Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Study Area Description
2.3. Soil and Remote Sensing Data Preparation
2.4. Data Pre-Processing and Machine Learning Algorithms
3. Results
3.1. Statistical Description
3.2. Feature Selection and Correlation Analysis
3.3. Machine Learning Performance
3.4. Soil Organic Carbon Mapping
4. Discussion
5. Contributions, Limitations, and Future Research Directions
6. Conclusions
- Combining multi-temporal Sentinel-1 and Sentinel-2 data enhances the precision of SOC prediction, with an improvement of R2 values and reduced error compared to using single-source data. This underscores the benefit of multi-sensor data fusion for DSM applications.
- Including topographic data improves the accuracy of different models and signifies that the integration of all data inputs culminates in optimal model efficacy.
- RF and XGBoost algorithms outperform SVR in SOC prediction across different scenarios, highlighting the effectiveness of ensemble learning techniques in handling complex spatial datasets.
- Despite the overall success, the models predominantly predict low SOC values, reflecting the inherent limitations in capturing the full range of SOC variability, which suggests the need for further refinement of modeling approaches to better address less frequent, high-concentration samples.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- von Fromm, S.F.; Hoyt, A.M.; Lange, M.; Acquah, G.E.; Aynekulu, E.; Berhe, A.A.; Haefele, S.M.; McGrath, S.P.; Shepherd, K.D.; Sila, A.M.; et al. Continental-scale controls on soil organic carbon across sub-Saharan Africa. Soil Discuss. 2020, 2020, 1–39. [Google Scholar] [CrossRef]
- Schulze, R.E.; Schütte, S. Mapping soil organic carbon at a terrain unit resolution across South Africa. Geoderma 2020, 373, 114447. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Vågen, T.G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mapping of soil properties and land deg-radation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [Google Scholar] [CrossRef]
- Al Masmoudi, Y.; Bouslihim, Y.; Doumali, K.; Hssaini, L.; Namr, K.I. Use of machine learning in Moroccan soil fertility prediction as an alternative to laborious analyses. Model. Earth Syst. Environ. 2022, 8, 3707–3717. [Google Scholar] [CrossRef]
- Wadoux, A.M.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Nenkam Mentho, A.; Wadoux, A.M.C.; Minasny, B.; Silatsa, F.B.; Yemefack, M.; Ugbaje, S.; Akpa, S.; van Zijl, G.M.; Bouslihim, Y.; Chabala, L.; et al. Applications and Challenges of Digital Soil Mapping in Africa. Available online: https://ssrn.com/abstract=4725182 (accessed on 15 March 2024). [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; de Jesus, J.M.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef]
- Bouasria, A.; Namr, K.I.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks. Geo-Spat. Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
- Bouslihim, Y.; John, K.; Miftah, A.; Azmi, R.; Aboutayeb, R.; Bouasria, A.; Razouk, R.; Hssaini, L. The effect of covariates on Soil Organic Matter and pH variability: A digital soil mapping approach using random forest model. Ann. GIS 2024, 30, 215–232. [Google Scholar] [CrossRef]
- Sayedain, S.A.; Maghsoudi, Y.; Eini-Zinab, S. Assessing the use of cross-orbit Sentinel-1 images in land cover clas-sification. Int. J. Remote Sens. 2020, 41, 7801–7819. [Google Scholar] [CrossRef]
- Urbina-Salazar, D.; Vaudour, E.; Baghdadi, N.; Ceschia, E.; Richer-de-Forges, A.C.; Lehmann, S.; Arrouays, D. Using sentinel-2 images for soil organic carbon content mapping in croplands of southwestern france. The usefulness of sentinel-1/2 derived moisture maps and mismatches between sentinel images and sampling dates. Remote Sens. 2021, 13, 5115. [Google Scholar] [CrossRef]
- Mponela, P.; Snapp, S.; Villamor, G.B.; Tamene, L.; Le, Q.B.; Borgemeister, C. Digital soil mapping of nitrogen, phosphorus, potassium, organic carbon and their crop response thresholds in smallholder managed escarpments of Malawi. Appl. Geogr. 2020, 124, 102299. [Google Scholar] [CrossRef]
- Flynn, T.; Rozanov, A.; Ellis, F.; de Clercq, W.; Clarke, C. Farm-scale digital soil mapping of soil classes in South Africa. S. Afr. J. Plant Soil 2022, 39, 175–186. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Zhuang, Q.; Guo, L. Prediction Potential of Remote Sensing-Related Variables in the Topsoil Organic Carbon Density of Liaohekou Coastal Wetlands, Northeast China. Remote Sens. 2021, 13, 4106. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K. Utilisation of spaceborne C-band dual pol Sentinel-1 SAR data for simplified regres-sion-based soil organic carbon estimation in Rupnagar, Punjab, India. Adv. Space Res. 2022, 69, 1786–1798. [Google Scholar] [CrossRef]
- Izurieta, J.E.A.; Santillán, C.A.J.; Márquez, C.O.; García, V.J.; Rivera-Caicedo, J.P.; Van Wittenberghe, S.; Delegido, J.; Verrelst, J. Improving the remote estimation of soil organic carbon in complex ecosystems with Sentinel-2 and GIS using Gaussian processes regression. Plant Soil 2022, 479, 159–183. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-Khiyavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- FAO. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method Titration and Colorimetric Method; Food & Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Dahhani, S.; Raji, M.; Hakdaoui, M.; Lhissou, R. Land cover mapping using sentinel-1 time-series data and ma-chine-learning classifiers in agricultural sub-saharan landscape. Remote Sens. 2022, 15, 65. [Google Scholar] [CrossRef]
- Loew, A.; Mauser, W. Generation of geometrically and radiometrically terrain corrected SAR image products. Remote Sens. Environ. 2007, 106, 337–349. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; SPIE: Bellingham, WA, USA, 2017; Volume 10427, pp. 37–48. [Google Scholar]
- Escadafal, R.; Girard, M.-C.; Courault, D. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sens. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Escadafal, R.; Belghith, A.; Ben Moussa, H. Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isère, France, 17–21 January 1994; pp. 17–21. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Kharrou, M.H.; Miftah, A.; Attou, T.; Bouchaou, L.; Chehbouni, A. Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers. J. Geovisualization Spat. Anal. 2022, 6, 1–17. [Google Scholar] [CrossRef]
- John, K.; Bouslihim, Y.; Bouasria, A.; Razouk, R.; Hssaini, L.; Isong, I.A.; M’Barek, S.A.; Ayito, E.O.; Ambrose-Igho, G. Assessing the impact of sampling strategy in random forest-based predicting of soil nutrients: A study case from northern Morocco. Geocarto Int. 2022, 37, 11209–11222. [Google Scholar] [CrossRef]
- Bouasria, A.; Bouslihim, Y.; Gupta, S.; Taghizadeh-Mehrjardi, R.; Hengl, T. Predictive performance of machine learning model with varying sampling designs, sample sizes, and spatial extents. Ecol. Inform. 2023, 78, 102294. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Proceedings of the Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, 2–5 December 1996. [Google Scholar]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Smith, J.; Smith, P.; Addiscott, T. Quantitative methods to evaluate and compare soil organic matter (SOM) models. In Evaluation of Soil Organic Matter Models: Using Existing Long-Term Datasets; Springer: Berlin/Heidelberg, Germany, 1996; pp. 181–199. [Google Scholar]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Brown, L.; Morris, H.; Bourg, L.; Goryl, P.; Dransfeld, S.; Dash, J. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sens. 2020, 12, 2652. [Google Scholar] [CrossRef]
- Vani, V.; Mandla, V.R. Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas. Int. J. Civ. Eng. Technol. 2017, 8, 559–566. [Google Scholar]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Ngatia, L.W.; Moriasi, D.; Grace, J.M., III; Fu, R.; Gardner, C.S.; Taylor, R.W. Land use change affects soil organic carbon: An indicator of soil health. In Environmental Health; Books on Demand: Norderstedt, Germany, 2021. [Google Scholar]
- Crapart, C.; Finstad, A.G.; Hessen, D.O.; Vogt, R.D.; Andersen, T. Spatial predictors and temporal forecast of total organic carbon levels in boreal lakes. Sci. Total Environ. 2023, 870, 161676. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Guo, X.; Wang, S.; Zhuang, Q.; Jin, X.; Wang, Q.; Jia, S. Applying statistical methods to map soil organic carbon of agricultural lands in northeastern coastal areas of China. Arch. Agron. Soil Sci. 2019, 66, 532–544. [Google Scholar] [CrossRef]
- Kaya, F.; Keshavarzi, A.; Francaviglia, R.; Kaplan, G.; Başayiğit, L.; Dedeoğlu, M. Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus. Agriculture 2022, 12, 1062. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting Soil Organic Carbon and Soil Nitrogen Stocks in Topsoil of Forest Ecosystems in Northeastern China Using Remote Sensing Data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef]
- Wang, K.; Qi, Y.; Guo, W.; Zhang, J.; Chang, Q. Retrieval and Mapping of Soil Organic Carbon Using Sentinel-2A Spectral Images from Bare Cropland in Autumn. Remote Sens. 2021, 13, 1072. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Shi, T. Modeling and Predictive Mapping of Soil Organic Carbon Density in a Small-Scale Area Using Geographically Weighted Regression Kriging Approach. Sustainability 2020, 12, 9330. [Google Scholar] [CrossRef]
- Sodango, T.H.; Sha, J.; Li, X.; Noszczyk, T.; Shang, J.; Aneseyee, A.B.; Bao, Z. Modeling the Spatial Dynamics of Soil Organic Carbon Using Remotely-Sensed Predictors in Fuzhou City, China. Remote Sens. 2021, 13, 1682. [Google Scholar] [CrossRef]
- Pei, T.; Qin, C.-Z.; Zhu, A.-X.; Yang, L.; Luo, M.; Li, B.; Zhou, C. Mapping soil organic matter using the topographic wetness index: A comparative study based on different flow-direction algorithms and kriging methods. Ecol. Indic. 2010, 10, 610–619. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Lu, W.; Lu, D.; Wang, G.; Wu, J.; Huang, J.; Li, G. Examining soil organic carbon distribution and dynamic change in a hickory plantation region with Landsat and ancillary data. Catena 2018, 165, 576–589. [Google Scholar] [CrossRef]
- He, T.; Wang, J.; Lin, Z.; Cheng, Y. Spectral features of soil organic matter. Geo-Spat. Inf. Sci. 2009, 12, 33–40. [Google Scholar] [CrossRef]
- Hossain, M.Z. Farmer’s view on soil organic matter depletion and its management in Bangladesh. Nutr. Cycl. Agroecosyst. 2001, 61, 197–204. [Google Scholar] [CrossRef]
- Saha, S.K.; Tiwari, S.K.; Kumar, S. Integrated use of hyperspectral remote sensing and geostatistics in spatial pre-diction of soil organic carbon content. J. Indian Soc. Remote Sens. 2022, 50, 129–141. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, L.; Li, Y. Prediction of Soil Organic Carbon Content Using Sentinel-1/2 and Machine Learning Algorithms in Swamp Wetlands in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5219–5230. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, Y. Combining Multitemporal Sentinel-2A Spectral Imaging and Random Forest to Improve the Accuracy of Soil Organic Matter Estimates in the Plough Layer for Cultivated Land. Agriculture 2022, 13, 8. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; McCarty, G.W.; Karlen, D.L.; Cambardella, C.A. Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena 2018, 160, 222–232. [Google Scholar] [CrossRef]
- Gibson, A.; Hancock, G.; Bretreger, D.; Cox, T.; Hughes, J.; Kunkel, V. Assessing digital elevation model resolution for soil organic carbon prediction. Geoderma 2021, 398, 115106. [Google Scholar] [CrossRef]
- Duarte, E.; Zagal, E.; Barrera, J.A.; Dube, F.; Casco, F.; Hernández, A.J. Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic. Eur. J. Remote Sens. 2022, 55, 213–231. [Google Scholar] [CrossRef]
- Siewert, M.B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 2018, 15, 1663–1682. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran. Geoderma Reg. 2020, 20, e00256. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Cavalli, D. Advances and applications of multivariate statistics and soil-crop sensing to improve nutrient use efficiency and monitor carbon cycling. Nutr. Cycl. Agroecosyst. 2023, 127, 97–99. [Google Scholar] [CrossRef]
Index | Full Name | Formula | Reference |
---|---|---|---|
BI | Brightness Index | sqrt ((Red2/Green2)/2) | [29] |
CI | Coloration Index | (Red − Blue)/Red | [30] |
MNDWI | Modified Normalized Difference Water Index | (Green − SWIR)/(Green + SWIR) | [31] |
MTCI | MERIS Terrestrial Chlorophyll Index | (Red Edge 2 − Red Edge 1)/(Red Edge 1 − Red) | [32] |
NDVI | Normalized Difference Vegetation Index | ((NIR − Red)/(NIR + Red)) | [33] |
NDWI | Normalized Difference Water Index | (Green − NIR)/(Green + NIR) | [34] |
RI | Redness Index | (Red − Green)/(Red + Green) | [33] |
SAVI | Soil-Adjusted Vegetation Index | ((NIR − Red)/(NIR + Red + L)) × (1 + L) | [35] |
Model | Hyperparameter | Description |
---|---|---|
RF | n_estimators | The number of trees in the forest |
max_features | The number of features to consider when looking for the best split | |
max_depth | The maximum depth of the tree | |
min_samples_split | The minimum number of samples required to split an internal node | |
min_samples_leaf | The minimum number of samples required to be at a leaf node | |
SVR | C | Regularization parameter |
epsilon | Specifies the epsilon tube | |
gamma | Kernel coefficient for r’bf’, p’oly’, and s’igmoid’. | |
XGBoost | learning_rate | (or eta in XGBoost documentation) Step size shrinkage used to prevent overfitting |
max_depth | Maximum depth of a tree | |
gamma | Minimum loss reduction required to make a further partition on a leaf node of the tree | |
colsample_bytree | Control the subsample ratio of columns for the tree building at different levels of tree building | |
min_child_weight | Minimum sum of instance weight (hessian) needed in a child | |
subsample | Subsample ratio of the training instances | |
n_estimators | Number of gradient boosted trees, equivalent to the number of boosting rounds |
Data | Count | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|
Train | 671 | 0.11 | 0.72 | 0.224 | 0.072 |
Test | 281 | 0.12 | 0.57 | 0.223 | 0.069 |
Scenario | Selected Features |
---|---|
Scenario 1 (Sentinel-1) | VH_5_18, VH_6_18, VH_8_18, VH_9_18, VH_3_19, VV_7_18, VV_9_18, VV_12_18, VV_2_19, VV_3_19 |
Scenario 2 (Sentinel-2) | BI_6_18, CI_5_18, CI_3_19, MNDWI_6_18, MNDWI_12_18, MNDWI_3_19, MTCI_11_18, MTCI_3_19, SAVI_8_18, SAVI_12_18 |
Scenario 3 (Sentinel-1 + Sentinel-2) | BI_5_18, BI_6_18, CI_5_18, CI_3_19, MNDWI_5_18, MNDWI_6_18, MNDWI_12_18, MNDWI_3_19, MTCI_10_18, MTCI_11_18, MTCI_3_19, NDWI_8_18, SAVI_8_18, SAVI_12_18, SAVI_3_19, VH_5_18, VH_6_18, VH_9_18, VV_9_18, VV_3_19 |
Scenario 4 (Topography) | Elevation, slope, aspect, TWI, profile curvature, plan curvature, MRVBF |
Scenario 5 (Sentinel-1 + Sentinel-2 + Topography) | Elevation, BI_5_18, BI_6_18, CI_5_18, CI_3_19, MNDWI_5_18, MNDWI_6_18, MNDWI_12_18, MNDWI_3_19, MTCI_10_18, MTCI_11_18, MTCI_3_19, NDVI_8_18, SAVI_8_18, SAVI_12_18, SAVI_3_19, VH_5_18, VH_6_18, VH_9_18, VV_3_19 |
Model | Hyperparameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|---|
Number of selected features | 10 | 10 | 20 | 7 | 20 | |
RF | n_estimators | 100 | 500 | 100 | 100 | 100 |
max_features | Log2 | Log2 | Log2 | Log2 | Log2 | |
max_depth | 10 | 10 | 15 | 5 | 16 | |
min_samples_split | 2 | 2 | 5 | 2 | 5 | |
min_samples_leaf | 2 | 2 | 2 | 2 | 2 | |
SVR | C | 0.1 | 10 | 1 | 0.1 | 0.5 |
epsilon | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
gamma | 0.01 | 1 | 0.01 | 0.01 | 0.01 | |
XGBoost | learning_rate | 0.1 | 0.05 | 0.1 | 0.05 | 0.1 |
max_depth | 7 | 7 | 4 | 5 | 5 | |
gamma | 0 | 0 | 0 | 0 | 0 | |
colsample_bytree | 0.5 | 0.5 | 1 | 0.5 | 1 | |
min_child_weight | 5 | 10 | 10 | 5 | 5 | |
subsample | 1 | 0.5 | 0.5 | 0.5 | 0.5 | |
n_estimators | 50 | 50 | 50 | 50 | 50 |
Scenario | Model | R2 | RMSE | RPIQ |
---|---|---|---|---|
Scenario 1 | RF | 0.36 | 0.042 | 1.644 |
XGBoost | 0.34 | 0.046 | 1.501 | |
SVR | 0.21 | 0.054 | 1.279 | |
Scenario 2 | RF | 0.49 | 0.037 | 1.866 |
XGBoost | 0.45 | 0.039 | 1.770 | |
SVR | 0.35 | 0.049 | 1.409 | |
Scenario 3 | RF | 0.61 | 0.024 | 2.877 |
XGBoost | 0.51 | 0.028 | 2.466 | |
SVR | 0.38 | 0.047 | 1.469 | |
Scenario 4 | RF | 0.65 | 0.02 | 3.45 |
XGBoost | 0.62 | 0.023 | 3 | |
SVR | 0.47 | 0.035 | 1.971 | |
Scenario 5 | RF | 0.7 | 0.012 | 5.754 |
XGBoost | 0.64 | 0.017 | 4.061 | |
SVR | 0.56 | 0.023 | 3.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahhani, S.; Raji, M.; Bouslihim, Y. Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction. Remote Sens. 2024, 16, 1871. https://doi.org/10.3390/rs16111871
Dahhani S, Raji M, Bouslihim Y. Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction. Remote Sensing. 2024; 16(11):1871. https://doi.org/10.3390/rs16111871
Chicago/Turabian StyleDahhani, Sara, Mohamed Raji, and Yassine Bouslihim. 2024. "Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction" Remote Sensing 16, no. 11: 1871. https://doi.org/10.3390/rs16111871
APA StyleDahhani, S., Raji, M., & Bouslihim, Y. (2024). Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction. Remote Sensing, 16(11), 1871. https://doi.org/10.3390/rs16111871