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Abstract: The challenge of detecting changes in high-resolution remote sensing imagery often stems
from the difficulties in effectively extracting features and constructing appropriate change detection
models considering the scale characteristics of ground objects. To solve these issues, we propose a
novel UNet 3+ change detection method that considers the scale characteristics inherent in various
land-cover change types. Our method includes three key steps: a multi-scale segmentation method,
a class-specific UNet 3+ method, and an object-oriented change detection method based on UNet
3+. To verify the effectiveness of this method, we select two datasets for experiments and compare
our proposed method with the UNet 3+ single-scale sampling method, the class-specific UNet 3+
single-scale sampling method, and the UNet 3+ multi-scale hierarchical sampling method. Our
experimental results show that our proposed method has higher overall accuracy and F1, lower
missed detection rate and false detection rate, and can detect more changes in ground features than
other methods. To verify the scalability of this method, we compare this method with traditional
change detection methods such as PCA-k-means, OCVA, a single-scale sampling method based
on random forest, and a class-specific object-based method. Experimental results and accuracy
indexes show that our proposed method better considers the scale characteristics of ground objects
and achieves higher accuracy. Additionally, we compared our proposed method with other DLCD
methods including LamboiseNet, BIT, CDNet, FCSiamConc, and FCSiamDiff. Our results show that
our proposed method effectively considers edge information and has an acceptable time consumption.
Our approach not only considers the full-scale characteristics of the feature extraction but also the
scale characteristics of the change detection model. In addition, it considers a more practical feature
extraction unit (object), making it more accurate.

Keywords: change detection; UNet 3+; high-resolution; object-oriented

1. Introduction

Change detection is an advanced monitoring method that utilizes multi-date high-
resolution remote sensing images to identify changes on the Earth’s surface. Conse-
quently, it finds extensive utilization across various domains including land-use/land-cover
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analysis [1], urbanization process [2], building damage assessment and disaster impact
analysis [3], and numerous other fields [4,5]. The advancement of change detection holds
the potential to significantly enhance the precision and timeliness of earth observation.
However, the scale uncertainty issues in feature extraction and change detection pose
limitations on the accuracy and applicability of change detection. For feature extraction,
appropriate extraction units must be carefully selected because the type and size of the
unit directly determine the accuracy of the expression of change information. For change
detection, the selection of a specific change detection model will directly affect the learning
ability of features, and, thus, influence the final change detection results. In addition,
change detection is a more challenging task compared to single temporal remote sensing
image applications such as land-use and land-cover classification, scene classification, and
object detection. On one hand, change detection involves multiple temporal images and has
a larger amount of data. On the other hand, change detection involves the extraction of a
small amount of information, whereas other application problems involve the extraction of
a large amount of information [6]. Therefore, the scale problem will have a more significant
impact on change detection tasks.

To solve the scale problem in extracting change features, scholars have developed
multi-scale feature expression methods, optimal scale selection methods, and deep feature
expression methods. Multi-scale feature expression methods describe the characteristics of
the target structure within a certain scale range (such as wavelet transform [7,8] and object-
oriented). For example, Eklund et al. [9] extracted multi-scale features of ground objects
based on wavelet transform and obtained change detection results layer-by-layer based
on the multi-scale features. This method performs change detection based on pixels, so it
cannot avoid salt and pepper noise, and does not consider the true scale of ground objects.
Therefore, an object-oriented-based feature extraction method was developed. For example,
the integration of spectral and spatial features in multi-scale objects is developed for change
detection [10]. This study can perfectly unify the contradiction between fine-scale precision
and coarse-scale separability [11,12]. However, this study is like the research on multi-
scale feature expression methods based on wavelet transform. It integrates the multi-scale
change detection results to obtain more accurate change detection results [13,14] or fuses
spectral and spatial features of multi-scale objects for change detection [10]. However,
fusing shallow multi-scale results or multi-scale features to improve the accuracy of change
detection is limited, and it cannot be applied to complex scenes [9]. Optimal scale selection
methods are used to choose the best scale from multiple options. The popular method is
based on an object-oriented approach. For top-down segmentation, Zhou et al. [15] used the
complexity of the segmented object and the prior knowledge of thematic maps to determine
the optimal scale. The optimal scale parameter for the thematic map may not be the same
as the optimal scale parameter for the selected classification framework [16]. Moreover,
current optimal scale selection methods do not consider the differences in the characteristics
of ground objects. Recently scholars developed deep feature expression methods. This
method can extract low-dimensional and high-dimensional semantic features for change
detection by utilizing the powerful image representation and understanding capabilities of
deep learning models [17,18]. For example, Mou et al. [2] extracted the spectral, spatial,
and temporal characteristics of change information, and combined RNN and CNN models
to detect urban land expansion. This method is not a full-scale feature extraction network,
so the extracted features are still incomplete. In addition, the characteristics of the ground
objects are not effectively considered.

To address the scale issues in change detection models, scholars have developed
machine learning models and deep learning models. Levien et al. [19] employed decision
trees to detect changes in images. Lu et al. [20] utilized artificial neural network methods
for change detection. Huang et al. [21] employed the dark object concept and SVM to
automatically perform forest cover change analysis. Although these methods require
fewer training samples, their feature learning capabilities are limited and they cannot
learn the nonlinear relationship between the target’s feature information and changes.
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The emergence of deep learning methods has provided new insights. Currently, this
method is widely used in image fusion, image registration, scene classification, object
detection, land-use and land-cover classification, and object-based image analysis [22,23].
Initially, the majority of research on deep learning change detection (DLCD) was focused on
differential feature representation, while the final classifier employed simple classifiers such
as NNs [24,25]. For example, Xu et al. [26] employed auto encoders (AE) to extract deep
features from two VHR images and computed the difference between these deep features
for change detection. El Amin et al. [27] used the transfer learning method to learn the
multi-scale spectral and spatial characteristics of ground objects through pre-trained CNN
models for detecting changes in QuickBird-2 satellite images. Later, different deep learning
neural networks were integrated to conduct change detection. Gong et al. [28] combined
the CNN’s ability to learn multi-scale features with the GAN’s ability to automatically
generate high-quality difference maps for change detection in high-resolution images.
Zhang et al. [29] used CNN and transformer to detect binary changes in land use. Although
the integration of the deep learning model has enhanced change detection accuracy, most
methods are applied to specific sceneries, such as building change detection and landslide
detection, etc. General problems such as land-cover and land-use change detection remain
challenging [6]. Although some general DLCD methods have emerged, they do not address
the scale characteristics of ground object changes and cannot produce end-to-end change
detection results.

Recently, the emergence of the encoder-decoder end-to-end SegNet segmentation
network [30] has sparked a boom in scene classification. The SegNet network utilizes
up-pooling operations to achieve superior up-sampling, but it does not incorporate skip
connections. Therefore, it cannot effectively account for the multi-scale deep characteristics
of ground objects. To address this issue, the UNet network was introduced, extending
SegNet by incorporating a plain skip connection between the encoder and decoder layers to
enhance the acquisition of multi-scale deep features. This approach improved segmentation
accuracy and has been successfully applied to medical images [31] and remote sensing
images [32]. In 2018, Zhou et al. [33] proposed a novel medical image segmentation ar-
chitecture called UNet++, which can be regarded as an extension of UNet. This network
structure successfully reduces the gap between the feature maps from the encoder and de-
coder networks. In addition to the connection between the encoder and decoder networks,
UNet++ utilizes a series of nested and dense skip connections, endowing the network
architecture with the advantage of capturing details. Consequently, it can produce superior
segmentation results compared to UNet. Peng et al. [34] proposed an end-to-end change
detection method based on UNet++. However, the UNet++ network does not capture
sufficient information from multi-scales. Therefore, Huang et al. [35] proposed a UNet 3+
model. The UNet 3+ incorporates the full-scale skip connection and deep supervision meth-
ods based on UNet++. The full-scale skip connection enables the combination of high-level
and low-level semantic feature maps from different scales, while deep supervision learns
hierarchical representations from full-scale aggregated feature maps [35]. Additionally,
UNet 3+ reduces network parameters and improves computational efficiency. Mo et al. [36]
utilized it to detect building changes. Hence, this network can be used to extract and learn
full-scale features of images and holds great potential in detecting changes in land cover
and land use.

However, these DLCD methods are based on pixel-based or region-based inputs,
which do not consider the characteristics of the ground objects well and have poor edge
consideration capabilities. Incorporating object-oriented methods into DLCD can effectively
utilize the advantages of both feature extraction and change detection. Liu et al. [37]
used CNN under the OBIA framework to achieve much higher accuracy than traditional
classifiers such as random forests and support vector machines in drawing wet maps using
unmanned aerial vehicle imagery. Liu et al. [38] used LSTM under the OBIA framework to
perform change detection on aerial images, which has higher accuracy than pixel-based
methods. Zheng et al. [39] used object-oriented and twin fully convolutional network
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models for change detection and completed building hazard assessment work. These
successful cases highlight the significant potential of integrating object-oriented methods
with deep learning models. However, this method does not consider the scale characteristics
of ground objects, leading to inaccuracies in the change detection model.

To solve the problem of incomplete feature extraction and inaccurate change detection
models, we propose an object-oriented UNet 3+ change detection method that considers the
scale characteristics. This method includes three steps: a multi-scale segmentation method;
a class-specific UNet 3+ method; and an object-oriented change detection method based
on UNet 3+. In the first step, multi-temporal images and historical land cover maps are
overlaid and segmented to obtain multi-scale building, road, bare soil, vegetation, water,
and concrete objects. In the second step, the multi-scale hierarchical sampling (MSHS)
method is integrated with UNet 3+ for building, road, bare soil, vegetation, water, and
concrete objects individually. By combining training samples at multiple scales, the optimal
UNet 3+ model is selected for each type of ground feature change. The third step involves
employing the optimal UNet 3+ deep learning model to detect changes in multi-scale
objects such as buildings, roads, bare soil, vegetation, water, and concrete. This method
considers the actual scale of change for each surface object. It not only enables the extraction
and learning of full-scale features associated with surface object changes but also facilitates
the selection of the optimal change detection model for each surface object. Consequently,
it effectively addresses issues related to incomplete feature extraction and inaccuracies in
change detection models.

2. Materials and Methods
2.1. Data

Two datasets are obtained by GF-2 satellite for experimental analysis, both from
Liuzhou City, Guangxi Province, China. The R, G, and B bands are selected. The reference
change/no change map and land-cover map are both from the China Surveying and
Mapping Bureau. The reference change/no change maps and historical land-cover maps
are produced based on data with a resolution better than 1 m, and the accuracy is controlled
within 2 pixels. All images have a resolution of 0.8 m.

Image registration [40] and relative radiometric consistency methods [20] are used
to preprocess each dataset. The images in Dataset 1 and Dataset 2 were automatically
registered using the second-order affine polynomial and nearest-neighbor resampling
method in ArcGIS [41]. This process results in a registration error of less than 0.5 pixels,
which is considered acceptable for high-resolution imagery [41]. To ensure a consistent
spectral response, histogram matching was applied to the image pair with the greatest
spectral variance as reference images [42].

Dataset 1, shown in Figure 1a,b, consists of true color multi-spectral images of the
GF-2 satellite in 2015 and 2016, respectively, with a size of 5640 × 2842 pixels. Figure 1c
is a reference change/no change map, and Figure 1d is a land-cover map for 2015, which
includes six land-cover types: buildings, roads, bare soil, water, vegetation, and concrete.
Concrete refers to concrete surfaces other than buildings and roads. Therefore, land-
cover change types include building change, road change, base soil change, water change,
vegetation change, concrete change, and no change.

Dataset 2, shown in Figure 2a,b, consists of true color multi-spectral images of the
GF-2 satellite in 2015 and 2016, respectively, with a size of 4401 × 3417 pixels. Figure 2c
is a reference change/no change map, and Figure 2d is a land-cover map for 2015, which
includes six land-cover types: buildings, roads, bare soil, water, vegetation, and concrete.
Concrete refers to concrete surfaces other than buildings and roads. Therefore, land-
cover change types include building change, road change, base soil change, water change,
vegetation change, concrete change, and no change.
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2.2. Method

To address the scale issues related to incomplete feature extraction and inaccuracies in
change detection models, we propose an object-oriented UNet 3+ change detection method
that considers the scale characteristics inherent in various land-cover change types. This
method fully utilizes the multi-scale feature expression ability of object-oriented methods,
as well as the powerful generalization ability and full-scale feature learning ability of UNet
3+. The flowchart of this method is shown in Figure 3.
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Based on Figure 3, the method consists of three main steps. The first step is a multi-
scale segmentation method that considers the scale characteristics inherent in various
land-cover change types. The second step involves a class-specific UNet 3+ MSHS method
that also considers the scale characteristics of different land-cover change types. Finally, the
third step is an object-oriented change detection method based on UNet 3+. The following
subsections will provide a detailed explanation of each step.

2.2.1. A Multi-Scale Segmentation Method

The multi-scale segmentation method aggregates pixels and groups them together
based on their shape and compactness through the use of segmentation scale parameter, to
create image objects [43]. Assuming that we have two remote sensing images, image S1 in T1
and image S2 in T2, we can combine them using a simple band stacking technique to create
a single image pair S. We then use multi-scale segmentation methods along with historical
land-cover maps to obtain objects from the image pair S. The image pair S can be split from
top to bottom to create sub-scale object layers {L1, L2, · · · , LN}. After the segmentation
process, each object corresponds to a specific land-cover type such as buildings, roads, bare
soil, vegetation, water, and concrete, based on the attribute information extracted from the
historical land-cover map. To use these objects in a deep learning network, we resize them
to a size of 256 × 256 using bilinear interpolation, as the network cannot handle irregular
objects. The flowchart for this process is shown in Figure 4.
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2.2.2. A Class-Specific UNet 3+ Method

The MSHS method can automatically add training samples of changing and no chang-
ing regions without increasing manual workload [44]. By combining the object-oriented
method, MSHS method, and UNet 3+, we propose a class-specific UNet 3+ method. This
method considers the full-scale characteristics inherent in various land-cover change types,
establishing a more robust change detection model. It also enhances the UNet 3+ model by
extracting feature information from objects, accurately capturing the scale of geographical
entities, and considering the edge information. In this section, we introduce the UNet
3+ network, which includes full-scale skip connections and full-scale deep supervision.
Subsequently, we discuss a class-specific UNet 3+ method.

1. UNet 3+

The UNet 3+ model has introduced a new full-scale skip connection that improves
the interconnection between encoders and decoders [35]. This feature also optimizes the
internal connection between decoder subnets, which results in an overall improvement
in the model’s performance [35]. Unlike UNet and UNet++, which employ a plain skip
connection nested and dense skip connections similar to DenseNet [45], neither effectively
captures sufficient feature information across all scales. To address this issue, UNet 3+
combines smaller and same-scale feature maps from the encoder with larger-scale feature
maps from the decoder at each decoder layer. Consequently, the UNet 3+ model can
capture full-scale information, including both small-scale detail and large-scale semantic
information [35], which is illustrated in Figure 5.



Remote Sens. 2024, 16, 1846 8 of 26Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 28 
 

 

   
(a) UNet  (b) UNet++ (c) UNet 3+ 

Figure 5. Comparison of UNet 3+ with UNet and UNet++. Compared to UNet and UNet++, UNet 3+ 
utilizes full-scale skip connections to capture small-scale detail and large-scale semantic infor-
mation. 

(1) Full-scale skip connections 
Full-scale skip connections use skip connections to combine the smaller and same-

scale feature maps from the encoder and the high-scale semantic feature maps from the 
decoder. An example of full-scale skip connections for UNet 3+ [35] is shown in Figure 6. 
A feature map Xଷ  is established, like UNet, where the feature map comes from the en-
coding layer Xாଷ  at the same scale. In addition, a set of skip connections between encod-
ers and decoders can provide low dimensional information from encoding layers Xாଵ and Xாଶ  at a smaller scale using non-overlapping maximum pooling operations. In addition, 
a series of internal decoder skip connections transmit high-dimensional semantic infor-
mation Xସ and Xହ  from large-scale decoding layers through bilinear interpolation. 

There are five feature maps with the same resolution, and it is necessary to further 
unify the number of channels and reduce excess information. We chose a 3 × 3 kernel size 
with 64 filters for convolution. To integrate shallow information with deep semantic in-
formation seamlessly, a feature aggregation mechanism is further implemented on feature 
maps at five scales, including a 3 × 3 kernel size with 320 filters, batch normalization, and 
ReLU activation functions. The skip connection is represented by the formula as follows. i refers to the down-sampling layer in the encoding layer and N is the number of encod-
ing layers. The feature map X  [35] is as follows: 

X = ⎩⎪⎨
⎪⎧ Xா, 𝑖 = 𝑁

𝐻 ൮൦𝐶 ቀ𝐷(Xா )ቁୀଵିଵ , 𝑐(Xா )ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥௌ௦:ଵି , 𝐶 ቀ𝑈(X )ቁୀାଵேᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥௌ௦:(ାଵ)ିே ൪൲ , 𝑖 = 1, ⋯ , 𝑁 െ 1 (1)

𝐶(∙)  is a convolutional operator, and 𝐻(∙)  uses convolution, batch normalization, 
and ReLU activation functions to implement feature aggregation mechanisms. 𝐷(∙) and 𝑈(∙) refer to downsampling and upsampling operators, respectively. ሾ∙ሿ represents con-
catenation. 

 

Figure 5. Comparison of UNet 3+ with UNet and UNet++. Compared to UNet and UNet++, UNet 3+
utilizes full-scale skip connections to capture small-scale detail and large-scale semantic information.

(1) Full-scale skip connections

Full-scale skip connections use skip connections to combine the smaller and same-scale
feature maps from the encoder and the high-scale semantic feature maps from the decoder.
An example of full-scale skip connections for UNet 3+ [35] is shown in Figure 6. A feature
map X3

De is established, like UNet, where the feature map comes from the encoding layer
X3

En at the same scale. In addition, a set of skip connections between encoders and decoders
can provide low dimensional information from encoding layers X1

En and X2
En at a smaller

scale using non-overlapping maximum pooling operations. In addition, a series of internal
decoder skip connections transmit high-dimensional semantic information X4

De and X5
De

from large-scale decoding layers through bilinear interpolation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 6. The establishment of a full-scale feature graph in the third decoding layer Xୈୣଷ . 

(2) Full-scale deep supervision 
To learn multi-scale hierarchical feature maps from the full-scale feature map set, 

full-scale deep supervision was adopted in UNet 3+ [35]. Compared to the deep supervi-
sion implemented in the generated full-scale feature maps in UNet++, UNet 3+ generates 
a side output from each decoder level and is supervised by the ground truth map. 

To achieve deep supervision, the last layer stage of each decoder is sent to regular 3 
× 3 convolutional layers and then is subjected to bilinear upsampling and S-type functions. 
To highlight the boundaries of segmentation, a multi-scale structural similarity index loss 
function was introduced in UNet 3+ to assign greater weights to fuzzy boundaries. There-
fore, a UNet 3+ network pays more attention to fuzzy boundaries because the larger the 
regional distribution difference, the higher the MS-SSIM value. 

Cropping two corresponding N ൈ N blocks from the segmentation results P and the 
ground truth map G, denoted as P = ൛p୨: j = 1, ⋯ , Nଶൟ and G = ൛g୨: j = 1, ⋯ , Nଶൟ, and the 
MS-SSIM loss function [35] for P and G is defined as follows: l௦ି௦௦ = 1 െ ∏ (ଶ௨௨ାభ௨మା௨మ ାభ)ఉ( ଶఙାమఙమାఙమାమ)ఊெୀଵ       (2)𝑀 refers to the number of scales. 𝑢, 𝑢, 𝜎, 𝜎 are the mean and variance of p and g. 𝜎 refers to the deviation of p and g. The importance of two components for each 
scale is defined by 𝛽 and 𝛾. Add two constants 𝑐ଵ = 0.01 and 𝑐ଶ = 0.03 to avoid un-
stable situations of being divided by zero. In our experiment, the scale was set to 5, ac-
cording to [35]. 

By combining focus loss (l), MS-SSIM loss (l௦ି௦௦), and IoU (l௨), we develop a 
hybrid loss function for segmentation at three levels, including pixel level, region level, 
and map level. This loss function can capture large-scale and fine structures with clear 
boundaries. The hybrid loss function [35] is as follows. 

 l = l + l௦ି௦௦ + l௨  (3)

2. A Class-specific UNet 3+ method 
MSHS can learn multi-scale features from training samples and have higher accuracy 

compared to single-scale sampling methods [43,44]. In this paper, we apply the MSHS 
method to the UNet 3+ method to expand the multi-scale sample data and establish a more 
robust deep learning model. The flowchart of a class-specific UNet 3+ MSHS method is 
shown in Figure 7. 

Figure 6. The establishment of a full-scale feature graph in the third decoding layer X3
De.

There are five feature maps with the same resolution, and it is necessary to further
unify the number of channels and reduce excess information. We chose a 3 × 3 kernel
size with 64 filters for convolution. To integrate shallow information with deep semantic
information seamlessly, a feature aggregation mechanism is further implemented on feature
maps at five scales, including a 3 × 3 kernel size with 320 filters, batch normalization, and
ReLU activation functions. The skip connection is represented by the formula as follows. i
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refers to the down-sampling layer in the encoding layer and N is the number of encoding
layers. The feature map Xi

De [35] is as follows:

Xi
De =



Xi
En, i = N
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(1)

C(·) is a convolutional operator, and H(·) uses convolution, batch normalization, and
ReLU activation functions to implement feature aggregation mechanisms. D(·) and U(·)
refer to downsampling and upsampling operators, respectively. [·] represents concatenation.

(2) Full-scale deep supervision

To learn multi-scale hierarchical feature maps from the full-scale feature map set, full-
scale deep supervision was adopted in UNet 3+ [35]. Compared to the deep supervision
implemented in the generated full-scale feature maps in UNet++, UNet 3+ generates a side
output from each decoder level and is supervised by the ground truth map.

To achieve deep supervision, the last layer stage of each decoder is sent to regular
3 × 3 convolutional layers and then is subjected to bilinear upsampling and S-type func-
tions. To highlight the boundaries of segmentation, a multi-scale structural similarity index
loss function was introduced in UNet 3+ to assign greater weights to fuzzy boundaries.
Therefore, a UNet 3+ network pays more attention to fuzzy boundaries because the larger
the regional distribution difference, the higher the MS-SSIM value.

Cropping two corresponding N × N blocks from the segmentation results P and the
ground truth map G, denoted as P =

{
pj : j = 1, · · · , N2

}
and G =

{
gj : j = 1, · · · , N2

}
,

and the MS-SSIM loss function [35] for P and G is defined as follows:

lms−ssim = 1 − ∏M
m=1 (

2upug + c1

u2
p + u2

g + c1
)βm(

2σpg + c2

σ2
p + σ2

g + c2
)γm (2)

M refers to the number of scales. up, ug, σp, σg are the mean and variance of p and
g. σpg refers to the deviation of p and g. The importance of two components for each
scale is defined by βm and γm. Add two constants c1 = 0.01 and c2 = 0.03 to avoid
unstable situations of being divided by zero. In our experiment, the scale was set to 5,
according to [35].

By combining focus loss (l f l), MS-SSIM loss (lms−ssim), and IoU (liou), we develop a
hybrid loss function for segmentation at three levels, including pixel level, region level,
and map level. This loss function can capture large-scale and fine structures with clear
boundaries. The hybrid loss function [35] is as follows.

l = l f l + lms−ssim + liou (3)

2. A Class-specific UNet 3+ method

MSHS can learn multi-scale features from training samples and have higher accuracy
compared to single-scale sampling methods [43,44]. In this paper, we apply the MSHS
method to the UNet 3+ method to expand the multi-scale sample data and establish a more
robust deep learning model. The flowchart of a class-specific UNet 3+ MSHS method is
shown in Figure 7.

As shown in Figure 7, the proposed method involves incorporating MSHS into gener-
ating various sample combinations. These combinations are then fed into multiple UNet 3+
networks to detect changes in different types of land cover such as building, road, bare soil,
vegetation, water, and concrete. The error of cross-validation of training samples is used to
evaluate the performance of these networks. In the case of MSHS and RF, the minimum
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out-of-pocket error is used as a constraint condition [43]. For GBDT, Adaboost, and SVM,
the error of cross-validation of training samples is used instead of out-of-pocket error since
these methods do not have out-of-pocket errors [44]. The optimal classifiers for GBDT,
Adaboost, and SVM are selected based on the minimal cross-validation error. Similarly,
in the case of UNet 3+, the error of cross-validation of training samples is used since this
method also does not have an out-of-pocket error. When the error of cross-validation is
minimal, the corresponding UNet 3+ model is considered optimal for detecting changes in
buildings, roads, bare soil, vegetation, water, and concrete.
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Comparing the model structure of MSHS method using UNet 3+ with the model
structure of MSHS methods using RF, SVM, GBDT, and Adaboost classifiers, we found that
the former is more concise and can directly extract full-scale features without the need for
traditional object-oriented feature extraction steps.

2.2.3. An Object-Oriented Change Detection Method Based on UNet 3+

Step 1: Overlay bi-temporal images after registration and relative radiometric correc-
tion to form a new image, and then use a multi-scale segmentation method and a historical
land-cover map to segment and obtain the current scale object layers and sub-scale object
layers of the bi-temporal images. According to the land-cover map, we obtain the corre-
sponding land-cover types for each object and then use bilinear interpolation to adjust the
size of irregular objects to a regular rectangle of 256 × 256 pixels.

Step 2: For building, road, bare soil, vegetation, water, and concrete objects, we
perform MSHS separately. We distribute the training samples evenly across different scales
and assign labels to each object based on a reference change/no change pixel map. Finally,
we combine current-scale samples with sub-scale samples for each type of object.
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Step 3: We feed the combinations of training samples and their corresponding change
types into UNet 3+. Furthermore, we train several UNet 3+ classifiers and choose the
most suitable change detection model for buildings, roads, bare soil, vegetation, water,
and concrete. Our selection is based on the constraint condition of minimizing the cross-
validation error of the verification data.

Step 4: The optimal change detection model is utilized to identify changes in the
multi-scale object layers {L1, L2, · · · , LN} of the images captured during two different
periods, obtaining pixel-to-pixel change detection results of each building, road, bare soil,
vegetation, water, and concrete object at multiple scales.

To obtain the change detection result of the object, it is necessary to convert the pixel-
to-pixel result into an object result. Therefore, the change rate parameter is proposed
to determine whether the object has changed. The formula for the change rate and the
object-oriented change detection result is as follows:OC = 1, Change

Nochange ≥ CR

OC = 0, Change
Nochange < CR

(4)

CR is the change rate parameter and is a given parameter value, ranging from
0 to 1, and its size directly affects the final object change detection result. Change is the
number of pixels that have changed in the object, and Nochange is the number of pixels
that have not changed in the object. OC refers to the object’s change detection result, where
1 indicates that the object has changed, and 0 indicates that the object has not changed.

2.2.4. Accuracy Verification

In this paper, we utilize the confusion matrix to calculate the missed detection rates
(MDR), false alarm rates (FAR), overall accuracy (OA), and F1 score (F1) [46] to evaluate
the accuracy of change detection results. The confusion matrix is shown in Table 1.

Table 1. A confusion matrix for binary change detection based on objects.

Number of Objects Ground Truth
Change No Change

Change detection result Change True positives (TP) False positive (FP)
No change False negatives (FN) True negatives (TN)

TP represents the objects that change in the ground truth map, and the classification
method correctly classifies them as the number of changed objects. TN represents the
objects that do not change in the ground truth map, and the classification method cor-
rectly classifies them as unchanged objects. FP represents the objects that do not change
in the ground truth map but are incorrectly classified as changed objects by the classifi-
cation method. FN represents the objects that change in the ground truth map, but the
classification method incorrectly classifies them as unchanged objects.

MDR = FN/(TP + FN) (5)

FAR = FP/(TP + FP) (6)

OA = (TP + TN)/(TP + FP + FN + TN) (7)

P = TP/(TP + FP) (8)

R = TP/(TP + FN) (9)

F1 = 2P ∗ R/(P + R) (10)

The FAR indicates the ratio of unchanged objects detected as changed objects in the
ground truth map. The MDR indicates the ratio of changed objects not correctly detected as
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changed objects in the ground truth map. The P refers to the precision. The R refers to the
recall. The F1 refers to the harmonic mean of precision and recall [47]. The OA indicates the
ratio of correctly detected changed and unchanged samples to the total number of changed
and unchanged samples, reflecting the overall detection accuracy. The values of the MDR,
FAR, F1, and OA vary between 0 and 1. The closer the MDR and FAR are to 0, the closer
the OA and F1 are to 1, indicating a high accuracy of change detection methods.

3. Results

To validate the effectiveness of our proposed method, we conducted experiments
using two datasets for change detection. We compared our proposed method with the
UNet 3+ single-scale sampling method, the class-specific UNet 3+ single-scale sampling
method, and the UNet 3+ MSHS method. The UNet 3+ single-scale sampling method and
the UNet 3+ MSHS method do not consider the scale characteristics of change types of
different land cover. Our proposed method and the class-specific UNet 3+ single-scale
sampling method both consider scale characteristics of change types of different land cover.
This comparison experiment is performed on a laptop equipped with an Intel i9-13980HX
CPU and an NVIDIA RTX 4090 Tensor Core GPU card using the PyTorch framework.

3.1. Sampling

In this experiment, 80% of the images in Dataset 1 were used for training, and the
remaining 20% of the images in Dataset 1 and Dataset 2 were used as the testing data to cal-
culate the accuracy of the final change detection results. The training and testing processes
are completely independent. In the experiment of the optimal DLCD model selection, 75%
of the training samples were selected as the training data, and the remaining part of the
training samples were used as the verification data to calculate the error of cross-validation.

In the multi-scale segmentation experiment, for Dataset 1 and Dataset 2, we selected
five segmentation scales {L1, L2, · · · , L5} with a segmentation interval of 40, ranging from
scale 40 to 200. The shape parameter was set to 0.3, and the compactness parameter was
set to 0.5. During sampling, the training objects at five scales need to be kept in the same
position. The random polygon samples and the object layer at five scales are stacked to
obtain the training objects. We selected the object with the most pixels superimposed on
the random polygon sample as the training object. After determining the training objects at
level 5, the training objects at levels 1–4 are determined through the hierarchical relationship
between multi-scale layers. The label of each training object is determined based on the
pixel ground truth map.

3.2. Model Training and Testing

We performed a comprehensive analysis of the selection of training samples for single-
scale sampling methods at scales 40, 80, 120, 160, and 200. Furthermore, we calculated the
maximum number of training samples using MSHS for buildings, roads, bare soil, vegetation,
water, and concrete. To analyze the accuracy of the trained model, we evaluated the loss
value for training samples at iteration 0, 5, and 10. This analysis is presented in Table 2.

Table 2. The number of training samples for the single-scale sampling method at scales 40, 80, 120,
160, and 200, the maximum number of training samples using MSHS, and the loss value of our trained
model at iterations 0, 5, and 10 for buildings, roads, bare soil, vegetation, water, and concrete.

Land Cover
Single-Scale Sampling

MSHS
Loss at

Iteration 0
Loss at

Iteration 5
Loss at

Iteration 10Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

Building 5475 1523 734 427 311 8470 0.1512 0.1200 0.1103
Road 1212 410 213 144 78 2057 0.2375 0.1899 0.1719

Bare soil 3166 875 440 255 182 4918 0.2464 0.2099 0.1940
Vegetation 6828 1656 787 462 313 10,046 0.1477 0.1161 0.1067

Water 882 256 136 84 48 1406 0.1879 0.1379 0.1165
Concrete 1680 508 268 169 111 2736 0.1665 0.1307 0.1197
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From Table 2, the proposed MSHS has more training samples compared to the single-
scale sampling method. In addition, after iterating the UNet 3+ change detection model
from 5 to 10 times, the loss values of the change detection models for buildings, vegetation,
water, and concrete are similar and are both approximately 0.1, which are considered
suitable for the next step of change detection. For roads and bare soil, the loss values
of the change detection models from iteration 5 to 10 are similar and both are less than
0.2. Therefore, they are also used for the next step of change detection.

The proposed DLCD model trained on 80% of the pixels in Dataset 1 was used to
detect the remaining 20% of pixels in Dataset 1. Comparative experiments were conducted
to compare our proposed method with the UNet 3+ single-scale sampling method, the
class-specific UNet 3+ single-scale sampling method, and the UNet 3+ MSHS method. The
change detection results of the UNet 3+ single-scale sampling method, the class-specific
UNet 3+ single-scale sampling method, the UNet 3+ MSHS method, and our proposed
method at the scale 200 for Dataset 1 are shown in Figure 8.
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Figure 8. Reference change/no change map, reference land-cover change map, and experimental
results of the UNet 3+ single sampling method, the class-specific UNet 3+ single-scale sampling
method, the UNet 3+ MSHS method, and our proposed method at the scale 200 for Dataset 1.

From Figure 8, the change detection results of the class-specific UNet 3+ single-scale
sampling method and our proposed method have significantly improved visual accuracy
compared to the results of the UNet 3+ single sampling method and the UNet 3+ MSHS
method. This illustrates the importance of considering the scale characteristics of different
types of land-cover change. In addition, by comparing our proposed method with the
class-specific UNet 3+ single-scale sampling method, our proposed method could detect
more change in types of land cover. This illustrates the effectiveness of the MSHS method.

The FAR, MDR, OA, and F1 values of change detection results using the UNet 3+
single-scale sampling method, the class-specific UNet 3+ single-scale sampling method, the
UNet 3+ MSHS method, and our proposed method for Dataset 1 are calculated as shown
in Table 3.

From Table 3, the OA and F1 values of the change detection results for the class-specific
UNet 3+ single-scale sampling method and our proposed method have been significantly
improved compared to the UNet 3+ single-scale sampling method and the UNet 3+ MSHS
method. This illustrates the importance of considering the scale characteristics of different
types of land-cover change. In addition, comparing our proposed method with the class-
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specific UNet 3+ single-scale sampling method, our proposed method has higher OA and
F1, and a lower MDR, indicating the effectiveness of the proposed MSHS.

Table 3. Comparative analysis results of accuracy indexes of the UNet 3+ single-scale sampling
method, the class-specific UNet 3+ single-scale sampling method, the UNet 3+ MSHS method, and
our proposed method for Dataset 1.

Accuracy The UNet 3+ Single-Scale
Sampling Method

The Class-Specific UNet 3+
Single-Scale Sampling Method

The UNet 3+
MSHS Method Our Proposed Method

FAR 24.75% 19.29% 79.59% 22.69%
MDR 76.34% 44.41% 19.08% 29.83%
OA 82.85% 88.24% 31.80% 89.72%
F1 36.00% 65.83% 32.60% 73.56%

To conduct an accurate analysis of change detection results in buildings, roads, bare
soil, vegetation, water, and concrete using our proposed method and the class-specific
UNet 3+ single-scale sampling method, the FAR, MDR, and F1 values of change detection
results using these two methods for Dataset 1 were calculated, as shown in Table 4.

Table 4. Comparative analysis results of accuracy indexes of change detection results using our
proposed method and the class-specific UNet 3+ single-scale sampling method for Dataset 1.

Accuracy Indexes FAR MDR F1

Land Cover Our Proposed
Method

The Class-Specific
UNet 3+

Single-Scale
Sampling Method

Our Proposed
Method

The Class-Specific
UNet 3+

Single-Scale
Sampling Method

Our Proposed
Method

The Class-Specific
UNet 3+

Single-Scale
Sampling Method

Building 0.29 1 0.35 1 0.68 0
Road 1 1 1 1 0 0

Bare soil 0.21 0.21 0.28 0.28 0.75 0.75
Vegetation 0.18 0.11 0.26 0.51 0.78 0.63

Water 0.74 1 0.67 1 0.29 0
Concrete 0.45 1 0.58 1 0.48 0

No changes 0.07 0.11 0.05 0.03 0.94 0.93

From Table 4, the class-specific UNet 3+ single-scale sampling method only detects
changes in bare soil, vegetation, and no changes, while our proposed method can detect
changes in buildings, bare soil, vegetation, water, and concrete, which illustrates the
fact that our proposed method can detect more change types of land cover, proving the
effectiveness of the combination of MSHS and the UNet 3+ method, which considers the
scale characteristics inherent in various land-cover change types.

3.3. Experimental Results

To clarify the generalization ability of our proposed method, we used the object-oriented
change detection model based on UNet 3+ trained from Dataset 1 to detect changes in
buildings, roads, bare soil, vegetation, water, and concrete at scales 40, 80, 120, 160, and
200 for Dataset 2. The change detection results of bare soil and vegetation using our proposed
method at scales 40, 80, 120, 160, and 200 for Dataset 2 are shown in Figures 9 and 10.

From Figures 9 and 10, the change detection results of bare soil and vegetation at
different scales are visually different. The change detection results at small scales have more
false detections, and the large-scale change detection results have more missed detection,
indicating the scale’s effect on change detection results.

We further analyzed the relationship between the object-oriented change detection
results at scales 40, 80, 120, 160, and 200 and the end-to-end pixel change detection results
for bare soil and vegetation. The details of change detection results using our proposed
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method and the ground truth maps at scales 40, 80, 120, 160, and 200 for bare soil and
vegetation objects for Dataset 2 are shown in Figures 11 and 12.
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From Figures 11 and 12, the object-oriented change detection model based on UNet 3+
can specifically determine whether each pixel in the object has changed, which can effec-
tively consider the edges of the object. Compared to non-end-to-end methods, this method
is more accurate. These illustrate that the proposed method fully combines the advantages
of pixels and object-oriented methods, which can obtain multi-scale object-based change
detection results and pixel-based change maps inside the object.
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Figure 12. Details of the change detection result of vegetation objects at scales 40, 80, 120, 160, and
200 for Dataset 2. The change detection results of vegetation are displayed in RGB. The red band rep-
resents change. The green band represents unchanged, and the blue band represents the background.

3.4. Accuracy Analysis of the Algorithm

To assess the model’s ability to generalize, the MDR, FAR, OA, and F1 values of the
change detection results of bare soil, vegetation, buildings, concrete, roads, and water using
our proposed method at scale 40, 80, 120, 160, and 200 for Dataset 2 were then calculated,
and are presented in Tables 5–10.
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Table 5. Accuracy indicators for change detection results of bare soil at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 19.09% 25.34% 26.41% 30.11% 27.69%
MDR 19.69% 14.54% 11.63% 11.24% 17.70%
OA 77.41% 73.84% 72.94% 70.39% 70.27%
F1 80.61% 79.70% 80.31% 78.20% 76.98%

Table 6. Accuracy indicators for change detection results of vegetation at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 0.17% 12.65% 17.69% 20.97% 20.24%
MDR 16.09% 41.30% 49.92% 56.34% 63.17%
OA 96.73% 89.87% 87.54% 85.98% 85.21%
F1 91.18% 70.21% 62.27% 56.24% 50.39%

Table 7. Accuracy indicators for change detection results of buildings at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 37.38% 47.02% 41.70% 34.66% 56.35%
MDR 56.53% 74.84% 78.54% 86.98% 95.97%
OA 91.21% 89.17% 89.48% 89.37% 88.46%
F1 51.32% 34.12% 31.37% 21.71% 7.38%

Table 8. Accuracy indicators for change detection results of concrete at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 3.00% 21.02% 32.71% 35.83% 39.67%
MDR 44.06% 59.38% 60.90% 64.97% 70.09%
OA 92.75% 87.96% 85.78% 85.42% 83.46%
F1 70.96% 53.65% 49.46% 45.32% 39.99%

Table 9. Accuracy indicators for change detection results of roads at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 100.00% 100.00% 100.00% 100.00% 100.00%
MDR 100.00% 100.00% 100.00% 100.00% 100.00%
OA 99.78% 99.78% 99.78% 99.78% 99.78%
F1 0.00% 0.00% 0.00% 0.00% 0.00%

Table 10. Accuracy indicators for change detection results of water at different scales for Dataset 2.

Accuracy Scale 40 Scale 80 Scale 120 Scale 160 Scale 200

FAR 61.56% 62.12% 78.49% 93.73% 90.48%
MDR 46.28% 54.18% 86.40% 91.14% 90.61%
OA 96.42% 96.61% 96.55% 94.99% 96.00%
F1 44.81% 41.48% 16.66% 7.34% 9.45%

Based on the findings from Tables 5–10, it is evident that the model can provide
highly precise change detection outcomes for bare soil and vegetation for Dataset 2. This is
because there are more training samples for bare soil and vegetation. The accuracy values
of buildings and concrete are not high due to poor projection and shadows. However, the
accuracy values of roads and water are comparatively lower. This is because these two
change detection models used fewer training samples to train the model, and their changes
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in the image were limited. The roads did not change, and the water changes were minimal
in the image.

4. Discussion
4.1. Comparison with Other Traditional Change Detection Methods

To evaluate the effectiveness of our proposed method, the binary change detection
results are compared with the PCA-k-means [48], the object-oriented change vector analysis
method [49], the single-scale sampling method based on random forest, and the class-specific
object-based method [44] for Dataset 2. The object-oriented change vector analysis method,
the single-scale sampling method based on random forest, and our proposed method all
perform change detection at scale 40. The comparison results are shown in Figure 13.
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As shown in Figure 13, visually, the proposed method has fewer false positives and
false negatives, so it has higher visual accuracy compared to the PCA-k-means, the object-
oriented change vector analysis, the single-scale sampling method based on random forest,
and the class-specific object-based method for Dataset 2.

For Dataset 2, we calculated the FAR, MDR, OA, and F1 values of our proposed
method, the PCA-k-means, the object-oriented change vector analysis, the single-scale
sampling method based on random forest, and the class-specific object-based method, as
shown in Table 11.

As shown in Table 11, for Dataset 2, compared to the pixel-based method (PCA-k-
means), our proposed method has higher OA and F1 while having lower false detection,
demonstrating the effectiveness of the combination of an object-oriented approach and
UNet 3+. Compared to the single-scale method (OCVA and single-scale sampling method
based on random forest) and the multi-scale method considering the scale uncertainty
(the class-specific object-based method and our proposed method), the latter has higher
accuracy. This is because the latter can consider the scale characteristics of different land-
cover change types, which is not only close to the true expression of ground objects but also
more targeted. Compared to traditional machine learning methods (single-scale sampling
method based on random forest and the class-specific object-based method), our proposed
method has higher OA and F1 while having lower false detection, demonstrating the
effectiveness of the UNet 3+ model. Compared to the class-specific object-based method,



Remote Sens. 2024, 16, 1846 20 of 26

our proposed method has higher OA and F1, and lower false detection, indicating the
effectiveness of the combination of the object-oriented method, MSHS, and UNet 3+ model.

Table 11. Accuracy comparison analysis results of the PCA-k-means, the object-oriented change
vector analysis method, the single-scale sampling method based on random forest, the class-specific
object-based method, and our proposed method for Dataset 2.

Dataset 2 FAR (%) MDR (%) OA (%) F1 (%)

PCA-K-means 85.99 64.77 77.88 20.05
OCVA (scale 40) 76.92 82.63 76.98 19.82

RF (scale 40) 86.10 92.53 77.26 9.72
A class-specific object-based method 45.71 50.94 93.40 51.54

Our proposed method (scale 40) 9.48 25.00 94.62 82.04

4.2. Comparison with Other DLCD Methods

To evaluate the effectiveness of our proposed method, the binary change detection
results are compared with LamboiseNet (light UNet++) [50], BIT [51], CDNet [52], FC-
SiamConc [53], and FCSiamDiff [53]. We use the default parameters from the literature
for the LamboiseNet (light UNet++), BIT, CDNet, FCSiamConc, and FCSiamDiff. Lam-
boiseNet, BIT, CDNet, FCSiamConc, and FCSiamDiff are region-based network algorithms
(256 × 256). Therefore, when performing change detection, edges less than 256 are dis-
carded. The corresponding results are shown in Figure 14.
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As shown in Figure 14, visually, the proposed method has higher accuracy compared to
the LamboiseNet, BIT, CDNet, FCSiamConc, and FCSiamDiff methods. The LamboiseNet,
BIT, CDNet, FCSiamConc, and FCSiamDiff methods have a high false negative rate and
poor object edges, indicating that this method considers the advantages of the object-
oriented method for detecting edge information of land-cover change.

For Dataset 2, we calculated the FAR, MDR, OA, and F1 values of our proposed
method, LamboiseNet, BIT, CDNet, FCSiamConc, and FCSiamDiff, as shown in Table 12.

Table 12. Accuracy comparison analysis results of LamboiseNet, BIT, CDNet, FCSiamConc, FCSi-
amDiff, and our proposed method for Dataset 2.

Dataset 2 FAR (%) MDR (%) OA (%) F1 (%)

LamboiseNet 75.82 78.19 75.94 22.93
BIT 42.71 63.33 85.12 44.72

CDNet 38.21 50.59 86.68 54.91
FCSiamConc 34.97 41.72 88.01 61.47
FCSiamDiff 27.50 58.46 87.82 52.82

Our proposed method (scale 40) 9.48 25.00 94.62 82.04

As shown in Table 12, for Dataset 2, compared to the LamboiseNet, BIT, CDNet,
FCSiamConc, and FCSiamDiff, our proposed method has higher OA and F1, and lower false
detection, indicating the effectiveness of DLCD method considering the scale characteristics
of different land-cover change types.

We ran LamboiseNet, BIT, CDNet, FCSiamConc, FCSiamDiff, and our proposed method
on a laptop equipped with an Intel i9-13980HX CPU and an NVIDIA RTX 4090 Tensor Core
GPU card using the PyTorch framework for comparison experiments. Training time for each
training sample of these five DLCD methods is shown in Table 13.

Table 13. Training time for each training sample of LamboiseNet, BIT, CDNet, FCSiamConc, FCSi-
amDiff, and our proposed method for Dataset 2.

Methods Training Time for Each
Training Sample (S)

Average Time for Each
Training Sample (S)

LamboiseNet 4.2 4.2
BIT 0.96 0.96

CDNet 1.21 1.21
FCSiamConc 0.88 0.88
FCSiamDiff 0.95 0.95

Our proposed method (building) 1.23

1.21

Our proposed method (road) 1.22
Our proposed method (bare soil) 1.14

Our proposed method (vegetation) 1.24
Our proposed method (water) 1.18

Our proposed method (concrete) 1.22

From Table 13, compared to other DLCD methods, the average training time for each
training sample of our proposed method for buildings, roads, base soil, vegetation, water,
and concrete is about 1.21 s, which is an acceptable time consumption.

4.3. Sensitivity of the Algorithm

To test the impact of scale on the proposed method, the FAR, MDR, OA, and F1 values
of the change detection results of buildings, roads, bare soil, vegetation, water, and concrete
at scales 40–200 (with an interval of 40) for Dataset 2 were calculated for a change rate of
0.05, as shown in Figure 15. To test the impact of change rate on the proposed method, the
FAR, MDR, OA, and F1 values of the change detection results of buildings, roads, bare soil,
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vegetation, water, and concrete at scale 40 with a change rate of 0.05–0.4 (interval of 0.05)
for Dataset 2 were calculated, as shown in Figure 16.

Remote Sens. 2024, 16, x FOR PEER REVIEW 24 of 28 
 

 

 
Figure 15. The FAR, MDR, OA, and F1 values of the change detection results of buildings, roads, 
bare soil, vegetation, water, and concrete at scales 40–200 (with an interval of 40) for Dataset 2. 

From Figure 15, the scale has a significant impact on the MDR, FAR, OA, and F1 
values of buildings, bare soil, vegetation, water, and concrete. For vegetation and concrete, 
the MDR shows an upward trend with the increase in scale, and the OA and F1 show a 
downward trend, indicating that a small scale is suitable for the change detection of veg-
etation and concrete. For buildings, the MDR shows an upward trend, and the OA shows 
a downward and upward trend first, and then downward, while F1 shows a downward 
trend. This indicates that a small scale is suitable for the change detection of buildings. In 
the future, smaller scales can be considered for change detection of these land-cover types. 
For bare soil, the MDR shows a downward and upward trend, reaching the lowest at scale 
120, and the OA shows a downward trend, while F1 shows a downward and upward 
trend first, and then downward. For water, the MDR shows an upward and downward 
trend, and the OA shows an upward trend and downward first, and then upward, while 
F1 shows a downward and upward trend. For buildings, the FAR shows an upward and 
downward trend first, and then upward. For bare soil and vegetation, the FAR shows an 
upward trend and a downward trend. For water, the FAR shows an upward and down-
ward trend. For concrete, the FAR shows an upward trend. These FAR trends indicate that 
there is no uniform rule for the impact of scale on the FAR of various ground objects. It 
needs to be determined according to the specific situation in practical application. How-
ever, for roads, due to too few changes, it is impossible to effectively draw laws on the 
MDR, FAR, OA, and F1. It can be inferred from the rules of other ground objects that when 
there are as many training samples of roads as other features, the change detection accu-
racy of the road is easily affected by the scale. 

 

 

FA
R

M
D

R

O
A F1

Figure 15. The FAR, MDR, OA, and F1 values of the change detection results of buildings, roads, bare
soil, vegetation, water, and concrete at scales 40–200 (with an interval of 40) for Dataset 2.
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From Figure 15, the scale has a significant impact on the MDR, FAR, OA, and F1
values of buildings, bare soil, vegetation, water, and concrete. For vegetation and concrete,
the MDR shows an upward trend with the increase in scale, and the OA and F1 show a
downward trend, indicating that a small scale is suitable for the change detection of vege-
tation and concrete. For buildings, the MDR shows an upward trend, and the OA shows
a downward and upward trend first, and then downward, while F1 shows a downward
trend. This indicates that a small scale is suitable for the change detection of buildings. In
the future, smaller scales can be considered for change detection of these land-cover types.
For bare soil, the MDR shows a downward and upward trend, reaching the lowest at scale
120, and the OA shows a downward trend, while F1 shows a downward and upward trend
first, and then downward. For water, the MDR shows an upward and downward trend,
and the OA shows an upward trend and downward first, and then upward, while F1 shows
a downward and upward trend. For buildings, the FAR shows an upward and downward
trend first, and then upward. For bare soil and vegetation, the FAR shows an upward
trend and a downward trend. For water, the FAR shows an upward and downward trend.
For concrete, the FAR shows an upward trend. These FAR trends indicate that there is no
uniform rule for the impact of scale on the FAR of various ground objects. It needs to be
determined according to the specific situation in practical application. However, for roads,
due to too few changes, it is impossible to effectively draw laws on the MDR, FAR, OA,
and F1. It can be inferred from the rules of other ground objects that when there are as
many training samples of roads as other features, the change detection accuracy of the road
is easily affected by the scale.

As shown in Figure 16, the change rate has a significant impact on the MDR and F1 of
buildings, bare soil, vegetation, water, and concrete. Except for roads and water, the MDR
of other ground objects gradually increases with the increase in the change rate, while the
OA and F1 gradually decrease with the increase in the change rate, indicating that it is
appropriate to choose a small change rate when using this method for change detection.
For the FAR, the change rate has little impact. For roads and water, due to too little change,
it cannot be effectively detected. Based on the rules of other ground objects, it seems that
when there are as many training samples of roads as other features, the accuracy of change
detection on roads can be significantly impacted by change rates.

In this paper, we focus on comparing the effects of different scales and change rates
on the accuracy of surface objects, without obtaining the optimal scale and change rate
for each land-cover change type. In the future, we plan to combine the multi-scale feature
expression, optimal scale selection, and optimal change rate selection method for efficient
change detection. The model’s accuracy may suffer when there are fewer training samples
or fewer changes for ground objects on remote sensing images during change detection
for objects such as roads and water. In the future, we will add prior information for roads
and water bodies, such as water body index, road shape index, etc., so that the model can
detect a small number of changes.

In addition, we employed the bilinear interpolation method, a commonly used inter-
polation method, to transform irregular objects into regular objects, which retains the edge
information of the object and meets the input requirements of the deep learning model.
However, this method has an impact on the quality of training and testing objects, which,
in turn, affects the performance of the deep learning model. To reduce the impact of the
bilinear interpolation method on the deep learning model, we used an MSHS method for
fitting and used the same interpolation method during both the training and testing phases.
The study of interpolation methods on the impact of objects is an important research di-
rection for future improvements in our proposed method. As a result, we plan to explore
the impact of various interpolation methods on the performance of DLCD models in the
future. Our proposed method relies on RGB bands, potentially resulting in the loss of
valuable information from other spectral bands. In future work, we plan to explore the
integration of additional band information to fully exploit the spectral characteristics of
ground objects for more effective change detection. Moreover, errors in classification maps
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generated by standard post-classification procedures may accumulate. Hence, we chose
a direct classification method for change detection in this study. Nonetheless, we plan to
explore the possibility of employing post-processing classification methods to leverage
prior information and further enhance the efficacy of our approach in future research.

5. Conclusions

In this paper, for the scale issues in feature description and change detection models,
we propose a novel UNet 3+ change detection method considering scale uncertainty for
land-cover change detection. Our proposed method comprises three main steps: a multi-
scale segmentation method, the class-specific UNet 3+ method, and the object-oriented
change detection method based on UNet 3+. To validate the effectiveness of our proposed
method, we employed the model trained on Dataset 1 to validate both the remaining parts
of Dataset 1 and Dataset 2. Our proposed method was compared against the UNet 3+
single-scale sampling method, the class-specific UNet 3+ single-scale sampling method,
and the UNet 3+ MSHS method. The results indicate that our approach achieves higher
OA and F1 while exhibiting lower MDR and FAR. Furthermore, our proposed method
demonstrates the ability to detect more changes in land cover. To assess the scalability of
our proposed method, we compared it with traditional change detection methods such as
PCA-k-means, OCVA, the single-scale sampling method based on random forest, and the
class-specific object-based method. Our experimental results and accuracy demonstrate
that our proposed method considers the scale characteristics of different land cover change
types using the UNet 3+ model, resulting in higher accuracy. Additionally, we compared
our proposed method with other DLCD methods including LamboiseNet, BIT, CDNet,
FCSiamConc, and FCSiamDiff. The results show that our proposed method effectively
considers edge information and has an acceptable time consumption. In summary, our
proposed method considers the scale characteristics inherent in various land-cover change
types and builds specific change detection models for each land-cover type, which bet-
ter considers edge information. However, the accuracy of our proposed method may be
influenced by scale, change rate, and interpolation method. In addition, our proposed
method shows remarkable performance on bare soil and vegetation, but it shows subopti-
mal performance for roads and water, which undergo fewer changes, and for buildings and
concrete due to poor projection and shadows. Therefore, in the future, we will introduce
more geoscience knowledge to improve our proposed method, and establish a knowledge-
and data-driven DLCD model.
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