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Abstract: Generally, the interesting objects in aerial images are completely different from objects
in nature, and the remote sensing objects in particular tend to be more distinctive in aspect ratio.
The existing convolutional networks have equal aspect ratios of the receptive fields, which leads
to receptive fields either containing non-relevant information or being unable to fully cover the
entire object. To this end, we propose Horizontal and Vertical Convolution, which is a plug-and-
play module to address different aspect ratio problems. In our method, we introduce horizontal
convolution and vertical convolution to expand the receptive fields in the horizontal and vertical
directions, respectively, to reduce redundant receptive fields, so that remote sensing objects with
different aspect ratios can achieve better receptive fields coverage, thereby achieving more accurate
feature representation. In addition, we design an attention module to dynamically aggregate these
two sub-modules to achieve more accurate feature coverage. Extensive experimental results on the
DOTA and HRSC2016 datasets show that our HVConv achieves accuracy improvements in diverse
detection architectures and obtains SOTA accuracy (mAP score of 77.60% with DOTA single-scale
training and mAP score of 81.07% with DOTA multi-scale training). Various ablation studies were
conducted as well, which is enough to verify the effectiveness of our model.

Keywords: object detection; irregular aspect ratio; redundancy receptive fields; backbone network

1. Introduction

Remote sensing object detection, as an advancing field within computer vision, di-
verges from common object detection. Unlike typical object detection scenarios where
images are captured from conventional viewpoints, remote sensing data are gathered
from satellites or aerial platforms at elevated altitudes. Objects within remote sensing
images, such as vehicles, ships, and planes, exhibit diverse orientations, presenting added
complexity to detection tasks. Additionally, the irregular aspect ratios of these objects pose
significant challenges. Given these distinct characteristics of remote sensing targets, the
pursuit of effective object detection in this domain remains a formidable research endeavor.

Recently, considerable efforts have been dedicated to addressing the challenges pre-
sented by remote sensing imagery. Specifically, in tackling the issue of detecting rotated
objects, various detection frameworks have emerged. Notable examples include S2ANet [1]
and R3Det [2], which align the features between the horizontal receptive fields and rotated
anchors. DRN [3] can dynamically select and refine features to detect oriented objects.
MEDNet [4] and MPME [5] introduce a multi-model to enhance the semantic ability of
model and an LD-kEC strategy for non-labeled datasets training. All these methods further
enhance the detection performance of the remote sensing object. However, there is currently
almost no research focusing on the irregular aspect ratios problem.
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In the backbone domain, ResNet [6], as a popular convolution backbone network, is
widely used in object detection, including remote sensing scenarios. However, ResNet [6]
relies on fixed 3 × 3 convolutions for feature extraction, resulting in uniform expansion
of the receptive fields in both horizontal and vertical directions. Consequently, these
receptive fields fail to accurately cover the remote sensing objects with irregular aspect
ratios. Although backbone networks like LSKNet [7] extracting context information and
Adaptive Rotated Convolution Network (ARCNet) [8] keeping rotation invariance are
proposed for remote sensing detection, the irregular aspect ratios issue remains to be
solved. Faced with remote sensing objects of varying aspect ratios, the inclusion of non-
target regions in the conventional receptive fields coverage area is inevitable, impacting the
feature representation for the regions of interest. In conclusion, the equal-ratio convolution
results in the redundancy of the receptive fields, as indicated by the white-boxed area in
Figure 1a, ultimately leading to the feature map affected by the irrelevant information.
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(b) HVConv in ResNet

Figure 1. The illustration of receptive fields coverage in two different blocks from the same input. The
input images are bridge (BR), harbor (HA), and roundabout (RA). HVConv block as a plug-and-play
module in ResNet. RF stands for receptive fields. Attn is the attention module.

To address this issue, we proposed the Horizontal and Vertical Convolution (HVConv),
as shown in Figure 1b. Compared to the original residual block, our approach reduces
the redundancy of the receptive fields by shrinking the convolution kernel size in the
horizontal or vertical direction, allowing for more precise object coverage. In our method,



Remote Sens. 2024, 16, 1880 3 of 19

we incorporate two distinct convolution paths, horizontal convolution (HConv) and vertical
convolution (VConv) for expanding the horizontal and vertical receptive fields, respectively.

Given that objects in remote sensing images exhibit varying orientations and significant
changes in aspect ratio even with a 90-degree rotation, it is imperative to dynamically
adjust the weights of the horizontal and vertical paths. To optimize the utilization of
both horizontal and vertical convolution outputs, we draw inspiration from SENet [9] and
integrate an attention module. This module facilitates the aggregation of feature maps from
both paths by generating two weights for each, enhancing the model’s ability to adapt to
diverse object orientations and aspect ratios.

Overall, our contributions can be summarized as follows:

• A new convolution fashion, leveraging the horizontal and vertical convolution
(HVConv), was proposed to reduce receptive fields redundancy, which accommo-
dates object features with non-uniform aspect ratios of length and width for a higher
precision of object detection coverage.

• The attention mechanism is cleverly coordinated with our HVConv to dynamically
achieve the fusion of different receptive fields to adapt to various aspect ratios of
remote sensing objects.

• HVConv is designed as a plug-and-play module for expanding horizontal and ver-
tical receptive fields. It can be easily applied to different networks to improve
detection capabilities.

As far as we know, our method is the first attempt to take the irregular receptive fields
aspect ratio problem into consideration and remove redundant receptive fields to reduce
the influence of irrelevant information, thereby enhancing the representation ability of the
feature map. As a plug-in module, our module can be quickly applied to different networks
to improve the model’s detection capabilities. We integrated our module into different
network structures. Extensive experiments were conducted on the HRSC2016 [10] and
DOTA [11] datasets, achieving state-of-the-art results and thereby verifying the effectiveness
of our work.

2. Related Work
2.1. Remote Sensing Object Detection

Object detection has consistently been a popular and crucial task in computer vision,
aiming to achieve high accuracy in recognizing various objects within different images.
There are two approaches for object detection: one-stage methods [12,13] and two-stage
methods [14,15]. The Faster R-CNN [14] with Feature Pyramid Network [16] is widely
used as a two-stage method in common object detection. Nevertheless, remote sensing
objects are smaller, denser, and positioned at various angles [17,18]. Moreover, different
from the horizontal bounding box in common detection, remote sensing detection usually
uses an oriented bounding box to capture objects more tightly. Thus, with the aim of
solving the angle problem, more rotated object detection detectors are proposed based on
existing general methods (e.g., RetinaNet [12] or Faster R-CNN [14]). Rotated RPN [19]
proposed using angles for bounding box regression, resulting in a more precise rotation
of the bounding boxes to cover the objects. RoI Transformer [20] introduces RRoI Learner
for learning rotated RoIs from the feature map of horizontal RoIs and RRoI Warping to
extract rotation-invariant features for detection. S2ANet [1] mainly consists of two mod-
ules, the Feature Alignment Module (FAM) and Oriented Detection Module (ODM). By
incorporating these two parts, the overall framework is enhanced to be more sensitive
to rotation information. The pyramid squeeze has been adopted into S2ANet to improve
the network’s ability to extract important information as well [21]. LSKNet [7], which is
based on SKNet [22], used a larger kernel convolution to obtain the context information
of objects. In accordance with context features, the accuracy of detection improved sig-
nificantly. ARCNet [8] adopted adaptive rotated convolution to replace the normal 3 × 3
convolution. It is a plug-and-play module, and the aim of it is to facilitate feature extraction
of the same object across various orientations, rendering it invariant, which enhances the
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capability of classification. Although these methods address issues from various angles, our
strategy provides a whole new perspective and is totally different from theirs. Inception
Network [23] introduced replacing n × n convolution with 1 × n and n × n convolutions to
reduce computational costs and achieve even accuracy. Inspired by this work, our HVConv
aims to solve the aspect ratios problem in remote sensing object detection, as this approach
can reduce redundancy receptive fields and expand it in an irregular aspect ratio by using
narrow and asymmetric convolution, which could improve the network’s ability to detect
narrow as well as long objects.

2.2. Attention Module

Recently, with the emergence of Vision Transformer (ViT) [24], an increasing num-
ber of computer vision tasks have embraced ViT, achieving remarkable success across
various applications. The triumph of ViT can be attributed to the core component of the
Transformer—the self-attention mechanism module. More variants of the ViT model im-
prove the self-attention mechanism and patch encoding to deal with the tiny scale object
detection issues. However, ViT models typically come with a large number of parameters
and require extensive pretraining, incurring a substantial computational cost. Further-
more, Eupea [25] calculates Euclidean distances and Pearson coefficients between pixels
to assess pixel correlations, making it an attention module. The emergence of SENet [9]
has marked a significant advancement in CNNs. It incorporates an attention mechanism
applied to CNNs, extracting informative features within local receptive fields by combining
spatial and channel-level information. By weighting the channels, effective information
is emphasized, and invalid information is suppressed. SKNet [22] further improved the
channel-wise receptive fields attention of SENet [9] by using convolution at different scales.

An object could be set in any angle for each image. Therefore, the same object in
different scenes may sometimes lean horizontally and sometimes lean vertically. As our
approach aims to combine the feature map in horizontal and vertical receptive fields, it
is crucial for us to weigh these two parts. We take SENet [9] into account for generating
weights for each path. SENet [9] introduced the SEblock to improve the quality of network-
generated representations by explicitly modeling the interdependencies between feature
channel evolution in the network. By this mechanism, it is able to recalibrate features on a
channel-wise level, which means the network could learn the global information to stress
feature information and suppress non-relevant information. The distinction between our
method and SENet [9] lies in our method’s use of it for horizontal and vertical attention
rather than channel-wise attention.

3. Method

The aspect ratios of objects in remote sensing images are often inconsistent; therefore,
we propose conducting multiple computations by using kernels with different aspect ratios.
This approach can increase the depth of the network ensuring that the receptive fields
expand more quickly in either the horizontal or the vertical direction. Our goal is to reduce
redundant receptive fields while minimally increasing computational cost rather than
decreasing the model size.

3.1. Overall Architecture

We choose to use Oriented R-CNN [26] and combine it with our method. This is
because Oriented R-CNN [26] is a significant method in oriented object detection. As
Rotated RPN [19] sets 54 anchors for generating proposals, it increases the computational
burden significantly. Although RoI Transformer [20] reduces the number of anchors, it also
incurs expensive computational costs. Oriented R-CNN [26] sets anchors with three aspect
ratios {1:2, 1:1, 2:1} for feature maps from each level. As a result, it is unnecessary to set
anchors with various scales. The midpoint offset method is used in RPN to represent
oriented bounding boxes. This method removes the angle parameter and introduces
two offset values for the bounding box. It reduced the cost of the generation of proposals
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from various angles. The comparison of the general represent method and midpoint
offset are shown in Figure 2 Additionally, the Oriented R-CNN head contains Rotated
RoI Align to extract the rotation-invariant feature. After proposals are generated by RPN,
the network converts possible diamond proposals into rectangles based on their longer
diagonal. This generates rectangular-oriented RoIs. Consequently, for the next classification
and regression computations in the Oriented R-CNN head, the rotated RoIs should be
projected onto the horizontal feature maps. This whole procedure is the Rotated RoI Align.
The midpoint offset notation for proposals in Oriented RPN and Rotated RoI Align before
Oriented R-CNN head for classification and regression significantly improves the accuracy
of remote sensing object detection. Accordingly, Oriented R-CNN [26] enables us to
seamlessly integrate our modules into the backbone network by replacing the convolution
operation, yielding excellent results. Validating the effectiveness of our modules becomes
more straightforward. The overall architecture is shown in Figure 3. Our main focus
is on the backbone network. We replace the 3 × 3 convolution of ResNet [6] with our
own backbone network to achieve high performance and facilitate accessible experimental
comparisons. Figure 4 illustrates our HVConv block architecture, and Figure 5 presents
the structure of the Attention module. The block comprises three main components. To
achieve improved object detection results in aerial images, HVConv serves as the core
element, incorporating two distinct subparts, HConv and VConv, designed for expanding
receptive fields in two directions and for the separate extraction of horizontal and vertical
features. Another crucial component of HVConv is the Attention module, which assigns
weights to the two paths of HVConv, ensuring emphasis on one of the paths. This is
particularly important when dealing with objects in images captured from different angles.
To aggregate additional information such as context background details from feature maps,
we incorporate a standard convolution operating at a larger scale than HVConv to cover
larger receptive fields. We combine the details from the horizontal and vertical aspects with
those from the standard scale. This aids the network in learning features across diverse
directions and scales.
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Figure 2. Comparison of two different bounding box representations. (a) Normal bounding box rep-
resentation. Using five parameters, x, y, w, h and θ. (b) midpoint offset bounding box representation.
Using six parameters, x, y, w, h ∆x and ∆y.
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HVConv BlockHVConv BlockHVConv Block

VConvVConv

HConvHConvAttention

Conv 1 × 3Conv 1 × 3 Conv 1 × 3Conv 1 × 3
Conv 3 × 1Conv 3 × 1

Conv 3 × 1Conv 3 × 1 Conv 3 × 1Conv 3 × 1
Conv 1 × 3Conv 1 × 3

Conv 3 × 3Conv 3 × 3

Conv 1 × 1Conv 1 × 1

×

×

+

c

Raw Input Input Output

BN ReLU BN ReLU

BN ReLU BN ReLU

α (horizon weight)

β (vertical weight)

+ : Matrix Addition;+ : Matrix Addition; × : Matrix Multiplication;× : Matrix Multiplication; c : Concatenate;c : Concatenate; BN: Batch Normalization Layer;BN: Batch Normalization Layer; ReLU: ReLU Activation Function;

Output_H

Output_V

Output_HV

Output_3

Figure 4. The overall framework of HVConv block.

Attention ModuleAttention ModuleAttention Module

Avg Pooling
Raw Input

FC ReLU FC Softmax

     

 

 

α (horizon weight)

β (vertical weight)

FC: Fully-Connected Layer; ReLU: ReLU Activation Function; Softmax: Softmax Activation Function;

Figure 5. The structure of Attention module.

3.2. Horizontal and Vertical Convolution

HVConv consists of HConv and VConv. The entire HVConv block is presented as
shown in Figure 4. We have established these two different paths to expand the horizontal
and vertical receptive fields, respectively. Given an input x ∈ Rc×h×w and the output
of y ∈ Rc×h×w, the two paths of HVConv are denoted as H(x) and V(x). We represent
a 1 × 3 convolution (horizontal convolution) and a 3 × 1 convolution (vertical convolution)
as h(x) and v(x), respectively. Batch normalization is applied, using as BN(·), and σ(·)
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represents the ReLU activation function. HConv is basically constructed by two continuous
horizontal convolutions and a vertical convolution. VConv is similar to HConv, which
is constructed by two continuous vertical convolutions and a horizontal convolution. A
single HConv or VConv can be expressed as:

h(x) = Conv1×3(x), v(x) = Conv3×1(x) (1)

H(x) = σ(BN(h(x))), V(x) = σ(BN(v(x))) (2)

In the HConv, for the first two h(x) operations, they rapidly expand the receptive fields
in the horizontal direction. After the receptive fields expand in the horizontal direction, the
last v(x) operation expands the entire receptive fields in the vertical direction to enlarge
entire receptive fields. Consequently, the horizontally narrow receptive fields will expand
in the vertical direction with a larger scale to better cover objects. The VConv is similar to
the HConv but with the opposite effectiveness, which is to expand vertical receptive fields.
It is noteworthy that the third HConv or VConv operation removes batch normalization
and the activation function for the next step, which is path fusion. The normalization and
the activation function have been applied after this whole block. For clarity, HVConv can
be represented as shown below:{

H(x) = v(Hh,2(Hh,1(x)))

V(x) = h(Vv,2(Vv,1(x)))
(3)

3.3. Attention

We believe that different weights ought to be assigned to HConv and VConv based on
the input images given their distinct aspect ratios and angles. Consequently, we design an
attention module based on SENet [9] to enhance the network’s ability to focus on different
types of feature maps—whether they are more horizontal or vertical in nature. The entire
structure is shown in Figure 5.

It is generally based on the squeeze and excitation block from SENet [9]. The input of this
module is raw feature maps, which is the same input of 1 × 1 convolution. It is first calculated
by an average pooling layer and then through a fully connected layer and a relu activation.
The next fully connected layer transfers the channels to two dimensions, horizon and vertical.
The final output consists of two weights by the softmax activation function, which are used
to fuse the results from the HConv and VConv paths. We define AVG(·) as average global
pooling, FC(·) as a fully connected layer, and x as raw feature maps input before 1 × 1
convolution computation. The attention module can be described as shown below:

Attn{α, β} = So f tmax(FC(σ(FC(AVG(x))))) (4)

By extracting horizon and vertical features from different channels of feature maps, we
use a softmax function to obtain the weights α and β for HConv and VConv, respectively. The
softmax activation function makes sure the sum of two generated parameters is 1. However,
in order to simplify the calculation and improve efficiency, these two parameters act on the
entire feature maps from two paths, HConv and VConv, by multiplying them directly rather
than channel-wise. It is crucial for us to optimize this calculation and reduce costs as much as
possible. In this paper, we use α and β to multiply the outputs of HConv and VConv and then
sum them up. Thus, the output of HVConv can be formulated as shown below:

HV(x) = αAttn(x) × H(x) + βAttn(x) × V(x) (5)

Note that the fusion of HVConv and 3 × 3 Conv is different. The inner combination of
HVConv is an additional operation. As the output of H(x) and V(x) multiply the weights
of each assigned, it reflects the different weights of the horizontal or vertical information
based on the raw feature maps being computed from input images. Consequently, we use
the summation to fuse the result of these two paths. The output of HV(x) is combined
with 3 × 3 Conv through concatenate operation, as 3 × 3 Conv keeps the information in the
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original scale. We aggregate the information on a more horizontal or vertical scale with the
original scale in channel dimensions. Denoting Cat as a concatenate operation, the HVConv
operation could be simplified as shown below:

y = Cat[HV(x), Conv3×3(x)] (6)

For computation efficiency, we set the output channels of 3 × 3 Conv and HV(x) as half
that of the original output channels, respectively. We concatenate output feature maps from
3 × 3 Conv and HVConv in the channel-wise dimension. It keeps the original ResNet [6]
output channel number of each block, which means HVConv could be seamlessly used for
various different convolution backbone networks.

3.4. Loss Function

Following the baseline method, we choose two different loss functions for classification
and regression. The cross-entropy loss function, presented as Equation (6), is used for
classification. N denotes the number of samples and K denotes the number of categories.
ti,k is the true value of the k class in sample i. If it belongs to a class, the value of t is 1. If
not, the value is 0. pi,k is the prediction probability of the k labels in sample i.

Lcls(t, p) = − 1
N

N

∑
i=1

K

∑
k=1

ti,k log(pi,k) (7)

We use a smooth L1 loss function for bounding box regression. The smooth L1 loss
function is shown as Equation (8), and z means the input parameter value. Equation (9) and
Equation (10) are the entire bounding box loss functions for RPN and RoI head, respectively,
based on the smooth L1 loss function. u is the prediction value and v is the true value. The
representation of the bounding box in the RoI head is different from the midpoint offset
method of Oriented RPN. Consequently, the loss function of them is different as well. The
first difference is the parameter. Parameters in RPN, x, y, w, h, ∆x, and ∆y, represent the
oriented bounding box and its envelope rectangle bounding box. Parameters in the RoI
head, x, y, w, h and θ, represent the oriented bounding box. The other one is the value of β.
In the RPN loss function, as Equation (9), β is 0.1̇. However, in the RoI head loss function,
as Equation (10), β is set at 1.0 as the default setting.

Lsll(z) =

{
0.5z2 if |z| < β

|z| − 0.5 otherwise
(8)

Lreg_rpn(ui, vi) = ∑
i∈{x,y,w,h,∆x,∆y}

Lsll(ui − vi) (9)

Lreg_head(ui, vi) = ∑
i∈{x,y,w,h,θ}

Lsll(ui − vi) (10)

4. Experiments
4.1. Datasets

HRSC2016 [10] is a high-resolution remote sensing images dataset that is collected for
ship detection. It consists of 1061 images which contain 2976 instances of ships. Some of
the images from the HRSC2016 dataset are shown in Figure 6.

DOTA-v1.0 [11] is a large-scale dataset for object detection in aerial images, consisting
of 2806 remote sensing images. It contains 188,282 instances of 15 categories: Plane (PL),
Baseball diamond (BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large
vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank (ST), Soccer
ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and Helicopter (HC).
Some images from the DOTA-v1.0 dataset are shown in Figure 7. The instances are in
different scales and shapes.
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Figure 6. Ship images from the HRSC2016 dataset.

Figure 7. Remote sensing images from the DOTA-v1.0 dataset.

4.2. Implementation Details

The backbone of our module is firstly pretrained on the ImageNet-1K dataset and
then fine-tuned on the remote sensing dataset. In the first two ablation studies, we adopted
the 100-epoch backbone pretrain and single-scale dataset for experiment efficiency. In
addition, to pursue higher accuracy, we adopted the 300-epoch backbone pretrain on our
main results. We conduct extensive experiments on the HRSC2016 and DOTA-v1.0 datasets.
On the DOTA-v1.0 dataset, we use two different scales for training and testing. We cropped
the images into 1024 × 1024 patches with a stride of 824, which means the pixel overlap
between two adjacent patches is 200. As for multi-scale training and testing, we first resize
the raw images at three scales (0.5, 1.0, and 1.5) and crop them to 1024 × 1024 patches with
a stride of 524. Following the common practice, we use the training set and validation set
for training and the testing set for testing. We train the models for 36 epochs on HRSC2016
datasets and 12 epochs on DOTA-v1.0 with the AdamW optimizer. The initial learning
rate is set to 0.00005 for the HRSC2016 dataset, 0.0001 for the DOTA-v1.0 datasets with
single-scale training, and 0.0002 for multi-scale training. We use four RTX3090 GPUs with a
batch size of eight on the DOTA-v1.0 dataset for multi-scale training and a batch size of four
for single-scale training. On the HRSC2016 dataset, we conduct our experiments by using
one RTX3090 GPU with a batch size of one for equitable assessment. We use one RTX3090
GPU for all the testing. MMRotate [27] is a convenient tool for constructing networks
tailored for rotation object detection. Consequently, we conducted all our experiments by
using it.

4.3. Evaluation Metrics

We take VOC 2007 [28] metrics into account, as most of the experiments in other studies
use it as well. The mean Average Precision (mAP) is calculated by the Average Precision (AP)
of each class in the dataset. The AP metric considers the precision (P) and recall (R), and the
calculation formula is shown below:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)
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AP =
∫ 1

0
P(R) dR (13)

TP stands for the number of samples where the model correctly predicts positive
instances; FP stands for the number of samples where the model incorrectly predicts
positive instances; FN stands for the number of samples where the model incorrectly
predicts negative instances. In different confidence levels, P and R are different, the
PR-curve can be drawn, and the AP can be calculated by the curve. The mAP could
be expressed as shown below:

mAP =
1
k

k

∑
i=1

APi (14)

k is the number of categories in the dataset.
In the DOTA-v1.0 dataset, the Intersection over Union (IoU) of mAP is 0.5. In the

HRSC2016 dataset, AP50 signifies an IoU of 0.5 for mAP, AP75 denotes an IoU of 0.75 for mAP,
and mAP represents the average mAP across various IoUs ranging from 0.5 to 0.95 with a
step of 0.05.

4.4. Comparison with State-of-the-Art

We provide specific experiment results on DOTA dataset, including the precision of each
category and the mean average precision (mAP) to ensure a fair comparison. Table 1 shows the
specific results compared with 18 state-of-the-art methods in single-scale training, including
both one-stage methods and two-stage methods. HVConv expedites the convergence of the
network in single-scale training. As a result, our approach achieves the mAP score of 77.60%.

Table 1. Experimental results on the DOTA-v1.0 dataset with single-scale training and compared
with state-of-the-art methods.

Method Backbone mAP PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

One-stage methods

DRN [3] H104 70.70 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50
R3Det [2] R101 73.79 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94
PIoU [29] DLA34 60.50 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00

RSDet [30] R101 72.20 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00
DAL [31] R50 71.44 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11

G-Rep [32] R50 75.56 87.76 81.29 52.64 70.53 80.34 80.56 87.47 90.74 82.91 85.01 61.48 68.51 67.53 73.02 63.54
MIOUC [33] ELAN based 75.80 89.30 82.10 54.70 65.60 80.10 84.40 87.70 90.80 79.00 87.10 50.40 64.40 80.30 80.50 60.10
S2ANet [1] R50 76.11 88.70 81.41 54.28 69.75 78.04 80.54 88.04 90.69 84.75 86.22 65.03 65.81 76.16 73.37 58.86

Two-stage methods

RoI Trans [20] R101 69.56 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67
SCRDet [34] R101 72.61 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21
G.Vertex [35] R101 75.02 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32
FAOD [36] R101 73.28 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86

Mask OBB [37] R50 74.86 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33
ReDet [38] ReR50 76.25 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59
AOPG [39] R101 75.39 89.14 82.74 51.87 69.28 77.65 82.42 88.08 90.89 86.26 85.13 60.60 66.30 74.05 67.76 58.77
SASM [40] R50 74.92 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37

AFF-Det [41] R50 75.72 88.34 83.06 53.77 72.16 79.54 78.09 87.65 90.69 87.19 84.50 57.46 64.96 74.88 70.80 61.24
Oriented R-CNN [26] R50 75.87 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28

HVConv HV-R50 77.60 89.25 84.07 55.59 75.56 78.40 83.69 87.89 90.87 86.07 85.26 68.38 68.14 75.88 70.87 64.05

In the backbone column, H104 represents the 104-layer hourglass network [42], R50 and R101 mean ResNet-50
and ResNet-101 [6], respectively, DLA34 [43] refers to the 34-layer deep layer aggregation network, ReR50 is
proposed in ReDet [38], HV-R50 is our backbone network, which replaced the 3 × 3 convolution of ResNet-50 [6]
with horizontal and vertical convolution blocks.

The dataset for multi-scale training is three times larger than that for single-scale
training. Apart from the normal-sized images, the images in multi-scaled training are
resized to twice their original size as well as half their original size. This training strategy
enhances the model generalization and detection ability of small or large objects, which
improves the performance of networks. Thus, we also compare against 11 state-of-the-art
methods in multi-scale training. Table 2 shows the mAP score of each method, and our
work achieves the best mAP score of 81.07%.



Remote Sens. 2024, 16, 1880 11 of 19

Table 2. Experimental results on the DOTA-v1.0 dataset with multi-scale training and compared with
state-of-the-art methods.

Method Backbone mAP

Oriented R-CNN [26] R50 80.87
R3Det-GWD [44] R152 80.19
R3Det-KLD [45] R152 80.63
AFF-Det [41] R50 80.73
KFIoU [46] Swin-T 80.93
RVSA [47] ViT-B 81.01
S2ANet [1] R50 79.42
ReDet [38] Re-R50 80.10
AOPG [39] R50 80.66
R3Det [2] R152 76.47
G-Rep [32] Swin-T 80.16

HVConv HV-R50 81.07
Swin-T represents Swin Transformer [48].

4.5. Ablation Studies

We conduct a series of experiments on the DOTA-v1.0 and the HRSC2016 datasets
for ablation studies, including the stage for replacement, fusion strategy, and
effectiveness validation.

4.5.1. The Stage for Replacement

We set three different conditions for replacing the stages of ResNet-50 [6], covering
from Stage1 to Stage4, Stage2 to Stage4, and Stage1 to Stage3. These two conditions
represent not using the HVConv module in the first stage or last stage. The receptive fields
in feature maps of the first stage tend to be the smallest, and the last stage tends to be
the largest. We try to figure out which of the stages is more important for our module.
The results are shown in Table 3, indicating that replacing the convolution from Stage1
to Stage4 could achieve the highest mAP score of 77.30%. By comparing the results from
Stage1 to Stage3 and from Stage2 to Stage4, it is easy to find that the earlier stages are more
important than the later stages because the earlier stages deal with tiny objects. In remote
sensing object detection, tiny objects are numerous. To achieve better performance balance,
it is crucial to fit these tiny objects. Although the mAP score of Stage1 to Stage3 dropped
0.02%, the FPS of this model is the highest. Considering computing efficiency, we finally
chose to replace Stage1 to Stage 3 as our backbone network for other experiments.

Table 3. Ablation results on DOTA-v1.0 with single-scale training for stages replacement
in ResNet-50 [6].

Stage1 Stage2 Stage3 Stage4 mAP FPS

✓ ✓ ✓ ✓ 77.30 14.9
✓ ✓ ✓ 77.28 17.6

✓ ✓ ✓ 77.14 16.2
FPS represents output images per second.

4.5.2. The Effective of Attention Module

We compare our attention module with the other three strategies. The results are
presented in Table 4. First, we only use one of HConv or VConv by setting the weight of
each path to 1 or 0. Following that, we combine these two parts with the same weight. Each
weight of HConv and VConv is 0.5. Finally, we use our attention module to generate α
and β for weighting each part, by aggregating them, and achieve the mAP score of 77.28%,
which is the best score among these experiments. These experimental results indicate that
applying dynamic weights could further enhance the performance by fitting the object in
two directions.
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Table 4. Ablation results on DOTA-v1.0 with single-scale training for fusion method.

Fusion Method
mAP

HConv VConv

0 1 76.68
1 0 76.38

0.5 0.5 76.67
α β 77.28

Columns of HConv and VConv mean the weights of HConv and VConv, respectively. α and β are the outputs of
the attention module.

4.5.3. Effectiveness on Different Architecture

To further validate the effectiveness of our works, we performed experiments on the
HRSC2016 dataset and DOTA-v1.0 dataset with single-scale training. The results are shown
in Figure 8 and Table 5. We compared our backbone method with ResNet [6], in six different
network structures, involving Rotated RetinaNet [12], R3Det [2], S2ANet [1], Rotated Faster
R-CNN [14], CFA [49] and the baseline method Oriented R-CNN [26]. Our approach
significantly improves the mAP score across all architectures, including both one-stage and
two-stage methods. This firmly demonstrates the effectiveness of our method.

Figure 8. Experimental results on the DOTA-v1.0 dataset with single-scale training. Replacing the
backbone with HV-R50 to validate the effectiveness on various architectures.

Table 5. Experimental results on the HRSC2016 dataset. Replacing the backbone with HV-R50 to
validate the effectiveness on various architectures.

Method Backbone AP50 AP75 mAP

Rotated R50 72.20 36.60 38.53
RetinaNet [12] HV-R50 81.70 46.80 46.41

Rotated R50 78.20 41.10 43.59
Faster R-CNN [14] HV-R50 78.80 46.70 44.78

R3Det [2] R50 88.10 46.80 49.07
HV-R50 89.30 57.30 53.25

RoI R50 90.10 79.60 63.46
Transformer [20] HV-R50 90.30 80.00 63.63

Oriented R50 90.60 89.30 70.85
R-CNN [26] HV-R50 90.60 89.60 71.98
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4.6. Visualization and Analysis

We provide some visualized results for a more distinct view of our method. Figure 9
presents some results of the test set from the DOTA-v1.0 dataset, including Small Vehicle,
Large Vehicle, Ship, Harbor, Bridge, Plane, Helicopter, and Roundabout. Figure 10 shows
the confusion matrix result of the validation set from the DOTA-v1.0 dataset, which reflects
the classification ability of the model. It is noted that the accuracy of Storage tank tends
to be lower than other labels, which means that the performance of detecting objects in
different scales remains to be improved, since the Storage tank usually has various scales
in the same photo, as seen in the last image we showed in Figure 7.

Figure 9. Results of the test set from the DOTA-v1.0 dataset.

Figure 11 presents the detection result comparisons of our method with the baseline
method. The left images are the baseline method’s outputs, and the right images are the
outputs of our method. In the comparison between the first two groups, the outputs of the
baseline method (Figure 11a,c) missed the detection of narrow objects, Bridge and Harbor.
On the contrary, our method detected these two narrow aspect ratio objects accurately
(Figure 11b,d). The bounding box of the baseline method in the third group has been
cut into two segments (Figure 11e), which indicates the wrong localization. The final
comparison is a roundabout on the edge of an image; the baseline method omitted the
roundabout (Figure 11g), but ours detected it correctly. This reflects that our method also
possesses the ability to detect objects in normal aspect ratios. These visualized results prove
that our horizontal and vertical convolution method is skilled in narrow object detection
and correctly detecting general objects as well.

We provide comparisons of the heat map results from the baseline method and our
method’s backbone layers outputs, as shown in Figure 12. There are four groups, and each
group consists of three images: the input image, the heat map image from the baseline
method’s backbone, and the heat map image from ours. The objects in the first group
(Figure 12a) and the second group (Figure 12b) have a regular aspect ratio. The heat
map results of these groups convincingly demonstrate that our method possesses the
capability to detect objects with common aspect ratios as well as normal convolution.
Additionally, benefiting from the horizontal and vertical convolution, the receptive field
coverage is much tighter than that of the baseline method. The next two groups have
different scenarios: the first is a long bridge (Figure 12c), and the other one is a complex
harbor environment (Figure 12d). The heat map results clearly reveal the redundant areas
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of the baseline method and the accuracy of HVConv. It reflects that our method reduces
redundant receptive fields, thereby diminishing the overlapping of bounding boxes and
the occurrence of bounding box segmentation caused by irregular aspect ratios, ultimately
achieving higher performance for remote sensing object detection.

Figure 10. The confusion matrix result of multi-scale training on the validation set from the
DOTA-v1.0 dataset.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 11. The output results of baseline and our method. The left column (a,c,e,g) shows the baseline
detection results and the right column (b,d,f,h) shows the detection results of our method.

In Table 1, our method’s AP score of BR is the highest among the others. The AP
score of HA has been improved as well. This is generally because these objects have
a dramatic irregular aspect ratio in remote images. Our method could fit such classes’
features well by expanding narrow and long receptive fields and reducing background
redundant information. Also, we choose to apply our module to the first three stages of
the backbone network, improving the tiny object detection performance, which is because
receptive fields will grow at each stage’s calculation and incur tiny object detail information
loss. These results reflect that it is useful to expand horizontal and vertical receptive fields
for long and narrow instances in remote sensing object detection. However, this work can
be developed in the future. In our future work, we will concentrate on the convolution
calculation sequence and kernel size for a more rapid receptive field expansion. The
attention mechanism can be refined for a better combination of two paths, which finally
leads to a higher accuracy of detection.
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(a) (b)

(c) (d)

Figure 12. The heat map comparison of backbone layers on the DOTA-v1.0 dataset with single-scale
training. Images in each group from the left are the input image, heat map of the baseline method,
and heat map of ours. (a) has several tennis courts. (b) has planes in different scales and with a tilt
angle. (c) is a long bridge. (d) is a complex circumstance of the harbor.

5. Conclusions

This paper proposed Horizontal and Vertical Convolution, which is a plug-and-play
module for remote sensing object detection. Different from common object detection, re-
mote sensing object detection tends to be in tiny, narrow, and arbitrary directions. This
convolution approach expands the receptive fields in horizontal and vertical directions,
respectively, and a normal convolution is adopted as well for gathering background in-
formation, which is in order to acquire elongated feature representations in two different
directions with normal feature information. Through an attention mechanism, combin-
ing these two directions features and aggregating with the normal features enhanced the
ability to recognize narrow objects and maintain a general object detection ability level.
Our method proposes a new perspective (i.e., receptive fields optimization) to reduce
the impact of irrelevant information around remote sensing objects on model recognition
capabilities. It indicates that the use of the convolution method for special computer vision
tasks still has room for improvement. Our experimental results on the DOTA-v1.0 and
HRSC2016 datasets achieved state-of-the-art accuracy, which fully verified the effectiveness
of our module. We hope our method can be used not only in remote sensing areas but
also in other domains with irregular aspect ratio object problems. As well, we hope that
this paper inspires other researchers to study the receptive fields’ redundancy problem.
In the future, we will continue this study to optimize the attention module for a more
efficient computation.
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