Error Analysis and Correction of FENGYUN-4A GIIRS Temperature Profile Products in Summer over the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Introduction
2.2. Data Processing
2.3. Error Analysis Methods
2.4. LSTM Correction Model
3. Results
3.1. Error Analysis of the GIIRS Temperature and Radiosonde Temperature
3.2. Analysis of LSTM Correction Model Effectiveness
3.3. Comparative Analysis of Errors between GIIRS Temperature and Radiosonde Temperature before and after Product Correction
3.4. Comparative Analysis of Errors between the GIIRS Temperature and the ERA5 Temperature before and after Product Correction
3.5. Correction Model Based on the IASI Level2 Temperature Product
4. Discussion
5. Conclusions
- In the summer on the Qinghai–Tibet Plateau, GIIRS temperature compared to radiosonde temperature observations above 150 hPa mostly had a positive bias, while those below 150 hPa mostly had a negative bias. Lhasa and Hezuo Stations had the highest BIAS, exceeding −0.6 K. The distribution of other stations was relatively uniform, with an average BIAS of −0.259 K. The vertical distribution of the RMSE was relatively uniform, between 2 and 2.9 K, with slightly higher errors at higher levels. On average, the RMSE at the southwest station was about 0.2 K higher than at the northeast station. The time-series changes in the BIAS and RMSE were relatively stable, and the error of the GIIRS temperature at 20:00 was slightly higher than at 08:00.
- The LSTM model could effectively correct GIIRS temperature products. On the test set, the correlation between the corrected product and the radiosonde observation temperature significantly improved, but the ability to correct extreme values was slightly lacking. The BIAS between the corrected GIIRS temperature and the radiosonde observation temperature decreased from −0.295 K to −0.057 K, the RMSE decreased from 2.344 K to 1.546 K, and the CORR increased from 0.69 to 0.82.
- By using the trained LSTM correction model to correct the hourly GIIRS temperature, higher-quality products could be obtained for 15 radiosonde station points. After correction, the BIAS between the GIIRS temperature and the ERA5 temperature product was reduced from −0.264 K to 0.062 K, and the RMSE was reduced from 2.247 K to 1.248 K, with an accuracy improvement of 44%.
- The LSTM correction model can be applied to different seasons and can also produce good correction effects. The same correction model can also be used to correct GIIRS temperature based on other high-precision data. The correction model based on IASI Level2 temperature products within the range of 75°E–105°E, 25°N–40°N achieved good results, reducing the RMSE of the entire region by 0.5 K. This indicates that the correction model has a certain degree of universal applicability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Sobrino, J.; Serra-Sagristà, J.; Bartrina-Rapesta, J. Hyperspectral IASI L1C Data Compression. Sensors 2017, 17, 1404. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 2013, 118, 12734–12748. [Google Scholar] [CrossRef]
- Tobin, D.; Revercomb, H.; Knuteson, R.; Taylor, J.; Best, F.; Borg, L.; DeSlover, D.; Martin, G.; Buijs, H.; Esplin, M.; et al. Suomi-NPP CrIS radiometric calibration uncertainty. J. Geophys. Res. Atmos. 2013, 118, 10589–10600. [Google Scholar] [CrossRef]
- Klaes, K.D.; Cohen, M.; Buhler, Y.; Schlüssel, P.; Munro, R.; Luntama, J.-P.; von Engeln, A.; Clérigh, E.Ó.; Bonekamp, H.; Ackermann, J.; et al. An Introduction to the EUMETSAT Polar system. Bull. Am. Meteorol. Soc. 2007, 88, 1085–1096. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Ackerman, S.A.; Gurka, J.J. High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit. J. Atmos. Ocean. Technol. 2009, 26, 2273–2292. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Liu, X.; Kutzbach, J.E.; Liu, Z.; An, Z.; Li, L. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys. Res. Lett. 2003, 30, 1839. [Google Scholar] [CrossRef]
- Zhou, S.W.; Wang, C.H.; Wu, P.; Wang, M. Temporal and spatial distribution of strong precipitation days over the Tibetan Plateau. Arid. Land Geogr. 2012, 35, 23–31. (In Chinese) [Google Scholar]
- Ren, C.; Cong, G.; Xiao-Wei, W.; Si-Yu, Z.; Jian-Wen, H.; Lei, D. Application of FY-4 atmospheric vertical sounder in weather forecast. J. Infrared Millim. Waves 2019, 38, 285. [Google Scholar]
- Niu, Z.; Zhang, L.; Han, Y.; Dong, P.; Huang, W. Performances between the FY-4A/GIIRS and FY-4B/GIIRS Long-Wave InfraRed (LWIR) channels under clear-sky and all-sky conditions. Q. J. R. Meteorolog. Soc. 2023, 149, 1612–1628. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, P.; Schmit, T.; Bai, W.; Atlas, R. An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy sky conditions: Cloudy IR radiative transfer model. J. Geophys. Res. Atmos. 2017, 122, 7600–7613. [Google Scholar] [CrossRef]
- Xue, Q.; Guan, L.; Shi, X. One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS. Adv. Atmos. Sci. 2022, 39, 471–486. [Google Scholar] [CrossRef]
- Di, D.; Li, J.; Han, W.; Bai, W.; Wu, C.; Menzel, W.P. Enhancing the Fast Radiative Transfer Model for FengYun-4 GIIRS by Using Local Training Profiles. J. Geophys. Res. Atmos. 2018, 123, 12583–12596. [Google Scholar] [CrossRef]
- Yin, R.; Han, W.; Gao, Z.; Di, D. The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Q. J. R. Meteorolog. Soc. 2020, 146, 1459–1476. [Google Scholar] [CrossRef]
- Cai, X.; Bao, Y.; Petropoulos, G.P.; Lu, F.; Lu, Q.; Zhu, L.; Wu, Y. Temperature and Humidity Profile Retrieval from FY4-GIIRS Hyperspectral Data Using Artificial Neural Networks. Remote Sens. 2020, 12, 1872. [Google Scholar] [CrossRef]
- Yin, R.; Han, W.; Gao, Z.; Li, J. Impact of High Temporal Resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Radiance Measurements on Typhoon Forecasts: Maria (2018) Case with GRAPES Global 4D-Var Assimilation System. Geophys. Res. Lett. 2021, 48, e2021GL093672. [Google Scholar] [CrossRef]
- He, M.; Wang, D.; Ding, W.; Wan, Y.; Chen, Y.; Zhang, Y. A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations. Remote Sens. 2019, 11, 2039. [Google Scholar] [CrossRef]
- Du, M.-B.; Cui, L.-L.; Lu, F.; Peng, J.; Shi, J.; Liu, D.-W.; Fan, H. Quality evaluation of FY-4A/GIIRS atmospheric temperature profile. J. Infrared Millim. Waves 2023, 42, 399–409. [Google Scholar]
- Ren, S.; Jiang, J.; Fang, X.; Liu, H.; Cao, Z. FY-4A/GIIRS Temperature Validation in Winter and Application to Cold Wave Monitoring. J. Meteorolog. Res. 2022, 36, 658–676. [Google Scholar] [CrossRef]
- Huang, Y.W.; Chen, S.Y.; He, M.; Zhang, L.; Zhao, B.K.; Liu, Q.; Chen, Y.H.; Wu, X.W. A study on the accuracy of temperature profile retrieved from giirs/fy-4a over the east and south China sea. J. Trop. Meteorol. 2021, 37, 277–288. (In Chinese) [Google Scholar]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorolog. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- August, T.; Klaes, D.; Schlüssel, P.; Hultberg, T.; Crapeau, M.; Arriaga, A.; O’Carroll, A.; Coppens, D.; Munro, R.; Calbet, X. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1340–1371. [Google Scholar] [CrossRef]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Xie, Z.; Liu, F. The analysis of upper-air meteorological balloon floating in China. Acta Meteorol. Sin. 2010, 68, 421–427. (In Chinese) [Google Scholar]
- Seidel, D.J.; Sun, B.; Pettey, M.; Reale, A. Global radiosonde balloon drift statistics. J. Geophys. Res. Atmos. 2011, 116, D07102. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Razvan, P.; Tomas, M.; Yoshua, B. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International Conference on Machine Learning; Sanjoy, D., David, M., Eds.; PMLR: New York, NY, USA, 2013; pp. 1310–1318. [Google Scholar]
- Hu, Y.P.; Lin, P.; Wang, Q. Application of deep learning bias correction method to temperature grid forecast of 7–15 days. J. Appl. Meteorol. Sci. 2023, 34, 426–437. (In Chinese) [Google Scholar]
- Tao, H.; Jawad, A.H.; Shather, A.H.; Al-Khafaji, Z.; Rashid, T.A.; Ali, M.; Al-Ansari, N.; Marhoon, H.A.; Shahid, S.; Yaseen, Z.M. Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters. Environ. Int. 2023, 175, 107931. [Google Scholar] [CrossRef]
- Chen, L.; Liu, X.; Zeng, C.; He, X.; Chen, F.; Zhu, B. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model. Sensors 2022, 22, 5742. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Xu, X.; Zhao, F. Applications of the Three-cornered Hat Method to the Error Variance Estimations of FY-4A Atmospheric Temperature Profiles. Atmos. Ocean. 2022, 61, 12–24. [Google Scholar] [CrossRef]
- You, T.; Zhang, H.; Wang, H.; Zhao, M. Distribution of Different Cloud Types and Their Effects on Near-Surface Air Temperature during Summer Daytime in Central Eastern China. Chin. J. Atmos. Sci. 2020, 44, 835–850. (In Chinese) [Google Scholar]
- Vanhellemont, Q.; Neukermans, G.; Ruddick, K. Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution. Remote Sens. Environ. 2014, 146, 49–62. [Google Scholar] [CrossRef]
- Helder, D.; Doelling, D.; Bhatt, R.; Choi, T.; Barsi, J. Calibrating Geosynchronous and Polar Orbiting Satellites: Sharing Best Practices. Remote Sens. 2020, 12, 2786. [Google Scholar] [CrossRef]
- Kwon, E.-H.; Sohn, B.J.; Smith, W.L.; Li, J. Validating IASI Temperature and Moisture Sounding Retrievals over East Asia Using Radiosonde Observations. J. Atmos. Ocean. Technol. 2012, 29, 1250–1262. [Google Scholar] [CrossRef]
- Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Schlüssel, P.; Stiller, B.; Germain, K.S.; Bingham, G. IASI temperature and water vapor retrievals—Error assessment and validation. Atmos. Chem. Phys. Discuss 2009, 9, 6453–6458. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, Z.; Yao, Z.; Wang, Y.; Su, X.; Chen, J.; Zhang, Y.; Tang, P. An Improved IASI Temperature and Humidity Retrieval Method Based on Double Channel Differences. Earth Space Sci. 2022, 9, e2021EA002139. [Google Scholar] [CrossRef]
Before Correction | After Correction | Proportion of Improvement | |||||||
---|---|---|---|---|---|---|---|---|---|
Levels | BIAS (K) | RMSE (K) | CORR | BIAS (K) | RMSE (K) | CORR | BIAS (%) | RMSE (%) | CORR (%) |
50 hPa | −0.65 | 3.16 | −0.09 | −0.32 | 2.20 | 0.19 | 51 | 30 | 111 |
150 hPa | 1.25 | 2.42 | 0.06 | 0.30 | 0.99 | 0.57 | 76 | 59 | 850 |
250 hPa | −1.49 | 2.48 | 0.34 | 0.11 | 1.02 | 0.69 | 93 | 59 | 103 |
350 hPa | −1.94 | 3.25 | 0.07 | −0.12 | 1.63 | 0.56 | 94 | 50 | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, Q.; Niu, N. Error Analysis and Correction of FENGYUN-4A GIIRS Temperature Profile Products in Summer over the Qinghai–Tibet Plateau. Remote Sens. 2024, 16, 1881. https://doi.org/10.3390/rs16111881
Jiang X, Wang Q, Niu N. Error Analysis and Correction of FENGYUN-4A GIIRS Temperature Profile Products in Summer over the Qinghai–Tibet Plateau. Remote Sensing. 2024; 16(11):1881. https://doi.org/10.3390/rs16111881
Chicago/Turabian StyleJiang, Xiaofei, Qiguang Wang, and Ning Niu. 2024. "Error Analysis and Correction of FENGYUN-4A GIIRS Temperature Profile Products in Summer over the Qinghai–Tibet Plateau" Remote Sensing 16, no. 11: 1881. https://doi.org/10.3390/rs16111881
APA StyleJiang, X., Wang, Q., & Niu, N. (2024). Error Analysis and Correction of FENGYUN-4A GIIRS Temperature Profile Products in Summer over the Qinghai–Tibet Plateau. Remote Sensing, 16(11), 1881. https://doi.org/10.3390/rs16111881