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Abstract: Vegetation classification has always been the focus of remote sensing applications, especially
for tropical regions with fragmented terrain, cloudy and rainy climates, and dense vegetation. How
to effectively classify vegetation in tropical regions by using multi-spectral remote sensing with
high resolution and red-edge spectrum needs to be further verified. Based on the experiment in
Wenchang, Hainan, China, which is located in the tropical monsoon region, and combined with the
ZY-1 02D 2.5 m fused images in January, March, July, and August, this paper discusses whether
NDVI and four red-edge vegetation indices (VIs), CIre, NDVIre, MCARI, and TCARI, can promote
vegetation classification and reduce the saturation. The results show that the schemes with the highest
classification accuracies in all phases are those in which the red-edge VIs are involved, which suggests
that the red-edge VIs can effectively contribute to the classification of vegetation. The maximum
accuracy of the single phase is 86%, and the combined accuracy of the four phases can be improved
to 92%. It has also been found that CIre and NDVIre do not reach saturation as easily as NDVI and
MCARI in July and August, and their ability to enhance the separability between different vegetation
types is superior to that of TCARI. In general, red-edge VIs can effectively promote vegetation
classification in tropical monsoon regions, and red-edge VIs, such as CIre and NDVIre, have an
anti-saturation performance, which can slow down the confusion between different vegetation types
due to saturation.

Keywords: high resolution; red-edge VIs; saturation; vegetation classification; ZY1-02D

1. Introduction

Vegetation resources are the material bases for human survival, including crops,
woodlands, grasslands, and other categories, which provide important ecosystem services
for human production and life. Adequate monitoring of vegetation resources is therefore
an important prerequisite for assisting decision-making and tracking management. Multi-
spectral remote sensing technology has become an effective means of monitoring vegetation
resources because of its advantages such as rich data resources, wide coverage and fast
timeliness. Multi-spectral remote sensing has been fully utilized in vegetation classification
with the help of various types of remote sensing features, but the number of types that can
be distinguished and the accuracy of classification still need to be improved. Especially in
the tropical monsoon region, where the terrain is fragmented, the weather is cloudy and
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rainy, and the vegetation is dense, the uncertainty of remote sensing observation has been
enhanced, and the complexity of vegetation classification has been greatly increased [1,2].
The tropical monsoon climate is distributed in most parts of South Asia and Southeast
Asia from 10◦N to the Tropic of Cancer, such as Southern Taiwan Province, Leizhou
Peninsula of Guangdong Province, Hainan Province and Southern Yunnan Province of
China, Indochina Peninsula, most of the Indian Peninsula, Philippines and other places. It
is of great significance to strengthen the research on vegetation classification in the tropical
monsoon region.

VIs as an indicator that can reflect the growth and coverage of vegetation, are widely
used in land cover classification, inversion of vegetation physiological and ecological
parameters, vegetation type identification, and so on. Among them, the Normalized Differ-
ence Vegetation Index (NDVI) is the most widely used [3,4]. NDVI can clearly differentiate
green vegetation from the soil background with long-term observation availability and
ease of use. However, the vegetation in tropical monsoon regions is generally dense. Due
to the saturation of the red light channel and the inherent saturation defect of its formula,
NDVI is prone to saturation in areas with high vegetation coverage, resulting in decreased
sensitivity to dense vegetation and reduced vegetation identification efficiency [5,6]. Based
on Difference Vegetation Index (DVI), Enhanced Vegetation Index (EVI), Green Normalized
Difference Vegetation Index (GNDVI), NDVI, Ratio Vegetation Index (RVI), Soil Adjusted
Vegetation Index (SAVI) and other VIs, by using the images of Sentinel, Landsat and the
standard vegetation products of MODIS, SPOT4, scholars have carried out some studies
on vegetation classification in tropical monsoon climate regions [7–14]. However, most of
these studies are based on middle- and low-resolution images, and adopt VIs based on
visible, near-infrared, and short-wave infrared. There are few studies on the effectiveness
of red edge and its vegetation index, which are closely related to the pigmentation status
of vegetation.

The red edge is closely related to the physicochemical parameters of green vegetation
and can change with vegetation species and growth stage. Red-edge information was first
applied in hyperspectral remote sensing and is commonly used in the inversion of vege-
tation physiological and biochemical parameters such as chlorophyll content, Leaf Area
Index (LAI), biomass, nitrogen content, as well as in the monitoring of crop growth and
pests [15]. Previous studies have shown that the red-edge VIs are more sensitive to plant
physiological conditions than NDVI, and have certain anti-saturation performance [16,17].
For example, compared with NDVI, Delegido et al. obtained the strongest linear correlation
between red-edge normalized difference index (NDI) and LAI in combination with 674 nm
and 712 nm bands, and NDI was not saturated at a large value [18]. At present, more
and more multispectral satellites have increased the red-edge spectrum, such as RapidEye,
WorldView-2/3, Sentinel-2, and China’s GF-6 and ZY1-02D/E satellites. A few studies
have shown that the red-edge VIs can enhance the separability for vegetation classification
and identification. Üstüner et al. explored the effects of NDVI, GNDVI, and Normalized
Difference Red-Edge Index (NDRE) on crop classification in the Aegean region based on
the RapidEye images, and found that the NDRE contributed the most to the classification
accuracy [19]. Wu Jing et al., conducted a fine classification of crops in Jingtai County based
on Sentinel-2A data, confirming that the Red-Edge Normalized Vegetation Index (RENDVI)
can assist NDVI in improving the classification accuracy [20]. Huang et al. classified the
plantation types of Gaofeng Forest Farm in Guangxi based on the GF-6 WFV image, and
the classification accuracy was the highest by using the combination of 8-band, Chloro-
phyll Index red edge (CIre) and New Inverted Red Edge Chlorophyll Index (IRECI) [21].
However, these classifications mainly explore the vegetation classification performance of
the red-edge VIs. Few studies have been conducted on the effectiveness and anti-saturation
properties of red-edge VIs in vegetation classification in tropical monsoon areas.

The saturation condition of NDVI will change with the growth stages of different
vegetation types, that is, the saturation characteristics of NDVI have phenological changes.
Time series VIs can reflect the growth process and phenological characteristics of different
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vegetation types, and it is a commonly used method in existing research. Yan et al. extracted
the phenological characteristics of vegetation on the basis of constructing the time series
NDVI and EVI and realized the high-precision classification of eight vegetation types. The
result shows that adding phenological characteristics to the time series VIs is helpful to
further improve the classification accuracy [22]. Combined with the time series red-edge
VIs, related application research has also been carried out in a small amount. Zheng
et al., constructed time series CIre and NDVI based on the ground spectrum to detect the
main phenological phases of rice [23]. The result shows that CIre can accurately estimate
the jointing, booting, and graining stages of rice and combined with CIre and NDVI can
effectively serve the management of irrigation, fertilization, and harvest.

This paper takes Wenchang, Hainan, China as the study area, which is located in the
tropical monsoon region and uses multi-temporal ZY1-02D visible near-infrared (VNIR)
sensor images as the data source. The main research objectives are: (1) to make full
use of the red-edge VIs of multi-temporal images to realize high-precision vegetation
classification of fragmented terrain; (2) to explore whether the red-edge VIs are sensitive to
the tropical vegetation types and whether they can solve the saturation problem of NDVI in
the vegetation classification, so as to promote the effective application of the red-edge VIs.

2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Overview of the Study Area and Field Survey

The study area is located in Wenchang City, Hainan Province, China (Figure 1). The
geographic coordinates of Wenchang lie between 19◦21′–20◦1′N latitude and 110◦28′–
111◦03′E longitude. The terrain is a low-hill plain with flat terrain in the northeast and
undulating terrain in the southwest. Wenchang City is a tropical monsoon marine climate,
characterized by abundant rainfall and sunshine, and is frost-free all year round. The four
seasons are not distinct, which is reflected in the absence of hot summer and cold winter,
and the annual temperature difference is small, with an annual average temperature of
24.4 ◦C, the average temperature of the coldest month is 18.5 ◦C, and that of the hottest
month is 28.5 ◦C. Wenchang has obvious dry and rainy seasons, among which winter and
spring are dry, summer and autumn are rainy, and the rainy season is mainly concentrated
from May to October, accounting for 79% of the annual precipitation. Wenchang is rich in
vegetation types, mainly including rubber, coconut, mangrove, mixed secondary forest,
tropical fruit trees, pepper, and short scrub sparse grass, etc. Crops mainly include rice,
vegetables, and melon fruits.

From 23 to 25 March 2021, a field survey was conducted in the central part of Wenchang
City in an area of about 20 km × 20 km. At this time, early rice is in the booting and
heading stage, winter melons and vegetables are in the maturity stage, and tropical fruits
are in the small fruit expansion stage. Samples of forest, cultivated land, garden, water
area, impervious surface, and other cover types were collected by the hand-held Global
Navigation Satellite System (GNSS) receiver (Haida Zhong, Guangzhou, China), and
photographs were taken. The survey routes covered most of the vegetation types with a
relatively even distribution. A total of 459 valid sample points and 415 valid polygonal
samples were obtained in this survey, which can provide a sample data base for the
vegetation classification.
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Figure 1. Geographic location and sample distribution of the study area.

2.1.2. Remote Sensing Images

In view of the fact that the study area requires high resolution of images due to
the fragmented terrain, multi-temporal ZY1-02D VNIR sensor images were used as the
data source.

ZY1-02D satellite, an important model in China’s space infrastructure planning, was
launched on 12 September 2019 and is China’s first civil hyperspectral operational satellite,
carrying a 9-band VNIR camera and a 166-band hyperspectral camera, providing 2.5 m
panchromatic, 10 m multispectral and 30 m hyperspectral image data. The VNIR camera’s
Pan and B1~B4 (R, G, B, and NIR) spectral bands are the five most widely used spectral
band configurations at home and abroad. The configuration of these spectral bands is
the same as that of general remote sensing satellites, which is convenient for data fusion
and image comparison. The configuration of B5~B8 spectral bands is the same as that of
the new spectral bands of WordView-2, of which B7 spectral band is a red-edge spectral
band. These spectral bands have important applications in resource distribution, soil water
monitoring, atmospheric composition analysis, crop yield estimation, and so on. The main
parameter information of ZY1-02D VNIR camera is shown in Table 1.

Table 1. Main parameter information of ZY1-02D VNIR camera.

Items Parameters

VNIR Camera

Spectral Range

Pan 0.452~0.902 υm
B01 0.452~0.521 υm
B02 0.522~0.607 υm
B03 0.635~0.694 υm
B04 0.776~0.895 υm
B05 0.416~0.452 υm
B06 0.591~0.633 υm
B07 0.708~0.752 υm
B08 0.871~1.047 υm

Spatial Resolution Pan 2.5 m
B01~B08 10 m

Width 115 km

All available time series images of ZY1-02D VNIR camera in the field survey area
in 2021 have been collected, covering four phases of January, March, July, and August,
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which are 2 January, 30 March, 24 July, and 19 August, 2021, respectively. The images of
30 March and 19 August are nearly cloudless and of good quality, and 30 March coincides
with the time of the field survey. But there are a large number of cloud-covered areas
in the images on 2 January and 24 July, obscuring part of the field survey area. In this
study, ENVI processing software (version 5.3.1) was used to preprocess the ZY1-02D VNIR
image by atmospheric correction, image fusion, and image registration. The FLAASH
atmospheric correction module was applied to obtain the surface reflectance data [24,25].
The multispectral and panchromatic images were fused by the Gram–Schmidt procedure
to produce the pan-sharpened multispectral images [26]. The geometric registration was
carried out with reference to the 1.2 m Google Earth image by controlling the accuracy of
less than 1 pixel. The fused and registered 2.5 m resolution surface reflectance products
were obtained, so as to facilitate the subsequent calculation and application of VIs.

2.1.3. Sample Data

Due to the serious cloud coverage of the ZY1-02D images on 20 January and 24 July
2021, in order to make full use of the four time series images, a 5 km × 5 km nearly
cloud-free area was selected as the study area in the 20 km × 20 km field survey area. The
study area is a gently sloping terrace, and the vegetation types mainly contain tropical
forest fruits such as lychee and pineapple, coconut groves, rubber, rice, pepper, etc., which
are characterized by diverse landscape types and high degree of fragmentation. The
vegetation types in the study area are divided into woodland, garden, paddy field, and dry
land. Among them, the woodland includes coconut forest, rubber forest, miscellaneous
wood secondary forest, etc. The gardens are mainly tropical fruit and pepper gardens.
Dry land mainly includes vegetables, melon fruits, peanuts, and corn. Combined with
the four time series images, Wenchang is in the dry season in January and March, and
the leaves of coconut trees and other woodlands grow slowly, and fewer new leaves are
extracted. In July and August, the woodlands grow rapidly. In gardens such as lychee,
shoot branching controlling is carried out in January and March to promote flowering, with
vigorous summer and autumn branch growth in July and August. Early rice is booted in
March, harvested successively in July and August, followed by late rice, and harvested
before the end of the year. Vegetables, melon fruits, and other crops on dry land can be
grown all year round.

Combined with field survey samples and manual interpretation of high-resolution
Google Earth images, a total of 256 polygon samples are marked (Figure 1). A total of 60% of
the samples are randomly selected as training samples and the rest as verification samples,
which are used for vegetation classification and subsequent precision verification. The
number of polygons for training and verification and their corresponding pixel numbers
are shown in Table 2.

Table 2. Number of training and verification samples.

Classification
Number of Training Samples Number of Verification Samples

Polygons Pixels Polygons Pixels

Dry land 32 4049 21 1684
Paddy field 30 9874 20 3554
Woodland 30 15,498 20 6418

Garden 31 4428 20 1772
Others 32 9255 20 3344
Total 155 43,104 101 16,772

2.2. Research Method

In this study, five VIs are constructed by taking advantage of the ZY1-02D VNIR
imagery with the red-edge band and using the four time series imagery in January, March,
July, and August 2021. Firstly, the spectral characterization of the red-edge bands for inter-
class separability is carried out by using the JBh distance. Subsequently, the importance of
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different spectra and VIs for the four time series images is evaluated by using the Random
Forest (RF) feature selection method. Finally, different classification schemes are designed,
and vegetation types are classified by using object-based image analysis (OBIA) method,
and the anti-saturation performance of different VIs is analyzed. The technical route of the
study is shown in Figure 2.
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2.2.1. Dataset Construction of Red-Edge Time Series VIs

Combined with the characteristics of ZY1-02D VNIR image with red-edge band, five
VIs are constructed in this paper, including NDVI and four red-edge VIs, and the calculation
formulas are shown in Table 3. The VIs of different time series imagery are obtained by
band math.

Table 3. VIs and calculation method.

Name Calculation Method

Normalized Difference Vegetation Index
(NDVI) [27] (ρNIR − ρR)/(ρNIR + ρR)

Chlorophyll Index red edge (CIre) [28,29] ρNIR/ρRE1 − 1

Normalized Difference Vegetation Index red
edge (NDVIre) [30] (ρNIR − ρRE1)/(ρNIR + ρRE1)

Modified Chlorophyll Absorption in
Reflectance Index (MCARI) [31] [(ρRE1 − ρR)− 0.2 × (ρRE1 − ρG)]× (ρRE1/ρR)

Transformed Chlorophyll Absorption in
Reflectance Index (TCARI) [32]

3 ×
[(ρRE1 − ρR)− 0.2 × (ρRE1 − ρG)× (ρRE1/ρR)]
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2.2.2. Feature Analysis Method

1. Spectral feature analysis

The classification of remote-sensing images mainly uses the spectral features of the
image and uses JBh distance method based on inter-class separability to analyze the spectral
features of ZY1-02D VNIR image.

The performance of classifier depends largely on whether features can accurately
describe the nature of objects, so separability criteria such as J-M distance are needed to
measure the separability between various features. J-M distance can well reflect the actual
relationship with classification accuracy, but it can only measure the separability between
every two kinds and has the defect that it cannot reflect the separability among multiple
kinds of ground objects. Therefore, this paper introduces JBh distance to measure the
separability of various ground objects [33]. According to the difference of sample number
among various categories, JBh distance is based on Bhattacharyya principle to give higher
weight to the category with higher probability of a priori, and its calculation method is
shown in Formula (1):

JBh =
N

∑
i=1

N

∑
j>i

√
p(wi)× p

(
wj

)
× JM2(i, j) (1)

In the formula: N is the number of categories; p(wi) and p(wj) are the a priori proba-
bility for categories i and j. A priori is calculated based on the number of samples [34].

2. Feature importance evaluation

The significance of feature importance evaluation before machine learning is to
strengthen the knowledge and understanding of features and improve the model per-
formance. The method of mean decrease accuracy of Random Forest (RF) was adopted to
select features. RF is a new machine learning algorithm consisting of Classification and
Regression Tree (CART) proposed by American scientist Breiman [35], which is widely used
in measuring the importance of variables and selecting high-dimensional features [36,37].
Mean decrease accuracy method disrupts the eigenvalue order of each feature and then
evaluates the importance of the feature by measuring the influence of this change on the
accuracy of the model. If a feature is important, its order change will significantly reduce
the accuracy of the model.

2.2.3. Object-Based Image Analysis

Object-based image analysis (OBIA), which considers both spectral and spatial in-
formation to characterize ground objects, is generally superior to pixel-based method,
especially when using high-resolution images in fragmented terrain areas [38–40].

1. Multiscale segmentation

Image segmentation is the first step of object-based image analysis (OBIA), which is
a process of dividing an image into several disjoint sub-regions with unique properties
according to certain criteria [41]. The accuracy of image segmentation significantly affects
the accuracy of OBIA [42]. The multiscale segmentation method adopts bottom-up region
merging technology, which can generate highly homogeneous image segmentation regions,
thus separating and representing ground objects at the best scale, and is a widely used
image segmentation method [43].

2. Classifier

RF is a nonparametric ensemble learning algorithm [20], composed of several decision
trees, which is an improvement of traditional decision trees. In the process of building
decision trees, the split of each node is judged based on Gini coefficient criterion, and the
optimal variable split is realized. Compared with traditional classification algorithms such
as Maximum Likelihood Method and Support Vector Machine (SVM), RF algorithm has
fast training speed, high intelligence, less over-fitting, and high classification accuracy, and
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is widely used in computer vision, human body recognition, image processing and other
fields [44].

2.2.4. Classification Scheme and Accuracy Evaluation

In order to analyze the influence of red-edge VIs on vegetation classification, based
on the data containing only the four bands (R, G, B, and NIR), this paper designs three
groups of vegetation classification schemes by adding VIs, namely 4-band scheme, 5-band
scheme, and 8-band scheme, and then subdivides the three groups into 29 specific schemes,
with 4 schemes in the 4-band scheme group, 20 schemes in the 5-band scheme group and
5 schemes in the 8-band scheme group. Firstly, in the 4-band scheme group, on the basis
of the four bands (R, G, B, and NIR) in January, March, July, and August, the group is
subdivided into 4 specific schemes, namely A1, A2, A3, and A4. Secondly, in the 5-band
scheme group, each vegetation index of the five different VIs is added to the four bands (R,
G, B, NIR), respectively, which are combined into five bands, continuing to be subdivided
into 20 specific schemes: AB, AC, AD, AE and AF in four time series. Furthermore, in order
to evaluate the vegetation classification ability of multi-temporal VIs, based on the data of
the four bands on 30 March, which are consistent with the field survey time, five different
VIs of the four time series are added, respectively, and the eight bands are combined, thus
being subdivided into 5 specific schemes: A2B, A2C, A2D, A2E, and A2F. The design of
different classification schemes is shown in Table 4.

Table 4. Classification schemes of different VIs.

Combined Bands January March July August

4-band scheme: four bands (R, G, B, NIR) Scheme A (4-band) A1 A2 A3 A4

5-band scheme:

four bands (R, G, B, NIR) +
NDVI Scheme AB (4-band + NDVI) AB1 AB2 AB3 AB4

four bands (R, G, B, NIR) +
red-edge index

Scheme AC (4-band + CIre) AC1 AC2 AC3 AC4
Scheme AD (4-band + NDVIre) AD1 AD2 AD3 AD4
Scheme AE (4-band + MCARI) AE1 AE2 AE3 AE4
Scheme AF (4-band + TCARI) AF1 AF2 AF3 AF4

8-band scheme: four bands (R, G, B, NIR)
(March) + VIs of four time series

Scheme A2B (4-band (March) + four time series NDVI)
Scheme A2C (4-band (March) + four time series CIre)

Scheme A2D (4-band (March) + four time series NDVIre)
Scheme A2E (4-band (March) + four time series MCARI)
Scheme A2F (4-band (March) + four time series MCARI)

The evaluation of classification accuracy is based on the Confusion Matrix. Indices
such as Overall Accuracy (OA), Kappa Coefficient, Producer Accuracy (PA), and User
Accuracy (UA) are selected to evaluate the accuracy of different classification schemes [45],
and F1 is used to evaluate the recognition accuracy of a certain category. The precision
of F1 is the weighted harmonic average of UA and PA [46], and the specific calculation
formula is shown in Formula (2):

F1 = 2 × UA × PA/(UA + PA)× 100% (2)

Based on the Confusion Matrix of two different classification schemes, McNemar’s
test is used to evaluate the statistical significance of differences in classification accuracy
between the two schemes [47,48]. The chi-squared statistic value (χ2) with one degree of
freedom is as follows:

χ2 =
(| f12 − f21| − 1)2

f12 + f21
(3)

where fij is the number of samples that classification scheme i misclassifies but classification
scheme j correctly classifies (i = 1, 2; j = 1, 2). The difference between two classification
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schemes is statistically significant at the 95% confidence level (p = 0.05) when the χ2 value
is greater than or equal to 3.84.

3. Results
3.1. Feature Analysis Results
3.1.1. Spectral Analysis Based on JBh Distance

According to the red-edge band of the ZY1-02D VNIR image, two different spectral
analysis schemes were designed: “4-band (R, G, B, NIR)” and “5-band (4-band + red edge)”.
Based on the training samples of various vegetation types shown in Table 2, with a total
of 43,104 pixels, the influence of the red-edge band on the separability of vegetation types
was analyzed by calculating JBh distance, so as to reflect the separability of the red-edge
band in different phases on vegetation classification. The JBh distance results in four phases
are shown in Figure 3.
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The JBh distance of the 4-band in four phases is between 4.8 and 5.8 with little difference
in separability. The result of the 5-band is between 5.1 and 6.0, which is increased to some
extent compared with that of the 4-band in each phase, in which the JBh distance on 30
March increased the most by 0.8. By calculating the JBh distance of different spectral
schemes, it is confirmed that the addition of a red-edge band is beneficial to improve the
separability of vegetation types.

3.1.2. Feature Importance Analysis

The importance of eight spectral bands and five VIs in four phases was measured by
the mean decrease accuracy method, and the importance scores of thirteen features were
obtained, respectively (Figure 4).

1. Importance analysis of spectral features in each phase

The most important spectral bands of the images on 2 January and 19 August are
located in the near-infrared and red-light regions, while the most important regions on 30
March and 24 July are the red and green bands. The importance of the red-edge band is
ranked fifth on 2 January and in fourth place for other phases.

2. Importance analysis of VIs in each phase

VIs are the most important features of each phase. Taking the image on March 30 as
an example, except for the red band, the top six features are all VIs. Compared with NDVI,
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the red-edge VIs are at the forefront. In January, March, July, and August images, NDVI
ranks fourth, fifth, fourth, and third, respectively, among the five VIs. The top two VIs of
January, March, July, and August are MCARI and NDVIre, MCARI and TCARI, CIre and
MCARI, and CIre and NDVIre, respectively.
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3.2. Vegetation Classification Results
3.2.1. Multiscale Segmentation Results

As the first step of OBIA, multiscale segmentation was carried out. The segmentation
scale is the most important parameter, which seriously affects the results of vegetation
classification. The “trial and error” method was used to segment the image [49,50]. Based
on the ZY1-02D VNIR image synchronized with the field survey time on 30 March, the
near-infrared, red, green, and blue bands were used as inputs, and the weight of each band
was set to 1. Through the “trial and error” method and previous research experience [51,52],
the scales were set to 25, 50, and 100, respectively, and the appropriate segmentation scale
was determined by the classification accuracy under the conditions of spectral parameter
of 0.9, shape parameter of 0.1, compactness of 0.5 and smoothness of 0.5 (Table 5).

Table 5. Appropriate scale for image segmentation. The higher OA value indicates the appropriate
segmentation scale, which is highlighted in bold.

Scale Overall Accuracy (OA)

25 79.58%
50 81.76%

100 78.75%
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The segmentation scale of 50 is suitable with the highest classification accuracy. Ac-
cording to the segmentation results in Figure 5, it can be seen that when the scale parameter
is too small, which is 25, the object is too fragmented. Once it is too big, such as a scale
of 100, for vegetation types with similar spatial and spectral features, it will increase the
probability that the object contains different vegetation types.
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(c) segmentation scale: 100; and (d) the legend.

3.2.2. Classification Results of Single-Temporal Red-Edge VIs

According to the single-temporal classification schemes in Section 2.2.4, a total of
24 schemes of A, AB, AC, AD, AE, and AF for four phases were carried out based on the
RF algorithm. The OA and Kappa coefficient of different schemes are shown in Figure 6,
and the classification accuracies of different vegetation types in each phase are shown in
Tables 6–9. McNemar’s test χ2 values for pair comparisons of the classification schemes of
each image are shown in Table 10.

Remote Sens. 2024, 16, 1865 11 of 22 
 

 

spectral parameter of 0.9, shape parameter of 0.1, compactness of 0.5 and smoothness of 
0.5 (Table 5). 

Table 5. Appropriate scale for image segmentation. The higher OA value indicates the appropriate 
segmentation scale, which is highlighted in bold. 

Scale Overall Accuracy (OA) 
25 79.58% 
50 81.76% 

100 78.75% 

The segmentation scale of 50 is suitable with the highest classification accuracy. 
According to the segmentation results in Figure 5, it can be seen that when the scale 
parameter is too small, which is 25, the object is too fragmented. Once it is too big, such as 
a scale of 100, for vegetation types with similar spatial and spectral features, it will increase 
the probability that the object contains different vegetation types. 

    
(a) (b) (c) (d) 

Figure 5. Local image segmentation results at different scales. The boundaries of the segmentation 
objects are marked with blue lines. (a) Segmentation scale: 25; (b) segmentation scale: 50; (c) 
segmentation scale: 100; and (d) the legend. 

3.2.2. Classification Results of Single-Temporal Red-Edge VIs 
According to the single-temporal classification schemes in Section 2.2.4, a total of 24 

schemes of A, AB, AC, AD, AE, and AF for four phases were carried out based on the RF 
algorithm. The OA and Kappa coefficient of different schemes are shown in Figure 6, and 
the classification accuracies of different vegetation types in each phase are shown in Tables 
6–9. McNemar’s test χ2 values for pair comparisons of the classification schemes of each 
image are shown in Table 10. 

  
(a) (b) 

Figure 6. Vegetation classification accuracies of different schemes in four phases. The classification 
schemes are shown in Table 4 with A representing 4-band, AB representing 4-band + NDVI, AC 
Figure 6. Vegetation classification accuracies of different schemes in four phases. The classification
schemes are shown in Table 4 with A representing 4-band, AB representing 4-band + NDVI, AC
representing 4-band + CIre, AD representing 4-band + NDVIre, AE representing 4-band + MCARI,
AF representing 4-band + TCARI. (a) OA; (b) Kappa.
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Table 6. Classification accuracies of different vegetation types in January. Higher values indicate
better performance, and the best result is highlighted in bold.

Accuracies
Schemes

A AB AC AD AE AF

OA 72.03 73.20 74.48 74.24 76.43 72.71
Kappa 0.63 0.64 0.66 0.66 0.69 0.64

Paddy field
PA 77.22 70.93 80.86 80.86 76.36 71.66
UA 91.36 94.55 84.75 84.75 94.10 94.09
F1 83.70 81.05 82.76 82.76 84.31 81.36

Dry land
PA 34.91 44.55 64.48 64.79 57.33 43.94
UA 38.55 35.70 42.17 41.23 45.31 34.17
F1 36.64 39.64 50.99 50.39 50.62 38.44

Woodland
PA 83.85 87.88 86.49 85.56 86.25 83.20
UA 81.22 87.67 87.42 87.98 83.63 86.38
F1 82.51 87.77 86.95 86.75 84.92 84.76

Garden
PA 38.37 46.79 30.81 33.60 62.59 47.30
UA 30.98 37.32 54.69 53.73 49.15 37.28
F1 34.28 41.52 39.42 41.34 55.06 41.70

Others
PA 79.83 75.44 72.46 71.40 74.32 81.28
UA 77.93 74.92 69.79 70.20 85.85 77.90
F1 78.87 75.18 71.10 70.79 79.67 79.55

Table 7. Classification accuracies of different vegetation types in March. Higher values indicate better
performance, and the best result is highlighted in bold.

Accuracies
Schemes

A AB AC AD AE AF

OA 81.76 80.92 85.95 86.29 84.77 81.21
Kappa 0.76 0.74 0.81 0.82 0.79 0.75

Paddy field
PA 73.93 71.54 77.02 77.02 73.93 71.00
UA 67.00 70.06 78.88 78.88 80.41 64.33
F1 70.29 70.79 77.94 77.94 77.03 67.50

Dry land
PA 74.42 74.42 74.48 74.48 77.53 72.21
UA 82.12 68.86 85.69 86.11 72.62 80.91
F1 78.08 71.53 79.69 79.87 74.99 76.31

Woodland
PA 80.86 84.15 88.46 88.46 91.45 79.29
UA 80.89 79.83 82.73 83.35 81.95 80.61
F1 80.87 81.93 85.50 85.83 86.44 79.94

Garden
PA 85.14 65.31 83.58 86.54 64.53 84.86
UA 91.64 86.53 91.95 92.20 90.80 86.55
F1 88.27 74.44 87.57 89.28 75.44 85.70

Others
PA 93.78 96.53 97.80 97.92 98.19 98.46
UA 96.16 100.00 97.03 97.04 99.54 99.97
F1 94.96 98.23 97.41 97.48 98.86 99.21
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Table 8. Classification accuracies of different vegetation types in July. Higher values indicate better
performance, and the best result is highlighted in bold.

Accuracies
Schemes

A AB AC AD AE AF

OA 77.84 77.41 79.29 78.79 78.16 76.39
Kappa 0.71 0.70 0.73 0.72 0.71 0.69

Paddy field
PA 77.95 74.70 76.75 76.21 76.92 79.91
UA 83.66 83.15 83.94 82.60 81.69 83.25
F1 80.70 78.70 80.18 79.28 79.23 81.55

Dry land
PA 57.53 60.47 55.47 54.65 62.65 55.35
UA 39.37 44.01 44.13 42.81 44.36 34.76
F1 46.75 50.94 49.15 48.01 51.94 42.70

Woodland
PA 80.93 80.02 85.32 85.51 81.63 76.13
UA 90.46 91.52 88.76 88.22 91.20 90.93
F1 85.43 85.38 87.01 86.84 86.15 82.87

Garden
PA 54.73 63.25 58.10 54.62 50.25 55.52
UA 48.68 49.74 51.59 51.40 48.04 50.56
F1 51.53 55.69 54.65 52.96 49.12 52.92

Others
PA 94.83 91.72 94.13 94.13 96.00 95.44
UA 97.49 90.53 97.47 97.47 93.26 95.33
F1 96.14 91.12 95.77 95.77 94.61 95.38

Table 9. Classification accuracies of different vegetation types in August. Higher values indicate
better performance, and the best result is highlighted in bold.

Accuracies
Schemes

A AB AC AD AE AF

OA 77.62 79.15 80.58 81.55 76.80 76.05
Kappa 0.70 0.72 0.74 0.76 0.69 0.68

Paddy field
PA 69.39 76.40 74.78 79.29 70.68 69.62
UA 72.95 75.14 83.82 84.62 69.61 73.93
F1 71.13 75.76 79.04 81.87 70.14 71.71

Dry land
PA 52.71 49.73 60.20 60.26 55.15 54.73
UA 37.07 41.14 37.12 39.51 39.45 30.75
F1 43.53 45.03 45.92 47.73 46.00 39.38

Woodland
PA 89.75 90.61 85.59 85.59 83.65 86.46
UA 87.96 90.59 93.14 93.14 87.41 86.89
F1 88.85 90.60 89.21 89.21 85.49 86.67

Garden
PA 37.42 40.48 61.97 61.97 52.17 32.68
UA 59.52 66.39 67.50 67.41 86.60 80.08
F1 45.95 50.29 64.62 64.58 65.11 46.42

Others
PA 97.73 96.07 97.70 97.70 94.62 97.40
UA 97.67 88.39 97.67 97.67 87.67 97.66
F1 97.70 92.07 97.68 97.68 91.01 97.53
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Table 10. McNemar’s test χ2 values for pair comparisons of four time series images.

Time series Schemes A AB AC AD AE AF

January

A / / / / / /
AB 40.17 / / / / /
AC 143.47 39.72 / / / /
AD 123.45 24.86 10.74 / / /
AE 464.11 353.45 115.31 143.27 / /
AF 21.08 12.15 59.89 46.65 356.58 /

March

A / / / / / /
AB 26.11 / / / / /
AC 645.30 837.00 / / / /
AD 754.00 894.00 55.02 / / /
AE 202.42 613.26 54.49 84.89 / /
AF 20.20 2.96 (<3.84) 707.41 810.55 261.74 /

July

A / / / / / /
AB 10.59 / / / / /
AC 131.41 146.66 / / / /
AD 58.19 71.78 62.84 / / /
AE 9.82 26.48 61.78 19.70 / /
AF 129.65 36.62 294.56 199.25 125.40 /

August

A / / / / / /
AB 138.74 / / / / /
AC 237.35 57.04 / / / /
AD 361.74 153.99 160.01 / / /
AE 22.29 154.44 630.00 792.00 / /
AF 197.82 345.33 659.21 818.97 23.12 /

For example, “A vs. AB:40.17” means that McNemar’s test χ2 value between A and AB classification schemes is
40.17. The values greater than 3.84 indicate significant difference.

Through McNemar’s test, all the single-temporal classification schemes listed in
Table 10 have significant differences apart from the test between scheme AB and AF
in March, based on which, we can analyze the accuracy differences between different
classification schemes.

In January, the OA of the 4-band was 72.03%, and the OA of the 5-band ranged from
72.71% to 76.43%, all of which improved the classification accuracy to a certain extent,
among which the accuracy of the MCARI-assisted scheme was the highest, with an increase
of more than 4%, followed by CIre. In March, the OA of the 4-band was 81.76%, and the
OA of the 5-band ranged from 80.92% to 86.29%. The Cire-, NDVIre-, and MCARI-assisted
schemes improved the accuracy, among which NDVIre improved the accuracy by more
than 4%, followed by CIre. In July, the OA of the 4-band was 77.84%, and the OA of the
5-band ranged from 76.39% to 79.29%. The three schemes of CIre, NDVIre, and MCARI
improved the accuracies, among which CIre improved the accuracy the most, with the
accuracy increased by 1.45%, followed by NDVIre. In August, the OA of the 4-band was
77.62%, the OA of the 5-band ranged from 76.05% to 81.55%, and the accuracies of the
Cire-, NDVIre-, and NDVI-assisted schemes were improved, among which NDVIre had the
highest accuracy, with an improvement of nearly 4%, followed by CIre. Generally speaking,
the classification results are consistent with the feature importance evaluations, and the
red-edge VIs have a stronger ability to improve vegetation classification than NDVI. Among
the four red-edge VIs, CIre and NDVIre acquire better vegetation classification results.

Compared with the vegetation classification results of January, July, and August,
the image classification accuracy of 30 March is the highest, and the OA of different
classification schemes reaches 80.92% to 86.29%, which is related to the fact that the image
time is consistent with the field survey time and the difference among vegetation types
in March is greater than that in January, July, and August. The seasons of 24 July and 19
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August are similar, and just have a little difference in classification accuracy. The image of 2
January has the lowest accuracy.

In terms of the vegetation types, the accuracies of dry land and garden are poor in
January, July, and August, and better in March, reaching 79.87% and 89.28%, respectively,
in the classification of the NDVIre-assisted scheme. The woodland and paddy field have
achieved good results in all four phases. The highest accuracies are 90.60% for woodland
in August and 84.31% for paddy fields in January, respectively.

3.2.3. Classification Results of Multi-Temporal Red-Edge VIs

According to the multi-temporal classification schemes in Section 2.2.4, a total of five
schemes of A2B, A2C, A2D, A2E, and A2F were carried out based on the RF algorithm. The
vegetation classification accuracies of different multi-temporal VIs are shown in Table 11.
McNemar’s test χ2 values for pair comparisons of the classification schemes of multi-
temporal red-edge Vis-assisted classifications are shown in Table 12.

Table 11. Vegetation classification accuracies of multi-temporal VIs. Higher values indicate better
performance, and the best result is highlighted in bold.

Accuracies
Schemes

A2B A2C A2D A2E A2F

OA 85.90 92.36 92.27 86.06 89.13
Kappa 0.81 0.90 0.90 0.82 0.85

Paddy
field

PA 83.03 89.83 89.83 56.95 73.42
UA 100.00 97.08 97.74 96.25 92.92
F1 90.73 93.31 93.62 71.56 82.03

Dry land
PA 81.23 73.82 73.82 89.36 90.14
UA 45.22 76.00 75.81 46.87 64.86
F1 58.10 74.89 74.80 61.49 75.44

Woodland
PA 86.76 100.00 99.64 97.78 95.88
UA 93.57 93.14 92.56 94.06 90.76
F1 90.04 96.45 95.97 95.88 93.25

Garden
PA 77.82 79.27 79.27 79.55 80.00
UA 80.94 81.69 82.07 89.90 88.94
F1 79.35 80.46 80.65 84.41 84.23

Others
PA 94.08 96.86 97.10 96.68 97.46
UA 100.00 99.91 99.91 100.00 100.00
F1 96.95 98.36 98.48 98.31 98.71

Table 12. McNemar’s test χ2 values for pair comparisons of multi-temporal red-edge VIs assisted
classifications.

Schemes A2B A2C A2D A2E A2F

A2B / / / / /
A2C 874.76 / / / /
A2D 860.30 6.32 / / /
A2E 0.33 (<3.84) 698.23 684.94 / /
A2F 194.03 252.19 244.94 346.31 /

For example, “A2B vs. A2C:874.76” means that McNemar’s test χ2 value between A2B and A2C classification
schemes is 874.76. The values greater than 3.84 indicate significant difference.

Through McNemar’s test, all the different classification schemes listed in Table 12 have
significant differences apart from the test between schemes A2B and A2E. The classification
accuracy of the multi-temporal schemes is improved from 86.29% of the highest single-
temporal accuracy to 92.36%, an increase of 6%. Among them, multi-temporal Cire- and
NDVIre-assisted schemes achieve the highest accuracies, followed by TCARI, MCARI,
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and NDVI, and the difference in accuracy between MCARI- and NDVI-assisted schemes
is not statistically significant. The vegetation classification result of the multi-temporal
Cire-assisted scheme is shown in Figure 7, which shows the specific categories of each pixel.
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4. Discussion

Vegetation leaf surface has strong absorption characteristics in the red band of visible
light and strong reflection characteristics in the near-infrared band, which is the physical
basis of vegetation remote sensing monitoring. Based on the above characteristics of
vegetation in the visible near-infrared band, five VIs, including four red-edge VIs were
calculated from different combinations of spectral bands to analyze their performance in
vegetation classification.

The variation and saturation of VIs for various vegetation types with different seasons
were analyzed. On the one hand, based on the training samples of various vegetation
types (dry land, woodland, garden, and paddy field) shown in Table 2, with a total of
123 polygons, the mean values of VIs for various vegetation types were calculated and the
changes in the five VIs on four phases were plotted (Figure 8). On the other hand, in order
to facilitate the comparison between red-edge VIs and NDVI, the VIs of January, March,
July, and August were normalized for each vegetation type. It is worth noting that because
some rice was harvested in July and August, only three types of dry land, woodland, and
garden, a total of 93 polygon samples are contained. With normalized NDVI as the abscissa
and normalized CIre, NDVIre, MCARI, and TCARI as the ordinates, respectively, the scatter
plots of the relationship between each red-edge vegetation index and NDVI with different
seasons were drawn (Figure 9).
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As shown in Figure 8, in the rapid growth stage of various vegetation types from 
March to July, the VIs of NDVI, MCARI, and TCARI increased more than those of CIre 
and NDVIre. At the same time, from July to August, the VIs of NDVI and MCARI changed 
slightly, that is, they reached saturation more quickly. According to the scatter plot of 

Figure 9. Scatter plots of the relationship between normalized red-edge VIs and NDVI for different
vegetation types in January, March, July, and August. Dry land, woodland, and garden are marked
with blue, orange, and grey dots, respectively. (a) CIre (January); (b) CIre (March); (c) CIre (July);
(d) CIre (August); (e) NDVIre (January); (f) NDVIre (March); (g) NDVIre (July); (h) NDVIre (August);
(i) MCARI (January); (j) MCARI (March); (k) MCARI (July); (l) MCARI (August); (m) TCARI
(January); (n) TCARI (March); (o) TCARI (July); and (p) TCARI (August).

As shown in Figure 8, in the rapid growth stage of various vegetation types from
March to July, the VIs of NDVI, MCARI, and TCARI increased more than those of CIre and
NDVIre. At the same time, from July to August, the VIs of NDVI and MCARI changed
slightly, that is, they reached saturation more quickly. According to the scatter plot of
Figure 9, CIre, NDVIre, and MCARI are positively correlated with NDVI, among which
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MCARI in March, July, and August shows a strong correlation with NDVI. TCARI in
January, July, and August is negatively correlated with NDVI. In July and August, when
the vegetation growth almost reached the peak, the normalized numerical scatters of each
red-edge VI deviated from the 1: 1 standard line, showing a state of better anti-saturation
performance than NDVI. This is consistent with the research results of Sun [53], who
established the hyperspectral image-based vegetation index (HSVI), which obtained a high
correlation with NDVI and could effectively alleviate the saturation problem caused by
high vegetation coverage.

Through Figure 9, we can also analyze the separability of various vegetation types. It
can be seen from the scatter plots that the vegetation in January, July, and August are more
dispersed and the intersection situation is more serious than that in March, which also
explains why the classification accuracy in March is higher. In early January, crops such
as peanuts are in planting season, and winter melons and vegetables are in the harvesting
stage, which increases the confusion between the types of dry land and others. In gardens
such as lychee, those before controlling shoot branching would increase the confusion with
woodland and those after the controlling would increase the confusion with dry land. At
the end of March, the garden is still in the spring controlling shoot branching stage, the
forest leaves have begun to grow, and the differences among vegetation types increase,
which promotes classification accuracy. With the growth of vegetation, in July and August,
when the growth of vegetation tends to peak, the VIs of vegetation are concentrated in the
high-value range, which reduces the separability between different vegetation types and
lowers the classification accuracy. At this time, the red-edge VIs with better anti-saturation
performance than NDVI tend to obtain higher accuracy in vegetation classification, such as
CIre and NDVIre, which has been verified in previous study [54]. However, we should also
see that in this study area, although the anti-saturation performance of MCARI and TCARI
is also better than NDVI, the confusion between garden and dry land, and woodland and
dry land has also increased significantly.

Therefore, according to the classification accuracy of each vegetation index and the
analysis of its saturation state, Cire- or NDVIre-assisted models can be used to classify
vegetation in tropical monsoon regions to ensure the accuracies, especially in the rapid
growth stage of vegetation where VIs are easily saturated. In this study, the classification
accuracy has a certain correlation with the anti-saturation performance. It seems that the
stronger the ability of VIs to improve classification accuracy, the better its anti-saturation
performance. But the reverse is not necessarily true, that is, the stronger the anti-saturation
performance of VIs, the classification accuracy does not necessarily tend to be better. This
requires a comprehensive analysis with other factors such as the inter-class separability
of VIs.

5. Conclusions

In this study, we try to evaluate the accuracy changes in several red-edge VIs on
vegetation classification in tropical monsoon regions and analyze their anti-saturation
performance. Taking the Wenchang study area in Hainan, China as an example, we have
extracted NDVI and four red-edge VIs of CIre, NDVIre, MCARI and TCARI by using
the 2.5 m fused images of ZY-102D in January, March, July and August. The significant
differences between various classification schemes were carried out by McNemar’s test.
The results show that the classification accuracy of NDVI-assisted schemes has little change,
with only a slight improvement in two phases. Consistent with the previous research
results, the red-edge information can improve the accuracy of vegetation classification.
For the four phases in the study area, the vegetation classification accuracy achieves the
highest with the participation of the red-edge VIs, which proves the effectiveness of the
red-edge VIs in the vegetation classification in tropical monsoon regions. Among them,
CIre and NDVIre are robust and improve the classification accuracy in all single-temporal
and multi-temporal classifications. In the analysis of the saturation state of red-edge VIs,
we find that the increase in VIs gradually slows down with the growth of vegetation, and



Remote Sens. 2024, 16, 1865 20 of 22

by August, NDVI, MCARI, etc., tend to be saturated. According to the scatter plots between
the normalized red-edge VIs and NDVI, we find that the anti-saturation performance of
each red-edge vegetation index is better than NDVI. After further analyzing the seasonal
changes in red-edge VIs, it can be found that the robust red-edge VIs, such as CIre and
NDVIre, which can effectively improve the classification accuracy in each phase, are not
only difficult to saturate in the month when vegetation growth is near the peak, but also
can ensure the separability of different vegetation types.

Several directions for future research are clear. First of all, in this study, only images of
2 January, 30 March, 24 July, and 19 August 2021 were collected in the study area, without
images of rapid vegetation growth in May, peak vegetation growth in September, and
vegetation decline in October. Therefore, it is particularly necessary to add more phases to
analyze the seasonal change in vegetation growth and the saturation of red-edge VIs. It is a
challenge to fuse the temporal and spatial features of the red-edge band, construct the time
series spectrum of red-edge VIs with high resolution, and make up for the phase deficiency
of high-resolution images. In addition, this study only discussed the validity and anti-
saturation performance of four kinds of red-edge VIs, namely CIre, NDVIre, MCARI, and
TCARI. According to the changes in the reflective spectra of various vegetation types with
the seasons, the new red-edge vegetation index with strong anti-saturation performance
for tropical vegetation is worth looking forward to, so as to deepen the understanding and
cognitive improvement of the mechanism to promote classification, and strengthen the
effective application of red-edge VIs in tropical vegetation classification.
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