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Abstract: It is crucial to monitor algal blooms in freshwater reservoirs through an examination of
chlorophyll-a (Chla) concentrations, as they indicate the trophic condition of these waterbodies.
Traditional monitoring methods, however, are expensive and time-consuming. Addressing this
hindrance, we conducted a comprehensive investigation using several machine learning models for
Chla modeling. To this end, we used in situ collected water sample data and remote sensing data from
the Sentinel-2 satellite, including spectral bands and indices, for large-scale coverage. This approach
allowed us to conduct a comprehensive analysis and characterization of the Chla concentrations
across 149 freshwater reservoirs in Ceará, a semi-arid region of Brazil. The implemented machine
learning models included k-nearest neighbors, random forest, extreme gradient boosting, the least
absolute shrinkage, and the group method of data handling (GMDH); in particular, the GMDH
approach has not been previously explored in this context. The forward stepwise approach was
used to determine the best subset of input parameters. Using a 70/30 split for the training and
testing datasets, the best-performing model was the GMDH model, achieving an R2 of 0.91, an MAPE
of 102.34%, and an RMSE of 20.4 µg/L, which were values consistent with the ones found in the
literature. Nevertheless, the predicted Chla concentration values were most sensitive to the red,
green, and near-infrared bands.

Keywords: chlorophyll-a; Sentinel-2 satellite; machine learning; freshwater reservoirs; eutrophication

1. Introduction

Chlorophyll-a (Chla), a photosynthetic pigment in major algae groups, is widely used
as a critical indicator of phytoplankton presence [1,2]. As the abundance of algae can reflect
the state of eutrophication, Chla is one of the most important parameters for evaluating
the trophic condition of water bodies [3,4]. While Chla concentration has long served
as a critical parameter in monitoring harmful algal blooms, accurately predicting Chla
concentration in reservoirs has proven to be a persistent challenge [5,6]. This difficulty
is mainly due to the non-linear and non-stationary characteristics of Chla concentration,
which are influenced by anthropogenic and hydrometeorological factors [7].

Regularly monitoring Chla concentrations is crucial for effective water quality manage-
ment, as it helps prevent further deterioration [8]. However, traditional sampling methods
are expensive, time-consuming, and impractical for many reservoirs [9,10]. Satellite remote
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sensing offers a cost-effective approach for monitoring Chla concentrations and their spa-
tiotemporal variations, providing large-scale data on complex environmental systems [11].
In this context, because of its improved spatial resolution, the Sentinel-2 constellation has
demonstrated its value in monitoring inland and coastal waters, setting it apart from other
freely available remote sensing systems, such as Landsat 8 [12,13].

Estimations of Chla concentrations from remote sensing data can be achieved using
machine learning (ML). The ML approach retrieves complex non-linear relationships within
satellite data by capturing the underlying structure connecting the satellite data and the
desired target variable [14,15]. Combining ML architectures with remote sensing data has
been used to successfully monitor Chla in inland and ocean waters. For ocean waters,
including coastal waters, specific Chla ML forecasting models using Sentinel-3 satellite
data, namely the OLCI Neural Network Swarm (ONNS) and Ocean Colour 4 for MERIS
(OC4ME), showed good performance for such a task [16,17].

In a previous study, a random forest (RF)-based model was developed for inland
waters [18]. The authors used Sentinel-2 imagery to estimate Chla concentrations in Lake
Chagan in China. Their proposed model provided good performance in determining Chla
concentrations while complying with the biological mechanism in lakes, offering results that
were robust to seasonal changes. Cao et al. [3] used Landsat-8 remote sensing data together
with an extreme gradient boosting tree model (XGBoost) to determine Chla concentrations
in lakes located in China. Their approach was implemented to analyze spatiotemporal
data from 2013 to 2018 and demonstrated satisfactory performance in identifying the Chla
behavior in the study location. Hu et al. [19] developed methodologies to mitigate spectral
noise in remote sensing data from several satellites to improve the performance of ML
models in estimating Chla concentrations in global oceans. Their results proved that the
support vector regression (SVR) model was the best-performing ML approach, surpassing
the traditional band-ratio models and providing reduced image noise.

The group method of data handling (GMDH) has also been applied to hydrological
scenarios, including Chla estimation [20], water quality prediction [21], and image classifi-
cation for plant diseases [22]. However, there is a gap in the knowledge regarding the usage
of this approach in modeling Chla concentrations using satellite data, which the present
study aims to fulfill. A proper investigation of the capacity of the GMDH to model Chla
concentrations can contribute significantly to the development of real-time monitoring
tools, as this approach does not require parameter tuning and has a fast processing time.

Another major contribution of the present study is to provide in-depth insight into the
performance of several ML paradigms when applied to a vast area containing heteroge-
neous reservoirs. This proposed methodology is paramount in promoting the development
of a more general ML structure able to provide accurate and precise results for a vast area.
Given that reservoirs in semi-arid regions are often poorly monitored, the potential of
algal blooms and further degradation of these aquatic systems have increased the need
to study them. Therefore, this study aims to estimate Chla concentrations by combining
remote sensing data and machine learning techniques. The following specific objectives
were pursued in this research:

1. A comprehensive investigation of several input parameters for Chla modeling, includ-
ing all of the 13 bands registered by the MSI on board the Sentinel-2 constellation and
16 different spectral indices.

2. A comprehensive analysis and characterization of all of the 149 tropical reservoirs
that extensively spread across the state of Ceará, a Brazilian semi-arid region.

3. The usage of the forward stepwise approach for parameter selection.
4. The investigation of different machine learning paradigms for modeling Chla values

in heterogeneous reservoirs distributed over a vast region.
5. The usage of the GMDH ML model for Chla modeling using remote sensing data and

spectral indices to fill the current knowledge gap.
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2. Materials and Methods
2.1. Study Site Location

According to the Köppen classification [23], a semi-arid climate is classified as ‘BSh’
and is characterized by a mean precipitation of 750 mm per year, a potential evaporation
rate of 2000 mm per year, a mean annual temperature of 31 ◦C, and negative water balances
for most of the year [24,25]. In semi-arid regions, such as northeastern Brazil, which has
approximately 28 million inhabitants in an area that occupies 12% of the national terri-
tory [26], the establishment of an extensive network of multi-purpose artificial reservoirs
has emerged as a reliable solution to the water scarcity challenges imposed by environmen-
tal constraints [24,27]. These reservoirs are notably susceptible to eutrophication due to
a combination of hydroclimatic characteristics that favor photosynthesis and biodegrada-
tion [28,29], such as interannual variability of precipitation and stored volume [30], high
temperatures and evaporation rates [31], and prolonged hydraulic retention time [32].
Moreover, this susceptibility is further aggravated by continued anthropogenic pressure
on water bodies due to internal enrichment from aquaculture practices [33,34], livestock
and agriculture practices [35], inadequate coverage of sanitation systems [36], and a dense
reservoir network [37,38].

The study site of the present study, the state of Ceará, houses roughly 9 million
people and encompasses an area comparable to England (150,000 km2), with 98.6% of its
territory within the semi-arid region [39]. Ceará’s water supply serves more than 90%
of the region’s water needs [39] and has a storage capacity of approximately 18.6 billion
cubic meters; its three largest reservoirs are Castanhão (6700 hm3), Orós (1940 hm3), and
Banabuiú (1600 hm3), which collectively represent approximately 55% of the total storage
capacity [40]. This study used data from 149 monitored reservoirs distributed across Ceará
in 12 watersheds. These reservoirs are mainly used for human water supply, aquaculture,
fish farming, and irrigation. The longitude, latitude, and basic information of the reservoirs
are listed in Table S1 in the Supplementary Materials section. Figure 1 illustrates the
geographical location of Ceará within the Brazilian territory and in the semi-arid region, as
well as the location of the reservoirs distributed across its area.
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Figure 1. Geographical context of the study area and distribution of sampling points. Each blue
marker represents a reservoir Chla sampling point. Red markers indicate Ceara’s largest reservoirs:
(A) Castanhão, (B) Orós, and (C) Banabuiú.
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2.2. Water Quality Data

This study used data from 149 spatially distributed reservoirs (Figure 1), covering
the years 2015 to 2021 and including 1399 Chla samples. The data were obtained from
the database of the Portal Hidrológico do Ceará platform, a system used for monitoring
reservoirs by the Water Resources Management Company (COGERH) [40], a public agency
maintained by the local government. The database presents consistent time series of
hydrological and water quality parameters. The company carries out monitoring campaigns
in all seasons of the year through quarterly sampling campaigns and in situ measurements,
resulting in approximately 9.4 samples per reservoir. This value is an approximation given
that some reservoirs are completely dry during the drought season.

The Chla concentration data were obtained through in situ water sampling carried
out by the COGERH. The samples were gathered at each reservoir sampling point (0.3 m
from the surface) and collected in a dark flask to avoid exposure to light. Subsequently,
each sample’s pigments were cold-extracted using a solution of 90% acetone. Finally,
the pigments were used to assess the Chla concentration in each sample, as analyzed by
accredited laboratories according to a standardized protocol (APHA 10,200 H spectrometric
method [24,41]).

2.3. Sentinel-2 Satellite Data
2.3.1. Spectral Band Data

The Sentinel-2 mission is an effort of the European Space Agency (ESA) to monitor the
Earth’s environment. This mission comprises a constellation of two polar-orbiting satellites,
namely Sentinel-2A and Sentinel-2B. Both satellites are placed in the same sun-synchronous
orbit to monitor the Earth’s environmental changes [42,43]. The mission started with the
launch of the first Sentinel-2A satellite in June 2015. The latter deployment of the second
satellite, Sentinel-2B, in March 2017 reduced the revisiting time from 10 days to 5 days [44].

In addition to the shorter revisiting time, the Sentinel-2 mission is equipped with a
multispectral instrument (MSI), whose state-of-the-art anastigmatic telescope provides
information at different spatial resolutions ranging from 10 m to 60 m [43,45,46]. The MSI
can register data from 13 spectral bands, varying from visible to near-infrared (NIR) and
short-wave infrared (SWIR), to provide high-resolution data for both inland and coastal
areas [13,43,47].

The remote sensing data used in the present work underwent Level-1C processing. For
this level of data processing, the Earth’s spatial region was partitioned into tiles based on the
UTM/WGS84 projection, with each tile separated by a distance of 100 km. The radiometric
values of each tile’s pixel were determined for the top-of-atmosphere reflectances, which
were later converted to radiance [48,49]. The quality of the Level-1C processing is ensured
by the ESA monthly, following rigorous quality standards [50]. Finally, a maximum of 20%
cloud coverage was set when downloading the satellite images to prevent excessive cloud
obstruction, which could harm the models’ performances.

The combination of reduced revisiting time, high spatial resolution, and wide range of
spectral bands has made the Sentinel-2 an important mission for agriculture applications
and forest monitoring [12].

Table 1 presents the wavelength for each spectral band captured by the MSI [43,51].
The wavelengths around 700 nm (NIR) suggest that the Sentinel-2 constellation is suitable
for capturing phytoplankton spectral characteristics, including Chla, as these microscopic
organisms cause a surge in spectral reflectance at around the 700 nm mark [13,24,52].
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Table 1. Characteristics of spectral bands captured by the MSI.

Band Central Wavelength
(nm)

Bandwidth
(nm)

Spatial Resolution
(m) Band Spectral Range

1 443 20 60 Coastal aerosol
2 490 65 10 Blue
3 560 35 10 Green
4 665 30 10 Red
5 705 15 20 Vegetation red edge 1
6 740 15 20 Vegetation red edge 2
7 783 20 20 Vegetation red edge 3
8 842 115 10 NIR

8A 865 20 20 Narrow NIR
9 945 20 60 Water vapor

10 1380 30 60 SWIR-Cirrus
11 1610 90 20 SWIR 1
12 2190 180 20 SWIR 2

Furthermore, given the different satellite band resolutions, the water samples from
the reservoirs were taken at a minimum distance of 60 m from the shoreline. This pre-
caution ensured that the pixel corresponding to the lowest spatial resolution was entirely
encompassed within the reservoir boundaries. In addition, given the satellite revisiting
time, most of the remote sensing data were captured at an interval of ca. 1 to 2 days. To
achieve this time window, the date of sample collection was used to identify the closest
satellite overpass, both before and after the in situ measurement, within a maximum al-
lowable time difference of 7 days. For instance, if a sample was collected on 6 July, and the
satellite’s previous and subsequent visits occurred on 4 July and 9 July, respectively, only
the 4 July overpass was considered due to its proximity to the collection date. Given the
typical satellite revisit period of 5–7 days, the maximum time difference between the in
situ measurement and the closest overpass ranged from 2.5 to 3.5 days. In most cases, the
actual difference fell within a range of 1 to 2 days. Since Chla concentrations did not vary
significantly for the given period, this time range was valid for our study application.

2.3.2. Satellite Spectral Indices

Satellite spectral indices are derived from mathematical equations combining two
or more spectra of the satellite bands. The use of these indices is a helpful approach for
extracting information from the pixelwise spectral bands to model terrestrial processes
and features, such as vegetation, water, urban development, and agriculture [51,53,54]. A
comprehensive investigation of 16 different indices and their impact on each model’s result
was performed in the present study. Their mathematical formulations are displayed in
Equations (1) to (16).

NDVI =
Band 8 − Band 4
Band 8 + Band 4

(1)

Equation (1) shows the formulation for the difference vegetation index (NDVI). This
index is widely applied in remote sensing, primarily for the evaluation of green areas and
related changes. It is a valuable input in different remote sensing applications [55,56].

GNDVI =
Band 8 − Band 3
Band 8 + Band 3

(2)

Equation (2) shows the formulation for the green normalized difference vegetation
index (GNDVI), an adapted version of the NDVI aimed explicitly at detecting Chla in
vegetation [57,58].

EVI = 2.5 · (Band 8 − Band 4)
(Band 8 + 6 · Band 4 − 7.5 · Band 2 + 1)

(3)
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The enhanced vegetation index (EVI) is similar to the NDVI but removes the impacts
of the atmosphere and soil on vegetation signals [59,60].

SAVI =
Band 8 − Band 4

Band 8 + Band 4 + 0.428
· 1.428 (4)

The soil-adjusted vegetation index (SAVI) improves the NDVI by considering the
effects of the multiple scattering of soil [60,61].

NDMI =
Band 8 − Band 11
Band 8 + Band 11

(5)

The normalized difference moisture index (NDMI) is used to verify changes in vegeta-
tion physiology by determining its water content [62,63].

MSI =
Band 11
Band 8

(6)

The moisture stress index (MSI) is used to evaluate changes in the water content in
vegetation via canopy stress analysis. It is also used to indicate water concentration in
soil [64,65].

GCI =
Band 9
Band 3

− 1 (7)

As its name implies, the green chlorophyll vegetation index (GCI) is applied to re-
mote sensing data to estimate chlorophyll concentration in vegetation and, consequently,
determine the health of the vegetation [66,67].

NBRI =
Band 8 − Band 12
Band 8 + Band 12

(8)

The normalized burn ratio index (NBRI) is used to identify the occurrence and severity
of natural or human-caused fires in vegetation areas [68,69].

BSI =
(Band 11 + Band 4) − (Band 8 + Band 2)
(Band 11 + Band 4) + (Band 8 + Band 2)

(9)

The bare soil index (BSI), shown in Equation (9), is used to retrieve information from
vegetation in cases where its coverage is less than half of the assessed area. This index
allows us to determine the vegetation health of the exposed soil area [70,71].

NDWI =
Band 3 − Band 8
Band 3 + Band 8

(10)

The normalized difference water index (NDWI) is used to effectively retrieve informa-
tion about water bodies from remote sensing data [72,73].

NDSI =
Band 3 − Band 11
Band 3 + Band 11

(11)

The normalized difference snow index (NDSI) is a tool used to detect snow cover in a
specific area by analyzing the light reflection properties of ice. This index retrieves informa-
tion by distinguishing snow coverage from other surfaces and adjusting for atmospheric
and terrain effects [74–76].

NDGI =
Band 3 − Band 4
Band 3 + Band 4

(12)
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Similar to the NDSI, the normalized difference glacier index (NDGI) is used to identify
glacier coverage in a region mainly composed of snow, ice, and debris [77,78].

ARVI =
Band 8 − 2 · Band 4 + Band 2

Band 8 + 2 · Band 4
(13)

The atmospherically resistant vegetation index (ARVI) is an improvement over the
NDVI by implementing atmospheric corrections. The ARVI is especially useful for regions
under dense aerosol coverage [79,80].

IPI =
Band 8 − Band 2
Band 8 − Band 4

(14)

The structure-insensitive pigment index (SIPI) was initially proposed to identify
vegetation stress through the ratio between carotenoid and chlorophyll in vegetation. It is
also useful for analyzing vegetation structures with different canopy configurations [81,82].

SWM =
Band 2 + Band 3

Band 8 + Band 11
(15)

The sentinel water mask (SWM) is specifically used to analyze water data from the
Sentinel-2 constellation [83].

AWEI = 4 · (Band 3 − Band 11)− (0.25 · Band 8 + 2.75 · Band 12) (16)

The automated water extraction index (AWEI) is used to detect water accurately given
various environmental interferences [84,85].

While a preliminary analysis might suggest that the NDSI and NDGI are less suitable
for our semi-arid study area in Ceará, a closer examination of Equations (11) and (12),
alongside the information presented in Table 1, revealed otherwise. These indices utilize
bands within the spectral range ideal for Chla detection and offer a high spatial resolu-
tion [13,24,52]. Notably, bands 3 and 4 consistently contribute to Chla identification. Band
11, located in the infrared spectrum, can provide valuable temporal information as surface
temperature varies systematically throughout the year. Therefore, these indices may con-
tain relevant spatial and temporal data that could help uncover the relationships between
the input parameters and Chla, potentially improving the performance of the machine
learning models. This justifies further investigation into their role in Chla modeling.

Figures 2 and 3 illustrate the correlation between the satellite bands and Chla and the
indices and Chla, respectively. In both figures, lighter colors indicate stronger correlations.

Figure 2 shows a strong correlation between the spectral bands, except for band 10.
In contrast, Figure 3 reveals that the spectral indices exhibit a lower correlation with each
other, indicating their potential to be used in ML models due to their low collinearity.
Regarding their correlation with the Chla attribute, the bands present significantly lower
values, up to ten times smaller than the correlation between the indices and Chla.

When used as inputs in a predictive model, highly correlated variables may intro-
duce noise into the dataset, thereby increasing the model’s variance and reducing its
accuracy [86,87]. However, discarding variables solely based on a high or low correlation
may also be detrimental, as they may still carry relevant spatiotemporal information that
can improve forecasting performance [14].
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2.4. Machine Learning Models

In this study, Chla was estimated using satellite data and machine learning models.
The first implemented approach was a random forest (RF) model. An RF model is a model
of trees trained using the bagging method of resampling while considering only a subset
of predictors (Figures 2 and 3) [88,89], making it an ensemble model. The trained trees
have a low correlation, thus reducing the ensemble model variance and improving perfor-
mance [90]. A number of published works have investigated the RF methodology [91–93].

XGBoost [94] is tree-based approach that is also an ensemble model, representing an
extreme improvement over the random forest approach. It consists of bag sampling smaller
tree models to combine them into a larger and more robust tree model, thereby reducing
the model variance while improving its generalization and reducing the tendency to
overfit [90,95]. The XGBoost approach can handle missing data and manipulate increasing
dataset size, thus maintaining its generalization. This approach has been reported to reach
excellent results when applied to different time series forecasting tasks [84,96,97].

K-nearest neighbors (k-NN) is a supervised ML model that uses non-parametric
vectors to determine an unknown point, which can be applied to data classification and
regression cases [85,98]. Despite its simplicity, the regression performed by the k-NN
approach offers competitive results within the ML field and has been explored for different
scenarios in previous studies [99–101].

Support vector machine (SVM) is a flexible ML approach with diverse applications in
classification, regression, and outlier detection [102]. A unique feature of SVM is the use
of kernel functions that allow a dataset to be transformed into higher-dimensional spaces,
making it possible for the model to learn complex non-linear relationships by applying
convex optimization without being computationally expensive, thus reducing the training
error [98,103,104]. However, one drawback of the SVM approach is that it does not handle
large datasets efficiently as it requires extended computational time to be trained [105,106].

The least absolute shrinkage and selection operator (LASSO) regression [107] was
another ML methodology implemented in this study. This approach is a more straight-
forward ML methodology that seeks to implement the best linear regression to a dataset.
In addition to that, the LASSO paradigm is also a regularization and parameter selection
approach, making its results more interpretable than other traditional ML models [90,107].

Lastly, we investigated the application of the GMDH ML model for Chla modeling
using satellite data. This methodology is a feedforward unidirectional ML model, similar
to a multilayer perceptron [108,109]. It is a self-organizing model whose parameters are
selected automatically without the need for tuning [110]. The resulting value obtained
by the GMDH model is a quadratic approximation, using pair combinations of the input
variables [111,112] to model the relationship between the input and output parameters [113].
Unlike other artificial neural network paradigms, the GMDH model does not need large
amounts of training data, as the estimation of its parameters is automatically determined
without recursion [20]. The performance of the GMDH model has been verified in previous
studies for time series challenges, including hydrological applications [114–116].

2.5. Evaluation Metrics

To assess the forecast performance of the proposed models, we opted to calculate
the root mean squared error (RMSE), normalized RMSE (nRMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), mean bias error (MBE), and coefficient of
determination (R2). The equation for R2 can be found in [117], and the equations for the
remaining metrics can be found in [118].

2.6. Dataset Preprocessing and Attribute Selection

Dataset standardization is a technique that rescales the features within a dataset to
a common scale, typically by setting the mean to zero and the standard deviation to one.
This can improve the performance of some machine learning models [119]. In addition
to data standardization, the Yeo–Johnson transformation [120] was implemented in this
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study for some of the ML models. This transformation is an improvement over the Box–
Cox approach, which is restricted to handling positive numbers only. The Yeo–Johnson
transformation is based on the power transformation of different parameters to positive
and negative values and is presented in Equation (18) [120]:

ψ(y, λ) =



(y+1)λ+1
λ y ≥ 0, λ ̸= 0

log(y + 1) y ≥ 0, λ = 0

− (−y+1)2−λ−1
2−λ y < 0, λ ̸= 2

−log(−y + 1) y < 0, λ = 2

(17)

where the transformed value ψ is a function of the original attribute value, y, and a
parameter λ, which is determined via maximum likelihood. This transformation seeks
to reduce data skewness by approximating the original dataset distribution to a normal
distribution as ψ(y, λ) ∼ N

(
µ, σ2) [121,122].

To select the most relevant features for the models, a step-by-step approach was
implemented [85]. We began by investigating the influence of the individual bands 1 to 12,
using the XGBoost model as a benchmark. The choice of XGBoost was motivated because
it is a state-of-the-art model well known for its robustness and for providing excellent
outcomes [119,123]. The band that returned the best R2 was chosen. After that, we tested
the combination of the selected feature with the remaining bands, one by one, and kept
the band combination that returned the highest coefficient of determination. This process
continued until all bands were evaluated, and the combination that yielded the best overall
performance was identified [85]. A visual illustration of this process is depicted in Figure 4
for the selection of the most informative spectral bands.
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Figure 4. Parameter selection of spectral bands: (a) each band is fed to the (b) XGBoost model to
select the best predictor. (c) The remaining bands are combined with the previously chosen B06
attribute and fed to the (d) XGBoost model, resulting in the B06 + B04 selection. (e) The process is
repeated with the remaining bands. This continues until all variables are investigated.

The same procedure was repeated for the selection of the indices. This time, we started
the investigation with the best band that was previously selected. Then, we added one
index at a time to the input parameters and selected the index that yielded the highest R2.
This process was repeated until all the indices were assessed. The selections of the best
bands and indices are presented in Figures 5 and 6, respectively.
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As depicted in Figure 5, the modeling for Chla detection substantially improved with
the combination of bands 6, 4, 10, 7, 8A, 9, 5, 12, and 3, achieving an R2 of 0.36. Figure 6
shows that incorporating additional indices, namely NBRI, NDSI, AWEI, SAVI, NDVI,
MSI, GCI, GNDVI, and ARVI, further increased the coefficient of determination to 0.50.
Interestingly, including the NDSI, an index related to snow coverage, improved the Chla
identification, as shown in Figure 5. This suggests that the NDSI conveys valuable spa-
tiotemporal information for the modeling approach. Therefore, the results discussed in the
subsequent section are based on grouping the aforementioned spectral bands and indices.

Figure 7 summarizes the proposed methodology of this study. It depicts a step-by-step
process, from acquiring data (a) to evaluating the performance of various machine learning
models (f).
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Figure 7. Flow chart of the proposed methodology. (a) Remote sensing data and in situ collected
samples are acquired. (b) The dataset is preprocessed to remove incorrect values and data normaliza-
tion is applied. (c) The best set of attributes is selected, composed of both spectral bands and indices.
(d) The dataset is split into training and validation sets, (e) which are then used to build and assess
the ML models. (f) The forecasted Chla values of each model are compared using several metrics and
values found in the relevant literature.

3. Results
3.1. Limnological Behavior

The mean values for chlorophyll-a varied significantly across the reservoirs and
according to seasonality. Considering the entire dataset, Chla ranged from 1 µg/L to
1001.78 µg/L, with an average of 39.62 µg/L and a standard deviation of 65.78 µg/L.
Figure 8A shows the distribution of Chla concentrations across years and seasons. The
mean values decreased over the years (from 81.34 µg/L in 2015 to 27.84 µg/L in 2021),
while the maximum values did not follow this trend, showing occasional spikes with values
ranging from 707.06 in 2015 to 1001.78 in 2016. This indicated periods of concentrated
blooms. Regarding the seasonal distribution of Chla, higher concentrations were detected
during the rainy seasons for most of the studied years, except in 2017.
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Figure 8. Boxplots presenting basic statistics of Chla concentrations in logarithmic scale: (A) grouped
by sampling year and season (rainy: January to April; dry: remaining months); (B) grouped by the
state’s largest reservoirs (Castanhão, Banabuiú, and Orós) and all studied reservoirs. The lower and
upper limits represent the minimum and maximum values, respectively. The bottom and top of the
box represent the first and third quartiles, respectively. The inner lines, asterisks, and circles indicate
the media, means, and outliers, respectively.
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Figure 8B shows the Chla concentrations in the state’s three largest reservoirs. Orós
had the highest recorded average, at 31.89 µg/L, with a range from 9.20 to 60.94 µg/L.
The mean Chla concentration for Banabuiú was the lowest recorded, at 21.64 µg/L, fluctu-
ating between 1.82 and 54.55 µg/L. Lastly, the values for Castanhão ranged from 5.65 to
78.72 µg/L, with the second highest mean Chla value of 29.03 µg/L.

3.2. Results of Chla Concentrations Estimated by the ML Models

The proposed models were built using the variables presented in Figures 5 and 6 as
the input parameters. We used data from the Sentinel-2 satellite and on-site measurements
from the 149 reservoirs to train and test these models. We adopted a 70/30 split for the
training and validation datasets, which were randomly assembled using data from 2015 to
2021. It is important to note that given the random sampling for the training and validation
datasets, not all reservoirs might have been included in the validation dataset. However,
this does not mean that the validation dataset does not have statistical characteristics similar
to the training dataset.

The models were implemented in Python language, version 3.11.7. The hyperpa-
rameters of the tested ML models, except for the GMDH self-organizing model, were
selected using the GridSearch tool from Scikit-Learn version 1.2.2, with fivefold cross-
validation [124,125]. The outcomes of Chla modeling by each of the assessed models are
presented in Table 2.

Table 2. Results of Chla concentrations estimated by the models.

Model RMSE
(µg/L)

nRMSE
(%)

MAE
(µg/L)

MAPE
(%)

MBE
(µg/L) R2 Yeo–Johnson

Transformation

k-NN 61.82 146.07 30.90 260.60 −4.91 0.38 Yes
XGBoost 55.60 131.36 29.41 288.34 −2.53 0.50 No

RF 56.75 134.10 29.92 311.58 −1.54 0.48 No
SVR 50.64 119.64 25.07 182.60 −6.97 0.58 Yes

LASSO 89.87 212.34 47.41 466.35 −3.60 0.41 Yes
GMDH 20.38 53.20 14.09 102.34 −4.86 0.91 Yes

Table 2 shows that the ML models reached similar results regarding the RMSE metric,
except for the GMDH model, which surpassed all other models, achieving an RMSE of
20.38 µg/L and an R2 of 91%. The LASSO model achieved the highest value of RMSE,
at 89.87 µg/L, followed by the k-NN model, with an RMSE value of 61.82 µg/L. The
tree-based XGBoost and RF models achieved similar RMSE values of 55.60 µg/L and
56.75 µg/L, respectively. The SVR output scored an RMSE value equal to 50.64 µg/L. It
is essential to note that an analysis of the RMSE alone may be misleading when assessing
the performance of models. The coefficient of determination is another crucial factor to
consider in this scenario. This parameter indicates the total variance in the dependent
variable Chla, which can be adequately forecasted by the input parameters and may be
viewed as an indication of the accuracy achieved by a model [126]. This behavior can be
better visualized by examining Figure 8.

Figure 9 shows how the predicted data compare with the measured Chla values. We
used log values to facilitate the comparison due to differences in the variables’ scales. The
histograms show the normal distribution of the data after the logarithm transformation. In
Figure 9, given the log scale, minor fluctuations in Chla values correspond to negligible
alterations in the satellite-captured data. This is not related to the GMDH model itself but
is a consequence of the chosen scale. The use of remote sensing data lacks the sensibility
to convey sufficient information at low Chla values, since a main characteristic of high
Chla concentrations is their tendency to converge to a specific spectral pattern that appears
green, while at low values, they tend to converge to different spectral patterns depending
on the characteristics of each reservoir.
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However, in Figure 9, it is still possible to observe that both the predicted and measured
data present similar distributions, which indicates the GMDH model’s good performance
in predicting Chla levels. The regression line displayed in the plotting area shows a positive
correlation between the predicted and measured Chla data, further attesting to the robust
performance of the GMDH model. The points clustered around the regression line also
indicate the superior performance of the GMDH model, especially for extreme values, as
depicted by the top-rightmost points in the graph area. Comparing the results in Table 2,
we can see that the highest R2 value reached by the GMDH model was 0.91, representing a
significant improvement of 57% over the SVR result, the second-best-performing model
regarding the same parameter. The third- and fourth-best-performing models were the
tree-based XGBoost and RF models, which achieved R2 values equal to 0.50 and 0.48,
respectively.

Regarding the performance of the k-NN model, the R2 was 0.38, and for the LASSO
model, the R2 was 0.38 and the coefficient of determination was 0.41, indicating it was
the worst-performing modeling paradigm. An analysis of the values of MAE and MAPE
indicated that the GMDH model could output more accurate and precise results compared
to the other assessed models. The negative values of MBE were a trend present in all of
the investigated models. This result indicates that the ML models share the tendency to
underestimate the Chla values.

4. Discussion

Advanced analysis is required to understand the mechanisms that regulate phyto-
plankton growth in tropical regions due to the complexity and non-linearity of the rela-
tionship between chlorophyll and physicochemical/environmental factors [24,127]. The
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approach presented in this study achieved such an analysis by using a highly heteroge-
neous collection of in situ observations and investigating the performance of different ML
models in determining the Chla levels in 149 reservoirs in the Brazilian state of Ceará. Al-
though most reservoirs are predominantly eutrophic throughout the years, various human
activities and pollution sources have contributed to the eutrophication processes, leading
to Chla spatiotemporal fluctuations and algal blooms [30,34,128,129].

4.1. Parameter Selection

We applied the forward stepwise approach to select the parameters, including bands
and spectral indices. To the best of our knowledge, this method has not yet been applied in
previous remote sensing studies. The forward stepwise approach significantly improved
the accuracy of the ML models in determining the Chla levels. Existing literature regarding
the influence of spectral bands on Chla determination can be found. In [130], the authors
applied the SHAP analysis to determine the influence of the Sentinel-2 spectral bands
on the estimation of Chla values. Their results showed that bands 2, 3, and 8 were the
top three most influential parameters for Chla determination. Bands 2 and 3 exhibited a
positive correlation with the Chla value, while band 8 showed a negative correlation with
the same parameter. A similar approach was conducted by Kim et al. [131]. In their work,
the SHAP analysis showed the participation of red bands, i.e., bands 4, 5, and 6, as well as
blue and green bands in Chla prediction (Table 1). A similar conclusion was reported by
Ha et al. [132].

The influence of different spectral indices on Chla modeling has been investigated
in previous works. Castro et al. [133] showed that indices merging red and NIR bands
yielded the best outcomes for determining Chla concentrations in small reservoirs. Similar
conclusions were drawn by Buma and Lee [134] and Aubriot et al. [135], who confirmed
the importance of bands within the red spectral range for Chla characterization in a lake in
Chad and the Rio de La Plata, respectively. On the other hand, Viso-Vazquez et al. [136]
showed that a green band, i.e., band 3, contributed the most to the correlation between the
remote sensing data and Chla levels.

4.2. ML Model Comparison

The “no free lunch theorem” states that no single best machine learning model exists
for every task [137]. In fact, different models will perform differently on the same task under
the same conditions, and one of the models may achieve better outcomes compared to the
others. In this case, the proposed GMDH model was the best-performing approach. The
GMDH model has also been found to achieve excellent results in time series hydrological
applications, which could, in part, justify its superior results [108,138].

Our results show the GMDH approach could efficiently identify the latent non-linear
ties influencing the input and output attributes. The GMDH approach proved to be a more
robust model for analyzing satellite imagery as it was more resilient to noise. Additionally,
it provided satisfactory results in handling different band information. Therefore, given
its simple implementation and superior performance, the GMDH model poses as a strong
contender for a real-time Chla monitoring tool.

4.3. Comparison with Previous Works

To better understand where the GMDH results lie within the literature, we compared
our results with those found in previously published works. Such an evaluation, however,
may not be representative given the different methodologies, models, and input attributes
used in different studies, as well as the different study areas. Yet, comparing their evaluation
metrics is still a viable approach for assessing the performance of different models [139].
Table 3 presents the results of the GMDH model, while Table 4 presents the results found
in the literature.
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Table 3. Results of the GMDH model’s estimation of Chla levels.

Model RMSE
(µg/L)

MAE
(µg/L)

MBE
(µg/L)

MAPE
(%) R2

GMDH 20.38 14.09 −4.86 102.34 0.91

Table 4. Compilation of results of Chla modeling found in the literature.

Model Location Dataset RMSE µg/L R2 Reference

Multimodal
Deep Learning

Lake Simcoe,
Canada

Sentinel-2 and
Landsat-8 imagery 60 0.92 [140]

Convolutional
Neural Network

Lake Balik,
Turkey Sentinel-2 imagery 2.9 0.95 [141]

Convolutional
Neural Network

11 lakes in
Karlsruhe,
Germany

Simulated Chla data
used for training,
data from SpecWa

used for evaluation

12.4 0.82 [142]

SVR 45 lakes across
China Sentinel-2 imagery 6.3 0.88 [143]

SVR Buffalo Pound
Lake, Canada Sentinel-2 imagery 13.9 0.66 [144]

Toming’s Index A Baxe
reservoir, Spain Sentinel-2 imagery - 0.86 [136]

3BSI Index 5 reservoirs in
Ceará, Brazil Sentinel-2 imagery - 0.80 [24]

C2RCC
Atmospheric

Correction

6 reservoirs in
São Paulo,

Brazil
Sentinel-2 imagery 2.3 0.75 [145]

Table 4 shows that the models based on the deep learning methodology all performed
remarkably well in determining Chla levels. Compared to the results found in our study, it
is noted that the R-squared values reported in references [140,141] are in the same range,
over 90%. Nevertheless, in the work by Guo et al. [140], the combined utilization of Sentinel-
2 and Landsat-8 data significantly enhanced the machine learning model’s performance.
This improvement was primarily due to the reduction in revisit time, which subsequently
minimized the variance in the dataset. Consequently, this led to a more robust and accurate
machine learning model. It is important to note that, although the results were slightly
superior in that work, the study location was limited to only one site.

Adding data from more water bodies is expected to add variance to the dataset. The
model in reference [142] was built using simulated data from 11 times more water bodies
than the previous studies. The results proved slightly inferior to the other two previous
works and were closer to the values found in the present assessment, with the RMSE in the
same order of magnitude.

Regarding the R2, our GMDH model showed a nearly 10% superior value. However,
it must be noted that since the data used for training the ML model were simulated, the
authors of [142] might not have considered several naturally occurring situations. This
would lead to a more homogeneous dataset with less variance, thus improving the ML
model performance compared to the model proposed in our study. Another significant
difference is the time window used for testing the developed model in reference [142],
which was significantly smaller than the one used in our model [146]; this also reduced the
dataset variance, thereby improving the ML model performance.

The DL approaches presented in Table 4 require considerable amounts of data to yield
reliable outputs. Depending on the data availability for a study location, this characteristic
may pose a major drawback. On the other hand, the GMDH approach can be promptly
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implemented with less information available and does not require extensive training
datasets, making it more flexible for different situations.

The authors of [143,144] applied SVR to determine the Chla levels. It is noticeable
that although the models were the same, their methodology was different. Regarding
reference [143], the RMSE values were within the same order of magnitude and the R2

values were relatively close to each other. In contrast, the authors of [144] performed a
much broader study on several lakes spread across the Chinese territory. As previously
mentioned, including a greater number of lakes allows the forecasting model to better
generalize its results, thus providing more robust outcomes. Another critical difference
between these two works is that the former implemented only the spectral bands of the
MSI on board Sentinel-2 as the input information, while the latter used both bands and
indices. In this respect, the present study achieved superior performance, attesting that
the GMDH model benefited from the inclusion of spectral indices, which improved the
Chla values.

The work conducted by Aranha et al. [24] shared the same location as the one used in
this study. However, they used only a subset of 5 reservoirs out of 149. In their approach,
the authors fitted a regression line to their dataset using the three-band spectral index (3BSI),
showing good agreement between the index and the Chla values. A similar methodology
was implemented in reference [136], where the Toming’s index was used to fit a regression
line for the Chla values. These two studies implemented spectral bands to estimate Chla
concentrations. By evaluating the R2 metric values in [24,136], the proposed GMDH model
was superior to the models used in both studies, with significant improvements of 12%
and 5%, respectively. Furthermore, a major difference in methodology between these two
studies and the present work was data handling. The other studies proceeded to fit a
regression line using the proposed indices over the entire dataset, making no distinction be-
tween training and testing datasets. This would be analogous to assessing our ML model’s
performance considering the training dataset only. Therefore, their methodologies lacked
generalization, being bound to a particular time and geographic location. Nevertheless,
while these approaches were considerably less complex than the proposed ML model, they
provided valuable insights into Chla’s behavior when analyzed using the evaluated indices.

In the work conducted by Pompêo et al. [145], the Sentinel application platform (SNAP)
algorithm was used to model the Secchi disk depth, Chla concentration, and number of
cyanobacteria cells. The study location was the Cantareira System (CS) in the Brazilian state
of São Paulo, Brazil. The authors used in situ collected water samples from six reservoirs
in the CS as ground truth for the evaluation of water quality parameters. These data
were later compared with the data obtained using the case-2 regional coast color (C2RCC)
atmospheric correction algorithm. This is a machine learning paradigm based on neural
networks trained to reproduce top-of-atmosphere reflectance [147]. The results of their
study showed a good correlation between the modeled data and the real collected sample
data for Chla, achieving an RMSE value of 2.3 µg/L and an R2 of 0.75.

A direct comparison of these results with the ones found in our study showed an
R-squared value that was 16% superior for the GMDH approach, while the C2RCC had
better RMSE values. The reason behind this discrepancy for the error metrics is twofold.
First, even though both studies were conducted in the Brazilian territory, the state of São
Paulo is characterized by a subtropical and tropical climate type [148]. Such a climatic
configuration is much less prone to dry seasons compared to the studied semi-arid region
of the Ceará state. This leads to less fluctuation in Chla levels. Consequently, this could
decrease the model’s variance, thus enhancing its performance. Second, the work presented
by Pompêo et al. used significantly fewer reservoirs compared to the present work. As
previously mentioned, a reduced number of reservoirs hinders a model’s capacity to
generalize to unknown data while diminishing the dataset’s variance, leading to improved
error outcomes. However, despite the improved error, the C2RCC model is a less robust
approach when compared to the GMDH model, as evidenced in the comparison of the R2

metrics of the two models.
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4.4. Most Relevant Spectral Bands

A comprehensive investigation of the spectral indices from the Sentinel-2 constellation
allowed us to gain deeper insights into the spatiotemporal influence of both bands and
indices on Chla prediction. Our results from parameter selection (Figures 5 and 6) show
that while bands 8 and 11 were not part of the selected band set, they were still present in
the form of indices. A detailed review of the GMDH results (available in Supplementary
Spreadsheet 1) highlights the significant contribution of bands 3, 4, 5, 7, 8, and 11 to Chla
prediction. This suggests that the proposed model benefits from a higher spatial resolution
and the inclusion of green, red, and infrared bands in the indices, which aligns with the
existing literature [13,24,52].

5. Conclusions

This study evaluated several input parameters for Chla modeling using data from
149 freshwater reservoirs that span a vast semi-arid tropical region across the Brazilian
state of Ceará. This assessment was conducted using satellite remote sensing data and
ground-truth Chla measurements, reflecting the temporal and spatial distributions, which
were notably impacted by interannual rainfall variability. To this end, we investigated the
performance of several ML approaches using forward stepwise parameter selection. From
the obtained results, we can make the following conclusions:

• Using forward stepwise selection, a new approach in the remote sensing field, suc-
ceeded in improving Chla modeling by selecting input parameters that consisted of
both spectral bands and indices.

• Proper separation between training and testing datasets, which is usually overlooked
in similar works, improved model generalization, as demonstrated by the models’
results in Table 2.

• The best-performing model was the GMDH model, achieving an R2 value of 91%, a
significant improvement over the results obtained by the other assessed models. This
superior performance shows that this approach is suitable for Chla modeling using
remote sensing data.

• Chla modeling benefited most from the inclusion of the red, NIR, and green bands,
specifically bands 3, 4, 5, 7, 8, and 11.

• An extensive comparison with previous studies showed that the models tested in this
work offered competitive results.

In future works, the inclusion of more spectral indices and the Landsat-8 MODIS data
would provide more spatiotemporal information and reduce data variance due to the finer
temporal resolution. Furthermore, implementing atmospheric correction preprocessing
could also benefit the predictive paradigms being evaluated, as it would reduce data noise,
diminish the error variance, and improve the forecasting of Chla concentrations. Finally,
understanding how dataset size influences uncertainty in deep learning models could be
crucial for optimizing their performance in this specific application.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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95. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021,
54, 1937–1967. [CrossRef]

96. Dai, H.; Huang, G.; Zeng, H.; Zhou, F. PM2.5 Volatility Prediction by XGBoost-MLP Based on GARCH Models. J. Clean. Prod.
2022, 356, 131898. [CrossRef]

97. Zhang, C.; Hu, D.; Yang, T. Anomaly Detection and Diagnosis for Wind Turbines Using Long Short-Term Memory-Based Stacked
Denoising Autoencoders and XGBoost. Reliab. Eng. Syst. Saf. 2022, 222, 108445. [CrossRef]

98. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-262-03561-3.
99. Cai, L.; Yu, Y.; Zhang, S.; Song, Y.; Xiong, Z.; Zhou, T. A Sample-Rebalanced Outlier-Rejected $k$ -Nearest Neighbor Regression

Model for Short-Term Traffic Flow Forecasting. IEEE Access 2020, 8, 22686–22696. [CrossRef]
100. Liu, W.; Wang, P.; Meng, Y.; Zhao, C.; Zhang, Z. Cloud Spot Instance Price Prediction Using kNN Regression. Hum. Cent. Comput.

Inf. Sci. 2020, 10, 34. [CrossRef]
101. Ho, W.T.; Yu, F.W. Chiller System Optimization Using k Nearest Neighbour Regression. J. Clean. Prod. 2021, 303, 127050.

[CrossRef]
102. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022;

ISBN 978-1-09-812246-1.
103. Chollet, F. Deep Learning with Python, 2nd ed.; Simon and Schuster: New York, NY, USA, 2021; ISBN 978-1-63835-009-5.
104. Tanveer, M.; Rajani, T.; Rastogi, R.; Shao, Y.H.; Ganaie, M.A. Comprehensive Review on Twin Support Vector Machines. Ann.

Oper. Res. 2022. [CrossRef]
105. Bansal, M.; Goyal, A.; Choudhary, A. A Comparative Analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision

Tree, and Long Short Term Memory Algorithms in Machine Learning. Decis. Anal. J. 2022, 3, 100071. [CrossRef]
106. Manoharan, A.; Begam, K.M.; Aparow, V.R.; Sooriamoorthy, D. Artificial Neural Networks, Gradient Boosting and Support Vector

Machines for Electric Vehicle Battery State Estimation: A Review. J. Energy Storage 2022, 55, 105384. [CrossRef]

https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.1080/01431160802385459
https://doi.org/10.3390/rs12071203
https://doi.org/10.1109/36.134076
https://doi.org/10.1016/j.acags.2020.100032
https://doi.org/10.1016/j.agrformet.2020.108098
https://doi.org/10.3390/w14050747
https://doi.org/10.1080/00949655.2021.1945063
https://doi.org/10.3390/math10081283
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.patrec.2005.08.011
https://doi.org/10.1016/j.ygeno.2012.04.003
https://www.ncbi.nlm.nih.gov/pubmed/22546560
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.jclepro.2022.131898
https://doi.org/10.1016/j.ress.2022.108445
https://doi.org/10.1109/ACCESS.2020.2970250
https://doi.org/10.1186/s13673-020-00239-5
https://doi.org/10.1016/j.jclepro.2021.127050
https://doi.org/10.1007/s10479-022-04575-w
https://doi.org/10.1016/j.dajour.2022.100071
https://doi.org/10.1016/j.est.2022.105384


Remote Sens. 2024, 16, 1870 23 of 24

107. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
108. Elkurdy, M.; Binns, A.D.; Bonakdari, H.; Gharabaghi, B.; McBean, E. Early Detection of Riverine Flooding Events Using the Group

Method of Data Handling for the Bow River, Alberta, Canada. Int. J. River Basin Manag. 2022, 20, 533–544. [CrossRef]
109. Zaji, A.H.; Bonakdari, H.; Gharabaghi, B. Reservoir Water Level Forecasting Using Group Method of Data Handling. Acta Geophys.

2018, 66, 717–730. [CrossRef]
110. Azimi, H.; Bonakdari, H.; Ebtehaj, I.; Gharabaghi, B.; Khoshbin, F. Evolutionary Design of Generalized Group Method of Data

Handling-Type Neural Network for Estimating the Hydraulic Jump Roller Length. Acta Mech. 2018, 229, 1197–1214. [CrossRef]
111. Stajkowski, S.; Laleva, A.; Farghaly, H.; Bonakdari, H.; Gharabaghi, B. Modelling Dry-Weather Temperature Profiles in Urban

Stormwater Management Ponds. J. Hydrol. 2021, 598, 126206. [CrossRef]
112. Stajkowski, S.; Hotson, E.; Zorica, M.; Farghaly, H.; Bonakdari, H.; McBean, E.; Gharabaghi, B. Modeling Stormwater Management

Pond Thermal Impacts during Storm Events. J. Hydrol. 2023, 620, 129413. [CrossRef]
113. Bonakdari, H.; Ebtehaj, I.; Gharabaghi, B.; Vafaeifard, M.; Akhbari, A. Calculating the Energy Consumption of Electrocoagulation

Using a Generalized Structure Group Method of Data Handling Integrated with a Genetic Algorithm and Singular Value
Decomposition. Clean Technol. Environ. Policy 2019, 21, 379–393. [CrossRef]
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