Thus, the selection
criteria become mean spring SM anomaly <−5% and 0.13 < NDVI < 0.35). At the country
level, this SM anomaly corresponds to approximately mean minus two standard deviations
of SM, although for each specific fire-affected area, this threshold might correspond to a
slightly different standard deviation threshold, indicating thus that the examined areas
experience extreme drought conditions.
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Figure 6 presents the spatial distribution of areas demonstrating negative mean SMAP
L4 SM anomalies of -5% during spring 2021, 2022, and 2023, respectively (Figure 6d–f),
and the spatial distribution of areas within the NDVI range of 0.13–0.35 for the same
periods (Figure 6a–c). The final susceptibility maps for each examined year are produced
by selecting pixels that reach both those predefined criteria regarding SM, i.e., negative
mean SM anomalies < -5%, and NDVI in the range of 0.13–0.35 for the preceding spring.
The results can be found in Figure 7. To verify the results, fire events 6 to 11 (Table 1)
were overlaid with the fire susceptibility maps (Figure 7a–c). All events fall within the
fire-susceptible areas, as defined by the present methodology. Also, the vast majority of
FIRMS-detected fires are found within the fire-susceptible locations. In Table 2, the results
of the fire susceptibility mapping methodology are presented, where it can be seen that the
success rate of the susceptibility mapping ranges from 83% to 87%.
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Table 2. Results of the fire susceptibility assessment.

Year
Area (km2)
with 0.13 <

NDVI < 0.35

Area (km2)
SM Anomaly

< −5%

Fire-
Susceptible
Areas (km2)

Fire-
Susceptible

Areas in
High-VDI

Zones (km2)

Mean SM
Anomaly (%)

Fire-Affected
Areas within

Fire-
Susceptible
Areas (km2)

Actual
Affected Areas

(km2)

Success Rate
(%)

2023 116,503 22,536 20,132 19,355 −8.9 1485 1747 85

2022 157,231 26,709 23,531 22,187 −6.4 187 224 83

2021 161,732 28,311 22,587 22,534 −5.8 1132 1307 87

The examination of the fire susceptibility mapping, along with the VDI, aims to
highlight areas susceptible to fire for a specified year, which at the same time, demonstrate
medium to high vulnerability to disasters (VDI > 5) and associated increased social impact.
Results of examination can be found in Figure 7.

4. Discussion

The results presented in Figure 6 indicate that the fire susceptibility is mostly controlled
by the negative SM anomalies since the estimated NDVI range covers a substantial part
of the country. This is mainly because of the prolonged drought period that resulted in
vegetation stress conditions and decreased NDVI across the country. In their work, Moreno
et al. [4] reported that MODIS NDVI values between 0.2 and 0.4 were observed during
summer and autumn, which were found to be indicative of low humidity and increased
flammability. However, the present work’s results may differ because of the different time
periods examined and the different study areas, as well as because of the different spatial
resolutions of the examined NDVI products since the present work used Landsat 8 NDVI
at 30 m, whereas Moreno et al. used [4] MODIS NDVI, which has a 500 m resolution.

SM results highlight the eastern mainland and the Aegean islands. A very charac-
teristic case refers to the SM results, which clearly point out the high vulnerability of
NE Greece during 2023 (Figure 6f) when the disastrous Alexandroupolis-Dadia wildfire
occurred. It is worth mentioning that wildfires have long been affecting areas occupied by
pine forests. These are typical of the Mediterranean landscape, especially in the central and
southern parts of the country and the Aegean islands. Recently, however, areas like the
Rhodope Mountain chain in the northeastern part of the country, occupied mainly by mixed
forests (Oaks, plane trees, chestnuts, birch trees), were not considered fire-prone forest
types. Still, they have been affected by large wildfire events twice during the study period
(cases 3 and 6 in Table 1). Furthermore, the Papikio Mt. wildfire (case 6 in Table 1) lasted
from late October to mid-November 2022, far outside the usual fire season. Traditionally,
those rural areas were managed by local populations that removed dead excess vegetation
from forest and pasture areas. Nowadays, depopulation has had a substantial impact
on such traditional rural practices. This has also been observed in other Mediterranean
countries [4]. In combination with the expected climate change impacts, the pattern of wild-
fire occurrence is changing, affecting northern areas [45] but also increasing the wildfire’s
destructive power. It is evident thus that the prolonged drought has impacted the usual
temporal and spatial patterns of wildfires in Greece, which is an alarming and challenging
issue for fire services in the country. Results presented herein converge to those indicated
in previous works on the changing pattern of wildfire occurrence [4,45,46].

The susceptibility maps produced in this work successfully depicted all six wildfires
used for validation (Figure 7a–c). Moreover, they identified the majority of wildfires
comprised of the MODIS FIRMS product [37], with a success rate of 83% to 87%. Thus, the
approach presented herein seems to provide a reliable approach for wildfire susceptibility
mapping. It is also a tool of operational value since the SM and NDVI retrievals during
spring may well help in defining areas where protective measures should be adopted to
minimize fire risk, especially during the summer and autumn months. Since the latency of
both examined remotely sensed products is within a week, it is clear that our approach can
contribute to fire anticipation within realistic time frames.
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Recent susceptibility mapping works have focused on average meteorological condi-
tions (mean annual precipitation, mean annual temperature, wind speed) and various land
variables like elevation, slope, and land cover type. They also evaluated several regression
or machine learning methods to identify which performed best [19,21–23,47]. None of
these works, however, evaluated soil moisture as a predicting parameter, whose value
in fire modeling and fire susceptibility assessment had been highlighted in the U.S. and
Australia in previous works [30,31]. In our work, it was shown that soil moisture is suitable
for highlighting fire-susceptible areas also in the Mediterranean areas and can provide a
near-real-time fire susceptibility approach. Moreover, it requires only minimum input data
since it is based on remotely sensed soil moisture and NDVI. This is because soil moisture
can be considered as a proxy for temperature, precipitation and humidity conditions, as it is
closely related to those variables [48,49], and it is suitable for describing drought conditions.
NDVI, on the other hand, can describe fuel availability, but it fails to respond in certain
conditions, such as rapid drying [31]. Along with soil moisture, NDVI can be effective for
fire susceptibility mapping. Previous works that quantified fire danger in terms of FWI
were based on the availability of either weather data from meteorological stations [10]
or modeled climate data [11], and the FWI has to be evaluated for the whole fire season.
Our work can contribute to medium-term susceptibility mapping since it is based on SM
and NDVI information from the preceding spring. Thus, it offers the advantage to public
services of taking proactive measures earlier, whereas FWI is better suited for short-term
fire danger assessments.

The examination of fire susceptibility mapping of the present work, alongside the EU
VDI, highlighted areas where fire occurrence could potentially result in increased social
impact. To the best of our knowledge, this is the first time that a fire susceptibility mapping
has also incorporated the social dimension of fire disasters as included in the EU VDI. Thus,
by comparing Figures 6 and 7, along with Table 2, it can be seen that all examined fires are
within those high-impact zones and that the majority of fire-susceptible areas fall within
the high-vulnerability areas of VDI.

An especially characteristic case is that of 2023, where the dramatic social impacts from
the Rhodes Island wildfire and the Alexandroupolis-Dadia mega fire events are also reflected
in Figure 7, as both those affected areas fall within high VDI regions. Thus, the combination
of those two datasets successfully depicts areas where potential disasters may impose serious
implications and should be the focus of protective fire management practices.

A limitation of the methodology is the spatial resolution of SM, which is too coarse
for a fine delineation of fire-susceptible areas. However, downscaling approaches provide
SMAP SM estimates at much higher spatial resolution, <1 km, which are found to be
quite robust for drought monitoring [41,50–52]. Therefore, future efforts should focus
on refining the spatial resolution of the fire susceptibility mapping. Additionally, since
NDVI acquisitions are restricted by cloud cover conditions, extended cloud cover during
springtime may result in considerable loss of data. However, this is not the case for SMAP
SM retrievals, which are not impacted by cloud cover.

The approach presented herein may prove useful at the operational level. The forest
fire risk maps issued daily during the fire season by the Greek General Secretariat for Civil
Protection currently do not take into account soil moisture. Incorporating such an approach
in the assessment of the fire risk maps can improve our knowledge of the areas where
persisting drought conditions result in a high potential for a destructive fire. Thus, the
fire susceptibility mapping presented in this work can contribute to the medium-term fire
susceptibility assessment, while future research should focus on the incorporation of the
soil moisture conditions in the daily fire risk maps to provide the short-term fire risk at
the country level. The high fire potential of the areas where the two destructive wildfires
in Rhodes and Alexandroupolis-Dadia happened could have been known two to three
months before the events if drought conditions had been monitored with this approach
and the highlighted areas had been integrated into the fire risk maps. Thus, firefighting
authorities may prioritize actions in tackling wildfires, where areas with higher risk can
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receive priority in determining firefighting actions and resource allocation. In addition,
communities can be effectively informed in advance of the fire potential in their area, giving
them enough time to take the necessary protective and preparatory measures. Finally, an
analysis of the results of our fire susceptibility approach can help identify areas where the
greatest social impacts are expected or where protected natural and cultural heritage areas
and ecosystems have a high potential for fire.

5. Conclusions

In this work, a fire susceptibility mapping approach was presented, taking advantage
of the SMAP L4 surface SM dataset. Initially, the predictive ability of SM regarding wildfire
occurrence was examined and found to be significant. SMAP L4 and Landsat 8 NDVI time
series were then analyzed for specific fire events in Greece for 2021, 2022, and 2023, and
distinctive precursory patterns were identified and implemented into the fire susceptibility
mapping approach. Results indicate that the proposed fire susceptibility method has
a substantial predictive capability. The social impacts aspect was highlighted through
the examination of the fire susceptibility mapping results alongside the EU Vulnerability
to Disasters Index for Greece, depicting areas highly susceptible to fire occurrence and
increased expected social impact.
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