Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Method
2.3.1. Calculation of Actual ET Adopt on Water Balance Equation
2.3.2. Evaluation Index of ET Accuracy
3. Results
3.1. Applicability Assessment of Precipitation Data in Qilian Mountains
3.2. Comparison of ET Estimated Based on GRACE and ETMonitor Products
3.3. Spatiotemporal Characteristics of ET in the Qilian Mountains
3.3.1. Inter-Annual Variations
3.3.2. Seasonal Variations
3.3.3. Impact of Meteorological Environmental Factors on Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Miralles, D.G.; Brutsaert, W.; Dolman, A.J.; Gash, J.H. On the use of the term ‘Evapotranspiration’. Water Resour. Res. 2020, 56, e2020WR028055. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrometeorol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 14337. [Google Scholar] [CrossRef] [PubMed]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Change 2016, 6, 946–950. [Google Scholar] [CrossRef]
- Yao, T.D.; Wu, F.Y.; Ding, L.; Sun, J.M.; Zhu, L.P.; Piao, S.L.; Deng, T.; Ni, X.J.; Zheng, H.B.; Ou, Y.H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, D.H.; Lu, G.Y.; Jiang, Y.Y.; Huang, P.C. Characteristics of climate change and its impacts on water resources in Qilian Mountains, China. Chin. J. Appl. Ecol. 2022, 33, 2805–2812. [Google Scholar]
- Han, L.J.; Bai, A.J.; Pu, X.M. Projection of Climate Variation in Qilian Mountains Based on CMIP6. Plateau Meteorol. 2022, 41, 864–875. [Google Scholar]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flügel, W.-A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Cheng, P.; Kong, X.W.; Luo, H. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years. Arid Land Geogr. 2020, 43, 1192–1201. [Google Scholar]
- Lin, P.; He, Z.; Du, J.; Chen, L.F.; Zhu, X.; Li, J. Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes. Int. J. Climatol. 2018, 38, 2980–2993. [Google Scholar] [CrossRef]
- Sun, X.M.; Zhu, Z.L.; Wen, X.F.; Yuan, G.F.; Yu, G.R. The impact of averaging period on eddy fluxes observed at China FLUX sites. Agric. For. Meteorol. 2006, 137, 188–193. [Google Scholar] [CrossRef]
- Arendt, A.A.; Luthcke, S.B.; Larsen, C.F.; Abdalati, W.; Krabill, W.B.; Beedle, M.J. Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St. Elias Mountains, Alaska, USA, using aircraft laser altimetry. J. Glaciol. 2008, 54, 778–787. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.Z.; Save, H.; Sun, A.Y.; Müller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.P.; Nan, Z.T.; Cheng, G.D. GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China. Remote Sens. 2015, 7, 1021–1047. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, L20504. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.A.; Reager, J.T.; Fisher, J.B. GRACE-based Mass Conservation as a Validation Target for Basin-Scale Evapotranspiration in the Contiguous United States. Water Resour. Res. 2020, 56, e2019WR026594. [Google Scholar] [CrossRef]
- Yang, L.S.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.L.; Wen, X.H.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef]
- Bing, B.; Ping, Y.; Qiang, Z.; Jin, Y.; Peng, M.; Tao, H.; You, J.; Peng, H.; Yu, M. Changing characteristics of ecosystem and water storage under the background of warming and humidification in the Qilian Mountains, China. Sci. Total Environ. 2023, 893, 164959. [Google Scholar]
- Liu, H.; Yuan, X.; Zhang, M. Unraveling human influence on evapotranspiration over East Asian monsoon river basins by using GRACE/GRACE-FO data and land surface models. J. Hydrol. 2022, 605, 127349. [Google Scholar] [CrossRef]
- Zhong, Y.; Tian, B.; Vishwakarma, B.D.; Feng, W.; Wu, Y.; Bai, H.; Zhong, M. Reinterpreting Global GRACE Trends Based on Century-Long GRACE-REC Data. Water Resour. Res. 2023, 59, e2023WR035817. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, X.; Huang, H.; Sun, X. Monitoring water storage changes in Dongting lake basin from GRACE gravity satellite. Prog. Geophys. 2016, 31, 61–68. (In Chinese) [Google Scholar]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Yuan, D. Extending the global mass change data record: GRACE Follow-on instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G. Global Land Surface Evapotranspiration Monitoring by ETMonitor Model Driven by Multi-source Satellite Earth Observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Zhang, J.T.; Zhang, C.Q.; Feng, Q. ERA5-Land Monthly Averaged Dataset in the Qilian Mountains from 1981 to 2020. National Cryosphere Desert Data Center. Available online: http://www.ncdc.ac.cn (accessed on 7 June 2023).
- Zhang, K.; Ju, Y.; Li, Z.J. Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the Jinshajiang River basin. Adv. Water Sci. 2021, 32, 182–191. [Google Scholar]
- Billah, M.M.; Goodall, J.L.; Narayan, U.; Reager, J.T.; Lakshmi, V.; Famiglietti, J.S. A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE. J. Hydrol. 2015, 523, 574–586. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.L.; Lin, X. Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett. 2012, 7, 014026. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Y.; Liu, S.; Cheng, S.; Zhang, Y.; Pan, Y.; Wang, L.; Yu, E. How 2022 extreme drought influences the spatiotemporal variations of terrestrial water storage in the Yangtze River Catchment: Insights from GRACE-based drought severity index and in situ measurements. J. Hydrol. 2023, 626, 130245. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Xu, G.; Cheng, S.; Zhong, Y.; Zhang, Y. Characterizing the 2022 Extreme Drought Event over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations and In Situ Data. Remote Sens. 2023, 15, 5125. [Google Scholar] [CrossRef]
- Ferreira, V.; Gong, Z.; He, X.F.; Zhang, Y.L.; Andam, S. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations. Remote Sens. 2013, 5, 3415–3430. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Milentijević, N.; Bačević, N.; Ristić, D.; Valjarević, A.; Kićović, D. Application of Mann-Kendal (MK) test in trend analysis of air temperature and precipitation: Case of Mava district (Serbia). Bull. Nat. Sci. Res. 2020, 10, 37–43. [Google Scholar] [CrossRef]
- McCuen, R.H. A sensitivity and error analysis of procedures used for estimating evaporation. Water. Res. Bull 1974, 10, 486–498. [Google Scholar] [CrossRef]
- Fisher, R.A.; Williams, M.; Ruivo, M.D.; Costa, A.L.; Meir, P. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric. For. Meteor 2008, 148, 850–861. [Google Scholar] [CrossRef]
- Husain, S.Z.; Béelair, S.; Leroyer, S. Influence of soil moisture on urban microclimate and surface-layer meteorology in Oklahoma City. J. Appl. Meteor. Clim. 2014, 53, 83–98. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Slingo, J.M. Weak land-atmosphere coupling strength in HadAM3-The role of soil moisture variability. J. Hydrometeor 2005, 6, 670–680. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Yin, Z. Regional hydrology heterogeneity and the response to climate and land surface changes in arid alpine basin, northwest China. Catena 2020, 187, 104345. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhao, C.Y.; Wang, X.P. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agric. For. Meteorol. 2019, 276, 107628. [Google Scholar] [CrossRef]
Site Name | PPT | PCC | MRE/% | RMSE/mm |
---|---|---|---|---|
Tuole | ERA5 | 0.94 | 34.5 | 12.88 |
GPCC | 0.89 | 36.2 | 16.38 | |
MPDC | 0.87 | 35.2 | 18.08 | |
Qilian | ERA5 | 0.83 | 42.2 | 23.06 |
GPCC | 0.82 | 35.6 | 23.86 | |
MPDC | 0.79 | 36.2 | 25.40 | |
Menyuan | ERA5 | 0.93 | 36.4 | 17.08 |
GPCC | 0.88 | 34.7 | 20.94 | |
MPDC | 0.85 | 32.1 | 24.02 | |
Huangyuan | ERA5 | 0.93 | 25.1 | 15.14 |
GPCC | 0.93 | 22.8 | 14.07 | |
MPDC | 0.91 | 26.2 | 16.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Yue, P.; Ren, X.; Zhang, Q.; Zhang, J.; Yang, J.; Jiang, Y. Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data. Remote Sens. 2024, 16, 1877. https://doi.org/10.3390/rs16111877
Bai B, Yue P, Ren X, Zhang Q, Zhang J, Yang J, Jiang Y. Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data. Remote Sensing. 2024; 16(11):1877. https://doi.org/10.3390/rs16111877
Chicago/Turabian StyleBai, Bing, Ping Yue, Xueyuan Ren, Qiang Zhang, Jinyu Zhang, Jinhu Yang, and Youyan Jiang. 2024. "Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data" Remote Sensing 16, no. 11: 1877. https://doi.org/10.3390/rs16111877
APA StyleBai, B., Yue, P., Ren, X., Zhang, Q., Zhang, J., Yang, J., & Jiang, Y. (2024). Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data. Remote Sensing, 16(11), 1877. https://doi.org/10.3390/rs16111877