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Abstract: The increasing incidence of retrogressive thaw slumps (RTSs) in permafrost regions under-
scores the need for detailed spatial and temporal analysis using InSAR technology to monitor and
predict dynamic changes in the process of RTSs. Nevertheless, current InSAR deformation forecasting
methods employing deep learning strategies such as the traditional long short-term memory (LSTM)
and recent transformer models encounter difficulties in effectively capturing temporal features.
Moreover, they are limited in their ability to directly integrate spatial information. In this paper, an
innovative deep learning approach named Spacetimeformer is proposed for predicting medium- and
short-term InSAR deformation of RTSs in the Chumar River area. This method employs a transformer
architecture with a spatiotemporal attention mechanism, which enhances the long-term prediction
capabilities of time series models and dynamic spatial modeling. It is applicable to multivariate
InSAR spatiotemporal deformation prediction problems. The findings include a list of 72 RTSs
compiled based on derived InSAR deformation maps and Sentinel-2 optical images, of which 64 have
an average deformation rate exceeding 10 mm/year, indicating signs of permafrost degradation. The
density distribution of the displacement maps predicted by the Spacetimeformer model aligned well
with the InSAR deformation maps obtained from the small baseline subset (SBAS) method, with the
overall prediction deviation controlled within 20 mm. In addition, the point-scale prediction results
were compared with LSTM and transformer models. This study indicates that the Spacetimeformer
network achieved good results in predicting the deformation of RTSs, with a root mean square error
of 1.249 mm. The Spacetimeformer method for deformation prediction with the spacetime mechanism
presented in this study can serve as a general framework for multivariate deformation prediction
based on InSAR results. It can also quantitatively assess the spatial deformation characteristics and
deformation trends of RTSs.

Keywords: retrogressive thaw slumps; InSAR; deformation prediction; spacetimeformer; permafrost
degradation

1. Introduction

The permafrost on the Qinghai–Tibet Plateau (QTP) covers an area of approximately
1.06 × 106 km2 (with temperatures lower than −2 ◦C) [1], and it is particularly sensitive
and vulnerable to global warming and human activities [2]. Currently, the central region of
the QTP is undergoing rapid and substantial permafrost degradation, marked by rising
ground temperatures, an expanding active layer, contracting extent, decreasing thickness,
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and an ascending lower boundary [3]. Retrogressive thaw slumps (RTSs), among the
most dynamic geomorphological features in the QTP’s permafrost zones, are experiencing
accelerated melting and erosion from the warming of global permafrost, particularly due to
extensive melting of ice-rich permafrost. This not only alters the landscape and ecosystem
of the Qinghai–Tibet Plateau but also potentially accelerates the release of soil organic
carbon, which could undermine infrastructure stability and impact the global carbon cycle
and climate change [4–6]. Understanding the surface deformation characteristics and
future trends of these thaw slumps across spatial and temporal dimensions is crucial.
Additionally, conducting comprehensive studies on the spatiotemporal patterns of surface
deformation, exploring large-scale deformation mapping possibilities, and assessing future
trends, remain equally essential. [7]. Therefore, deformation monitoring and mid-short-
term prediction techniques for RTSs are significant in assessing the deformation trends
of thaw slumps and the stability of infrastructure in cold regions. In recent decades,
interferometric synthetic aperture radar (InSAR) technology, capable of measuring surface
deformation with centimeter to subcentimeter precision and offering high spatial resolution
and wide coverage in all weathers, has provided a powerful method for monitoring ground
deformation in permafrost areas [8]. Additionally, the open data policy of the Sentinel-1
satellite has facilitated the application of InSAR technology for large-scale deformation
measurement in permafrost areas. Alternatively, multi-temporal InSAR techniques (MT-
InSAR) such as permanent scatterer interferometry (PSI) [9] and small baseline subset
(SBAS) [10] have been successfully used to monitor seasonal changes and interannual
surface elevation changes in permafrost areas of the QTP [11–14]. These studies have
effectively monitored the freeze–thaw cycles of permafrost on the QTP, including combining
seasonal deformation data with the Stefan model to invert the thickness of the active
layer [15,16].

InSAR deformation prediction employing time-series modeling techniques aids signif-
icantly in enhancing capabilities for the monitoring and forecasting of geological disasters
and regressive thaw slumps on the QTP. Currently, time series modeling has found ex-
tensive applications in fields such as climate modeling [17], biological sciences [18], and
medicine [19], as well as retail and finance [20]. Traditional methods in time series mod-
eling focus on parameter models informed by domain expertise [21]. These models are
data-driven approaches, including autoregression (AR) [22], exponential smoothing [23],
or structural time-series models [24]. Prior research has employed data-driven approaches
like hyperbolic and gray–Markov models to forecast deformation data from InSAR. [25,26].
Model-driven approaches such as the probabilistic integral method, Kalman filtering, gray
system theory models, and nonlinear least squares [27] rely on InSAR deformation results
and other time-series data to achieve high-precision and reliable ground deformation pre-
diction results. However, these traditional methods have poor applicability and usually
require expert knowledge to manually select and adjust parameters [28], making it diffi-
cult to effectively handle the complex or nonlinear time-series deformation data patterns
of permafrost. Modern machine learning methods offer a purely data-driven approach
to learning time dynamics [29]. Recently, deep learning has revolutionized time-series
prediction tasks through its exceptional ability to manage nonlinear patterns, automate
feature extraction, and analyze extensive datasets. Convolutional neural network (CNN)
techniques have successfully detected slow volcanic movements and predicted short-term
InSAR deformation [30,31]. In particular, recurrent neural networks (RNNs) and long short-
term memory (LSTM) networks have demonstrated substantial advantages in capturing
complex dependencies and dynamic changes within time-series data. In 2021, Nukala et al.
introduced an innovative approach using RNNs to predict time-series deformation maps
with Sentinel-1 data [32]. The adoption of LSTM networks effectively addressed the is-
sues of gradient explosion and vanishing that plagued earlier RNN variants in learning
long-term data dependencies. This enhancement significantly improved the network’s
capacity to learn long-term data dependencies. In their respective studies, Chen et al. (2021),
Hill et al. (2021), and Bao et al. (2022) developed LSTM models tailored to time-series In-
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SAR deformation, consistently demonstrating superior predictive performance over earlier
methods [33–35]. Aoqing et al. (2022) presented a landslide prediction method based on a
neural basis expansion analysis (N-BEATS) network model and achieved medium- and
short-term landslide prediction by exploiting MTInSAR observations with a root mean
square error accuracy of 1.1 mm [27]. Wang et al. utilized multivariate meteorological and
hydrological data along with time-series InSAR deformation data through an enhanced
transformer model to predict linear and seasonal displacement patterns in the QTP’s Salt
Lake area, achieving an average point-scale accuracy of 6.71 mm [36]. Yao et al. and Yi et al.
proposed a spatiotemporal prediction method for ground subsidence using a convolutional
long short-term memory (ConvLSTM) neural network, effectively capturing both temporal
features and spatial neighborhood characteristics [37,38].

However, previous studies have mainly focused on InSAR time-series deformation
prediction methods based on CNN or LSTM models. These methods have shortcomings in
capturing temporal features and considering spatial neighborhood characteristics, leading
to poor reliability in spatiotemporal prediction of ground subsidence. Additionally, there
has been limited research on multivariate time series deformation prediction using InSAR
technology, which has primarily focused on using historical data to predict future values.
Despite the latest sequence-to-sequence models relying on time-step attention mechanisms
in neural networks for temporal learning, they fail to fully consider the complex spatial
relationships between variables.

In this study, we propose a novel InSAR time series deformation prediction method
employing the Spacetimeformer network model designed for multivariate InSAR deforma-
tion datasets, specifically applied to RTSs in the Chumar River Basin. The Spacetimeformer
model proposed in this paper is a highly valuable addition to InSAR deformation predic-
tion. The objectives of this paper are as follows: (1) to deduce the dynamic change processes
of the RTSs in the Chumar River Basin using the introduced Spacetimeformer deformation
prediction method, and (2) to map the RTSs areas in the Chumar River Basin and discuss
the spatiotemporal deformation patterns of permafrost degradation in the RTSs. Following
the introduction, this paper outlines the study area and datasets in Section 2. Section 3
elaborates on a SBAS InSAR algorithm based on a seasonal model and the InSAR time
series displacement forecasting method utilizing the multivariate Spacetimeformer model.
Section 4 presents the InSAR deformation prediction results, along with a detailed analysis
of the precise deformation properties of the RTSs. Discussions on the forecast performance
of the Spacetimeformer model and the spatiotemporal variations in surface deformation in
the Chumar River Basin are covered in Section 5. Finally, Section 6 concludes the paper
and outlines avenues for further research.

2. Study Area and Datasets
2.1. Study Area

The study area is located in the northeastern part of the QTP in Qinghai Province, near
the Hoh Xil region (see Figure 1a), with the Qinghai-Tibet Railway and highway to the east.
The region is bounded by the Wulan Mountains to the north and the Kunlun Mountains to
the south, mainly comprising high-altitude hills and moderately undulating mountains,
with most areas above 4500 m in elevation (see Figure 1b). The terrain consists of rolling hills
and shallow gullies [39]. The primary natural cover in the area comprises alpine meadows,
grasslands, and deserts, interspersed with widespread periglacial landforms. The study
area features a semi-arid continental climate, with average annual temperatures ranging
from −10.0 ◦C to −4.1 ◦C and precipitation varying between 70.5 mm and 291.4 mm. The
region exhibits high evaporation rates. Notably, Zhuonai Lake and Kusai Lake, typical
glacier-fed lakes, along with Haidingnor and Salt Lake, mainly replenished by rainfall,
derive their primary water sources from meltwater and precipitation, respectively [14,40,41].
Observations at the Hoh Xil station (QT01) from 2004 to 2017 showed an increase in the
active layer thickness from 160 cm to 176 cm. As permafrost thaws, the melting of ground
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ice significantly increases the water content at the bottom of the active layer. Consequently,
permafrost degradation has occurred in the study area in recent years [42].
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Figure 1. Geographic location of the study area and coverage of Sentinel-1 data. (a) Sentinel-1
images and the study area superimposed on a color map of China; (b) the Chumar River area
superimposed on Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) shaded
topography map.

2.2. Datasets
2.2.1. Satellite Data

To acquire historical deformation data and predict future deformation trends in the
study area, we collected 158 images from the terrain observation with progressive scans
(TOPS) interferometric wide (IW) mode of the Sentinel-1A synthetic aperture radar (SAR).
These images, utilizing VV polarization, spanned from 3 May 2018 to 4 October 2023.
The Sentinel-1A satellite, launched on 3 April 2014, has a revisit cycle of 12 days and
operates at a wavelength of approximately 5.6 cm. The images were captured along the
descending orbit track T150. The swath width of the Sentinel-1A imagery was 250 km, with
the line-of-sight (LOS) incidence angle varying between 31◦ and 46◦.

Sentinel-2 optical imagery was utilized for delineating the boundaries of RTSs. The
dataset comprised two Sentinel-2 acquisitions of multi-spectral instrument (MSI) level-1A
data, specifically from 13 September 2023 and 15 August 2019 (as listed in Table 1). The
selected images were from relative orbit number 133, capitalizing on the instrument’s wide
swath width of 290 km and a high revisit frequency of 10 days at the equator with a single
satellite from the Sentinel-2 mission.
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Table 1. Properties of Sentinel-1 and Sentinel-2 data used in this research.

Satellite Data Number of
Images Time Spatial Resolution (m) Spectral Bands Wavelength

Sentinel-1 158 2018/05/03~2023/10/04 2.7 × 22.5
(rg × az) C 5.6 cm

Sentinel-2 2 2019/08/15
2023/09/13 10

B2 Blue
B3 Green
B4 Red

B8 Near-infrared (NIR)

492.1 nm
559 nm
665 nm
833 nm

2.2.2. Auxiliary Data

In this study, a 1-arc second resolution SRTM DEM with a ground resolution of 30 m
was employed to simulate the topographic phase, which was then utilized for geocoding
the InSAR deformation results [43]. Fifth-generation reanalysis data (ERA5) from the
European Centre for Medium-Range Weather Forecasts (ECMWF) were used, and this
study integrated 2 m dew-point temperature data from the monthly average reanalysis
products of the ECMWF ERA5 [44], corresponding to the SAR image acquisition dates on
a 0.25◦ × 0.25◦ grid. These data were used to establish the composite index deformation
model and can be accessed at https://cds.climate.copernicus.eu/cdsapp#!/home (accessed
on 19 May 2024).

3. Methodology

Figure 2 provides an overview and details the steps of this deformation prediction
methodology. Initially, pre-processing and interferometry were conducted on the Sentinel-1
data. Seasonal deformation, LOS velocity, and time-series deformation of RTSs in the
Chumar River area were calculated using the SBAS method based on a composite index
model [36]. The RTSs areas were then mapped using the deformation results from SBAS
combined with Sentinel-2 optical images. The InSAR time-series deformation results
are preprocessed using the Savitzky–Golay (SG) filtering algorithm [45], and the InSAR
time series deformation data of the study area were clustered into different deformation
pattern datasets using the Kmeans algorithm [46]. The data from each InSAR measurement
point were reorganized into one-dimensional time series, which were then decomposed
using the Holt–Winters time-series decomposition method [47]. The Spacetimeformer
multivariate time series spatiotemporal prediction model for different deformation patterns
was constructed and applied to the time-series deformation prediction of the Chumar
River’s RTSs. Finally, the prediction accuracy’s dependence on spatiotemporal mechanisms
was assessed through comparing the results of the Spacetimeformer model, integrated
with spatiotemporal concepts, against those of the LSTM and transformer models at the
point scale.

3.1. MT-InSAR Processing

A total of 158 Sentinel-1 SAR images were processed using the SBAS method for time-
series deformation calculation. Initially, precise orbital correction and DEM co-registration
were implemented on the Sentinel-1 data, utilizing the enhanced spectral diversity (ESD)
co-registration method to refine azimuth offsets in Sentinel-1 images [48]. De-ramping,
interpolation, and re-ramping were performed on each burst [49], followed by mosaicking
of all bursts on each strip, and then interferometric processing to produce interferograms.
The interferograms were multi-looked in the range direction by a factor of 2 and in the
azimuth direction by a factor of 12 to reduce noise. The 30 m DEM from the SRTM was used
to remove contributions from flat-earth and topographic phases [50]. Differential interfer-
ometric pairs were selected with a temporal baseline threshold of 50 days and a spatial
baseline threshold of 100 m, as indicated by the blue circles for SAR image acquisition dates
and gray lines for a set of interferograms in Figure 3. Additionally, some interferograms

https://cds.climate.copernicus.eu/cdsapp#!/home
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affected by severe decorrelation and atmospheric phase delays were discarded. Ultimately,
498 Sentinel-1 interferograms were selected for MT-InSAR processing. Goldstein adaptive
spatial filtering [51] was applied to each interferogram, and the minimum cost flow (MCF)
method [52] was used to unwrap the differential interferometric phases. GMTSAR software
(version 6.1) was used to implement the above steps [50].

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 2. Processing flow of Spacetimeformer time-series deformation prediction method. This 
figure depicts content related to Sections 3.1–3.3 in the text. 

3.1. MT-InSAR Processing 
A total of 158 Sentinel-1 SAR images were processed using the SBAS method for time-

series deformation calculation. Initially, precise orbital correction and DEM co-registra-
tion were implemented on the Sentinel-1 data, utilizing the enhanced spectral diversity 
(ESD) co-registration method to refine azimuth offsets in Sentinel-1 images [48]. De-ramp-
ing, interpolation, and re-ramping were performed on each burst [49], followed by mosa-
icking of all bursts on each strip, and then interferometric processing to produce interfer-
ograms. The interferograms were multi-looked in the range direction by a factor of 2 and 
in the azimuth direction by a factor of 12 to reduce noise. The 30 m DEM from the SRTM 
was used to remove contributions from flat-earth and topographic phases [50]. Differen-
tial interferometric pairs were selected with a temporal baseline threshold of 50 days and 
a spatial baseline threshold of 100 m, as indicated by the blue circles for SAR image acqui-
sition dates and gray lines for a set of interferograms in Figure 3. Additionally, some in-
terferograms affected by severe decorrelation and atmospheric phase delays were dis-
carded. Ultimately, 498 Sentinel-1 interferograms were selected for MT-InSAR processing. 
Goldstein adaptive spatial filtering [51] was applied to each interferogram, and the 

Figure 2. Processing flow of Spacetimeformer time-series deformation prediction method. This figure
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In this study, to precisely capture the RTSs’ deformation pattern in the permafrost,
a composite index model was integrated into the SBAS algorithm for calculating time-
series deformation [53]. The fifth-generation global climate reanalysis ERA5 data were
utilized for atmospheric phase screen estimation. Atmospheric correction was applied
to all unwrapped interferograms, and residual orbital errors in each interferogram were
rectified using the network de-ramping method. Given that the study area is located in
the hinterland of the Tibetan Plateau, we selected a reference point on the southern side of
the mountain range within our study area, composed of stable bedrock. All movements
within the study area were considered relative to this reference point. Finally, the SBAS
inversion technique was employed to derive seasonal deformation changes and time-series
displacement, and the GIAnT toolbox is adopted to execute the SBAS inversion [54].
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3.2. Mapping of Retrogressive Thaw Slump Boundaries

After acquiring the ground deformation rate maps processed via SBAS, we integrated
these results with Sentinel-2 optical imagery for visual interpretation of the RTSs. Initially,
an LOS deformation rate threshold of 15 mm was set to delineate potential thaw slump
areas. Time-series deformation data were employed to filter out deformations unrelated
to permafrost degradation. Subsequently, suspected landslide areas were marked on
multi-temporal Sentinel-2 optical remote sensing images and further verified using surface
morphological features such as exposed sediments, newly exposed well walls, and sparse
vegetation [4]. This was carried out to eliminate falsely identified landslide areas and
achieve precise mapping. It is noteworthy that boundaries determined solely based on
deformation characteristics may underestimate the actual extent of landslides, as some
landslide areas might not exhibit significant deformation during the observation period [55].
Therefore, Sentinel-2 optical images were utilized in conjunction with InSAR measurements
to accurately delineate the outer contours of the RTSs.

3.3. Time Series Deformation Prediction of Spacetimeformer Models
3.3.1. Dataset Preprocessing and Holt–Winters Time-Series Decomposition

In this study, 588,600 InSAR measurement points with coherence greater than 0.30
in the time-series deformation map were selected and reorganized into time-series data.
The time-series deformation data were clustered using the Kmeans algorithm to establish
time-series deformation datasets for each category [56]. The Spacetimeformer network was
then used to construct deformation prediction models for each category of RTSs.

To better predict the future time-series deformation of RTSs in the study area and
enhance the ability of the Spacetimeformer model to capture deformation data, the time-
series deformation data obtained from InSar were preprocessed and decomposed (see
Figure 4a). Initially, the SG filtering algorithm [45] was used to filter the InSAR deformation
results to mitigate the effects of atmospheric residual phase and phase unwrapping errors in
the time-series deformation signal. Due to the complexity of permafrost InSAR deformation
patterns, which are the result of the coupled interactions of water, heat, and force in
permafrost over many years, and the varying deformation patterns in different thaw slump
areas, the InSAR time-series deformation data were clustered into datasets with eight
different deformation patterns, using the Kmeans algorithm. Subsequently, the clustered
data were analyzed for patterns, and the Holt–Winters time-series decomposition method
was applied to decompose the InSAR time-series deformation data of each measurement
point into different categories. This method decomposes a measurement point’s InSAR
time-series deformation sequence into three components: trend component, seasonal cycle
component, and residual component. The Holt–Winters time series decomposition formula
is as follows:

IV = TV + SV + RV (1)
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where IV represents the InSAR time-series deformation sequence of a measurement point
in the study area, TV represents the trend component, SV represents the seasonal cycle
component, RV represents the residual component, N is the number of measurement points,
and v is the serial number of a measurement point. The trend component represents the
low-frequency and long-term changes in InSAR time-series deformation; the seasonal cycle
component represents the periodic frequency changes in InSAR time-series deformation;
the residual component represents the remaining values of the original InSAR time-series
deformation after removing the trend and seasonal cycle components. For the InSAR
time-series deformation dataset spanning from 3 May 2018 to 4 October 2023, with Sentinel-
1A data’s revisit cycle of 12 days, the length of a yearly time series was about 30; hence,
the Holt–Winters time-series decomposition seasonal periods parameter was set to 30.
Note that for InSAR deformation data missing at 12-day intervals, bilinear interpolation
was performed, resulting in a complete annual cycle of InSAR time-series data. Figure 5
displays the sequence characteristics of a point in the thaw slump area after Holt–Winters
time-series decomposition, revealing that the point’s InSAR time-series data consisted of
approximately 94.73% trend component, 31.60% cyclical component, and 4.40% residual
component. The InSAR deformation data in this thaw slump area exhibited a declining
trend, with seasonal deformation of permafrost on an annual cycle.
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3.3.2. Deformation Prediction of Spacetimeformer Model

Figure 4b illustrates the single-layer encoder–decoder structure of the constructed
Spacetimeformer network, which is based on transformer architecture [57]. This network
utilizes a model to leverage the spatial relationships between different InSAR measurement
points, thoroughly considering their temporal and spatial connections to learn additional
useful dependencies. The Spacetimeformer network consists of an encoder and a decoder,
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each with five layers in this study. Both the encoder and decoder comprise embedding
layers, attention layers, convolutional blocks, and normalization layers. The encoder’s
embedding layer embeds each category’s time-series deformation sequences and times-
tamp sequences of all monitoring points, transforming them into a format suitable for
the Spacetimeformer model. Similarly, the decoder’s embedding layer embeds feature
inputs and target sequence inputs. Multiple attention layers in both encoder and decoder
include global and local self-attention mechanisms. Global self-attention looks at the en-
tire sequence to capture long-range dependencies, which is essential for understanding
overall trends and patterns that span across the entire dataset. Local self-attention focuses
on smaller segments of the input to capture fine-grained details and nuances, which is
important for accurate local predictions and understanding localized events in the data.
Convolutional blocks are crucial for extracting spatial features from input data, which is
essential for tasks involving spatial relationships, such as predicting InSAR deformations
where spatial context significantly influences outcomes. Normalization layers standardize
the features for optimal processing.
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The model exhibits capabilities for long-term time-series forecasting and dynamic
spatial modeling, and it does not rely on hard-coded graphs. Typical deep learning time-
series models group input values by time steps and learn patterns over time. However,
when employing transformer-based models, traditional transformers primarily handle
sequential information, which can lead to a neglect of spatial relationships among variables
due to the “time” attention network. In contrast, graph neural networks and similar
approaches explicitly model spatial relationships using graphs and share information
across spatial and temporal layers alternately. The Spacetimeformer model incorporates
both temporal and spatial dimensions using a customized transformer architecture and
embeddings to implement spatiotemporal attention (see Figure 4b). This architecture allows
the flattening of multivariate sequences so that each token at a given time step contains the
value of a single variable, thereby enabling the modeling of both time series and spatial
grids through the spatiotemporal attention mechanism, capturing spatial proximity and
temporal dependencies. Thus, the Spacetimeformer learns the complete spatiotemporal
patterns among all variables at each time step.

After completing the time-series decomposition of InSAR deformation data for all
measurement points in each category, deformation datasets for each category were es-
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tablished. For the time-series deformation sequence of each category, k past time series
deformation data were used to predict the deformation data of h future time points. xt
represents the timestamp value at time t, and yt represents the deformation values of
all InSAR measurement points at timestamp t, i.e., yt = (y1

t , y2
t , · · · , yL

t ), where L is the
number of measurement points in each category, and yL

t represents the deformation value
of measurement point L at timestamp t. Given the timestamps (xT−k+1, xT−k+2, · · · , xT)
and the deformation time series of all measurement points (yT−k+1, yT−k+2, · · · , yT), the
model predicts the h deformation sequences of all measurement points at future time points
(yT+1, yT+2, · · · , yT+h). This model embeds the time series into a high-dimensional space, us-
ing zeros as placeholders for the unknown target sequence (yT−k+1, · · · , yT, 0T+1, · · · , 0T+h)
to achieve dimensional uniformity. The informer model further constructs an input se-
quence Z ∈ R(k+h)×L consisting of k + h tokens through adding timestamps xt and corre-
sponding vectors yt. This approach may cause the model to focus only on the temporal at-
tributes of the time series, neglecting the spatial correlation of deformation data between dif-
ferent measurement points. The Spacetimeformer model addresses this issue by flattening
each multidimensional vector yt into L vectors with timestamps along the time dimension,
transforming the input data into a spacetime sequence, thus generating a new embedded se-
quence ((xT−k+1, y1

T−K+1), · · · , (xT−k+1, yL
T−K+1), · · · ,(xT , y1

T), · · · , (xT , yL
T), (xT+1, 01

T+1),
· · · , (xT+1, 0L

T+1), · · · , (xT+h, 01
T+h), · · · , (xT+h, 0L

T+h))
′.

3.3.3. Experimental Design

Model training, validation, and testing were conducted on a Dell T7920 workstation
(hardware configuration: Intel Xeon Gold 6226R CPU, 128GB RAM, 2 RTX 4090 GPUs).
Distributed training was executed on 2 RTX 4090 GPUs, utilizing Windows 11 as the
operating system and the Pytorch deep learning framework as the runtime environment
(Pytorch, an open-source platform developed by Facebook, operates on Python 3.8). The
Spacetimeformer models were used to predict the trend, seasonal, and residual time-series
deformation sequences.

The deformation pattern of permafrost exhibits periodic characteristics of freezing
uplift and melting subsidence. Considering the local characteristics of the periodic com-
ponents in the permafrost deformation pattern, to enable the Spacetimeformer models to
learn the complete freeze–thaw cycle deformation pattern, we set the length of the training
dataset’s time series to 100 (after interpolation, the total length of the InSAR time series
deformation samples was 166, spanning from 3 May 2018 to 3 August 2021, covering
three and a half freeze–thaw cycles). The length of the validation dataset was set to 33
(spanning from 15 August 2021 to 3 September 2022), and the test dataset was set to 33
(spanning from 15 September 2022 to 4 October 2023). For each dataset, the context_points
parameter was set to 24, and the target_points parameter was set to 6, meaning the model
used 24 previous time points for learning and prediction and predicted the deformation
data for the next 6 time points, corresponding to 72 days of predicted InSAR time-series
deformation data (with a 12-day interval). The weights of the Spacetimeformer neural
network were iteratively updated using the AdamW optimizer [58], with a batch size of
16 and a training step length of 500. The initial learning rate was set to 1 × 10−10, and
the base learning rate was set to 5 × 10−4. During inference, the trained Spacetimeformer
model was used for estimating the time-series deformation prediction values for each pixel.
Finally, the predicted time-series deformations for each category were geocoded, resulting
in the generation of post-prediction time-series deformation maps.

The performance of the Spacetimeformer model was evaluated using root mean
square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and symmetric mean absolute percentage error (SMAPE). The formulas are expressed
as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(2)
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MAE =

n
∑

i=1
|yi − ŷi|

n
(3)

MAPE =

n
∑

i=1

(
yi − ŷi

yi

)2

n
(4)

SMAPE =
100%

n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(5)

where yi represents the actual value of the i-th sample, ŷi represents the predicted value of
the i-th sample, and n denotes the number of values.

4. Results and Analysis
4.1. InSAR Deformation Results

Figure 6 shows the surface deformation map of RTSs in the Chumar River Basin.
Red colors represent deformation away from the satellite, while blue colors indicate de-
formation towards the LOS direction of the sensor. Figure 6a shows that the majority of
the mountainous area had LOS deformation rates ranging from 5 to 15 mm/yr. These
mountains consist of stable bedrock, lacking widespread permafrost and seasonally frozen
ground, thereby resulting in lower deformation rates. In the foothills of the study area,
the substantial presence of permafrost and seasonally frozen ground are primarily due
to the cyclic freeze–thaw processes of the active layer and the degradation of permafrost.
Additionally, high soil moisture content and abundant surface runoff contribute to higher
LOS deformation rates and seasonal amplitudes. It is noteworthy that the upper left corner
of the study area, with its extensive floodplain areas, was found to have high ground mois-
ture content, resulting in deformation rates close to 10 to 25 mm/yr. The most significant
subsidence was observed in the RTS areas, exhibiting deformation rates between −35 and
20 mm/year. In the study area’s northern part, long-term subsidence was notably evident,
with LOS deformation rates reaching as high as 30 mm/year. This LOS deformation rate is
closely related to the melting of ice-rich permafrost near the surface layer, reflecting the
degradation trend of permafrost [59]. Additionally, Figure 6b shows significant seasonal
deformation in the southern region of the study area, ranging from −50 mm to 10 mm, with
the maximum seasonal deformation reaching about 50 mm. This seasonal deformation was
caused by the freeze–thaw cycles of the active layer of the permafrost presenting periodic
dynamic changes [11,13].
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4.2. Extraction Results of Retrogressive Thaw Slumps

A thaw slump inventory for the study area was compiled based on the derived InSAR
deformation maps and Sentinel-2 optical images, as depicted in Figure 7. Figure 7 shows the
spatial distribution and deformation properties of the manually delineated thaw slumps.
Combining remote sensing images with the distribution of RTSs, it was observed that
most significant subsidence occurred within and around RTSs, with deformation rates
ranging between −40 and 20 mm/year. Four representative points (Point A to Point D
in Figure 7b) were selected from the RTSs areas on the LOS deformation rate map for
further time-series investigation (as depicted in Figure 8). A significant number of thaw
slumps in these inspection areas were included in the manually compiled thaw slump
inventory. The boundaries of these thaw slumps in August 2019 (indicated in blue in
Figure 7b) and September 2023 (shown in red in Figure 7b) were delineated. Among
the existing 72 thaw slump areas, 64 exhibited an average deformation rate exceeding
10 mm/year, and 17 showed extreme deformation rates greater than 20 mm/year, with
only a minority of areas remaining stable. Since RTSs occur in areas with gentle slopes, their
change characteristics are more diverse than those of permafrost thawing. Additionally, it
was observed that many deformations occurred outside the RTSs. These deformed areas
do not necessarily indicate the occurrence of RTSs but are more likely to be areas prone to
RTSs. Therefore, some regions with severe deformation do not have RTSs. Compared with
2019, the area of RTSs had increased by 3.98 km2 in 2023, and the number of such slumps
had risen by 19. Notably, B and C were newly added retrogressive thaw slumps, while the
areas of thaw slumps in regions A and D expanded by 49.29% and 51.40%, respectively. The
InSAR observation results align with the aforementioned increase in thaw slump area and
quantity, indicating that the Chumar River area is undergoing dynamic evolution of RTSs.

Figure 9 presents the time series and fitted curves for the locations of four points
in RTS areas. The average LOS deformation rate and average cyclic amplitude for the
RTS areas at these four points were calculated, as shown in Table 2. The deformation
characteristics of these areas are marked by annually increasing LOS velocities and growing
cyclic amplitudes, as seen from Figure 9. Notably, during the period from 2018 to 2023,
the maximum subsidence observed in the Point A RTS area was 70.38 mm (Figure 9).
Additionally, the maximum cyclic amplitude in the Point A RTS area was 36.08. The
results indicate that each retrogressive thaw slump exhibited a distinct seasonal fluctuation
trend, characterized by rising and sinking during the freeze–thaw seasons, respectively.
Additionally, all four thaw slump areas showed a pronounced subsidence trend.

Table 2. LOS velocity, periodic amplitude, and coherence calculated from the InSAR results for
retrogressive thaw slumps in four sampled areas.

RTS Area LOS Velocity
(mm/yr)

Periodic
Amplitude

(mm)

Cumulative
Subsidence

(mm)

Standard
Deviation

(mm)

Coherence
Values

Point A −27.35 36.08 70.38 2.10 0.70
Point B −11.36 14.54 24.17 5.18 0.66
Point C −28.03 27.89 50.02 4.14 0.69
Point D −11.80 29.02 49.04 3.13 0.67

4.3. Time-Series Deformation Prediction Results

Figure 10 shows the time-series displacement from 3 May 2018 to 24 July 2023, a period
of five years. Due to the freeze–thaw cycles of the permafrost, noticeable seasonal variations
in the time-series deformation maps of the study are were observed. The comparison of
time-series displacement between the Spacetimeformer model and the SBAS method from
5 August 2023 to 4 October 2023, as well as the residual map between the two methods,
is shown in Figure 11. It was observed that the deformation map predicted by the model
was essentially consistent with the deformation map monitored through the SBAS method
during the same period. Although local high residuals were present in the time-series
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difference map, the overall prediction deviation remained within 20 mm, demonstrating the
model’s effective predictive performance. To further illustrate the predictive performance
of the Spacetimeformer model, Figure 12a presents a histogram comparing the monitored
cumulative deformation with the predicted cumulative deformation, for 4 October 2023.
There was no discernible difference between the cumulative deformation maps derived via
the Spacetimeformer model and the SBAS method. The average values of the monitored
and predicted deformation maps were −6 mm and −5 mm, respectively, with standard
deviations of 45 mm and 42 mm, respectively. Figure 12b shows the point density distribu-
tion of the two results. The density distribution of predicted deformation was consistent
with that of the Sentinel-1A data results, and the fitting result R2 was 0.95, confirming the
validity of the predicted results.
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(d) Point D.
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To further analyze the spatiotemporal variation trends of deformation in RTS areas,
eight representative points were selected to display the predicted time-series results and
analyze the deformation characteristics of the RTSs. Figures 13 and 14 show the deforma-
tion prediction results of different deformation patterns based on the Spacetimeformer
model. The blue curve represents the historical observed values of the data sample points,
the gray curve indicates the actual label values of future trends for the sample points,
and the red curve depicts the predictions of the Spacetimeformer network model. The
prediction results follow the trend of historical permafrost deformation data. The compari-
son between predicted values and actual label values shows a high degree of alignment,
demonstrating the effectiveness of the proposed method for predicting the deformation
of RTSs. It is noteworthy that this model demonstrated better performance in predicting
seasonal deformation patterns compared with long-term uplift and subsidence. When
training, validating, and testing the Spacetimeformer model on eight different category
datasets (A~H) corresponding to various data points, multiple evaluation metrics were
employed, including RMS, MAE, MAPE, and SMAPE. Table 3 shows how these metrics
comprehensively reflect the model’s performance across different category datasets, in-
dicating a high level of prediction accuracy. Notably, the category containing data point
D achieved the best results in the test dataset, with an RMSE of 1.249 mm and a MAE of
0.898 mm, demonstrating the model’s exceptional predictive capability in this category.
The error metrics for the deformation trend predictions of the Spacetimeformer network
model all met the requirements for deformation prediction, further demonstrating the
method’s reliability from the perspective of real data experiments.
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Figure 11. The comparison of time-series displacement between the Spacetimeformer model and the
SBAS method, as well as the residual map between the two methods, from 5 August 2023 to 4 October
2023. The first column displays the time-series deformation maps predicted with the model, the
second column shows the time-series deformation map derived through the SBAS method, and the
third column presents the difference maps of the time-series deformation between the two methods.
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cumulative deformation; (b) density distribution map of two results.
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5. Discussion
5.1. Discussion of Spacetimeformer Method in InSAR Time Series Deformation Prediction

InSAR deformation prediction is a time-series forecasting problem in the field of ma-
chine learning. Time-series forecasting typically relies on sequence-to-sequence methods,
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where past variable values within a k-step time range are used to predict future target
values for h steps. Time-series forecasting plays a crucial role in areas like weather fore-
casting, traffic condition prediction, and financial forecasting. Predicting the deformation
of RTSs using InSAR is a research-worthy domain. The vast historical deformation data
and other time-series data can be utilized to predict future landslide deformation trends,
providing quantitative assessment data for permafrost degradation in cold regions. With
the advancement of artificial intelligence and deep learning, LSTM and transformer models
have shown promising performance in InSAR deformation prediction. However, LSTM
processes inputs sequentially as vectors, and its recursive structure limits capture long-
term correlations in sequences. In contrast, the transformer model, with matrix inputs,
eliminates the need for sequential input, allowing parallel processing of each token in
the series. Hence, transformers have increasingly been applied in time-series forecasting
tasks. Essentially, a transformer comprises a series of encoder and decoder layers with
matrix inputs. Encoders use attention mechanisms to understand correlations between
tokens, while decoders generate task-specific predictions using information from encoders.
Current time-series prediction models still focus on point-by-point prediction, which is
time-consuming and overlooks spatial correlations.

Traditional LSTM models and the latest transformer models mainly focus on the
temporal correlations in InSAR deformation, neglecting the spatial relationships between
InSAR deformation points. Yet, there often exist complex dynamic relationships between
InSAR deformation points, such as similar influencing factors and deformation patterns in
certain areas. Research on RTS InSAR deformation prediction considering spatiotemporal
relationships is relatively scarce. In the Spacetimeformer model presented in this paper,
direct connection paths exist between each token when data are processed through the
attention layer, enabling the model to capture both temporal and spatial information simul-
taneously. This mechanism allows the Spacetimeformer to capture correlations between
different variables at different time steps. The model enhances prediction accuracy by
incorporating relative position information through positional embeddings and capturing
periodic and aperiodic features of time with Time2Vec. The output of Time2Vec, combined
with InSAR deformation data, is mapped onto the model through a forward propagation
layer, forming the standard input sequence for the time-series prediction model. Addition-
ally, the model differentiates deformation data at different time points through variable
embeddings, flattening variable indicators along the time dimension and mapping them to
the same dimension. Finally, variable values, time embeddings, and variable embeddings
are combined to create the input sequence for the encoder, ensuring each token contains
time, deformation, and other relevant information. The attention mechanism allows the
model to accurately interpret temporal and spatial information embedded in the sequence,
considering the mutual influence between different deformation measurement points. The
Spacetimeformer model with spatiotemporal mechanisms used for InSAR deformation
prediction in this paper captured relationships between different deformation measurement
points at different times and enhanced predictive performance.

Currently, InSAR-based permafrost landslide deformation prediction is mostly based
on time-series prediction at single measurement points. Due to limited computational
capabilities of hardware devices, input data for a single training session should not be too
large, necessitating preprocessing and time-series decomposition analysis of the training
data. Thus, the method proposed in this paper is not suitable for large-scale InSAR defor-
mation prediction. Future considerations could include predicting time-series deformation
maps, where the input to the neural network is a time-series deformation map rather than
single-point time-series deformation data. Although the Spacetimeformer network model
has achieved good results in predicting deformation of retrogressive thaw slumps, there are
still many unresolved issues in InSAR deformation prediction. For example, the prediction
time span depends on the time span of the training data and cannot meet the need for
short-term predictions beyond the InSAR time resolution. With the accumulation of more
Sentinel-1 data in the future, it may be possible to predict long-term deformation using In-
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SAR deformation data. Additionally, the method proposed in this paper inputs only InSAR
deformation data; considering other factors influencing thaw slumps as supplementary
input data is an area for improvement.

5.2. Comparing the Predictive Performance of the Spacetimeformer Model with Other Methods

To evaluate the accuracy of the time-series deformation prediction proposed in this
study, the LSTM, transformer, and Spacetimeformer methods were used to predict the
displacement of points A to D in Figure 9, with a prediction window of six, significantly
shorter than the signal period (1 year). The utilized LSTM model consisted of three LSTM
layers, each with 256 hidden units, and employed sigmoid and tanh activation functions.
The employed transformer model comprised three encoder layers and three decoder layers.
It featured a model size of 512 dimensions and used the ReLU activation function, an eight-
head multi-head attention mechanism, and a 2048-dimensional feed-forward network.
Figure 15 shows the predicted results of different models. In all graphs, the gray line
represents actual values, the red line represents the Spacetimeformer model, the orange
line represents the transformer model, and the carmine line represents the LSTM model.
Additionally, the errors between the predicted deformation and the actual deformation of
all models were assessed using RMSE, MAE, MAPE, and SAMPE metrics, as detailed in
Table 4, offering a comprehensive evaluation of the deformation prediction performance
across different models.
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Table 4. Comparison of accuracy evaluation indexes of different models.

Point Index Evaluation Index LSTM Transformer Spacetimeformer

Point A

RMSE (mm) 5.012 7.036 1.358
MAE (mm) 4.809 6.525 1.865
MAPE (%) 7.165 9.668 0.754

SMAPE (%) 7.450 10.234 1.844

Point B

RMSE (mm) 0.589 2.899 2.262
MAE (mm) 0.379 2.870 1.654
MAPE (%) 1.603 12.276 2.192

SMAPE (%) 1.634 13.098 0.452

Point C

RMSE (mm) 1.820 1.481 1.639
MAE (mm) 1.645 1.226 1.200
MAPE (%) 4.353 3.291 0.906

SMAPE (%) 4.312 3.343 0.356

Point D

RMSE (mm) 3.097 2.360 1.249
MAE (mm) 2.753 1.620 0.898
MAPE (%) 6.527 4.259 0.408

SMAPE (%) 6.273 4.070 0.223
Bold value indicates the minimum value of accuracy evaluation indexes of the models.

It was evident that the Spacetimeformer model provided predictions closest to the ac-
tual InSAR deformation, and for the deformation prediction performance for all points, the
Spacetimeformer model maintained robustness, as observed in Figure 15, with its predicted
deformation closely matching the actual values. However, the predictive performance
of the transformer model at point B was inferior to that of the traditional LSTM model.
The transformer model primarily processes sequential information, utilizing a multi-head
attention mechanism to capture long-distance dependencies within the sequence, and
incorporates position encoding to inject positional information into the sequence. The
Spacetimeformer model merges the characteristics of traditional transformer networks
with innovative features such as spatiotemporal blocks and a novel self-attention mech-
anism. This allows it to model time series and spatial grids, capturing spatial proximity
and temporal dependencies, thereby offering more precise predictions. Additionally, the
Spacetimeformer model adopts the concept of spatiotemporal windows, enabling it to learn
patterns at varying temporal and spatial granularities. Through integrating multi-scale
attention mechanisms, it can effectively learn features on both global and local scales,
adapting to various scale time-series prediction challenges.

Furthermore, the RMSE, MAE, MAPE, and RMSE metrics in Table 4 show that the
Spacetimeformer model outperformed the other two methods in predicting all points.
Table 4 shows that the Spacetimeformer model predicted future short-term InSAR time-
series deformation with the smallest error, followed by the LSTM model, with the trans-
former model having the largest error. Most of the Spacetimeformer model’s predictions
were close to the actual values, despite errors in the real data, which can be interpreted as
natural fluctuations. The predictive performance of the transformer model was better than
that of LSTM model at point C, but the transformer model had obvious deviations at some
time points, indicating a poor smoothing process and reaffirming the effectiveness of the
Spacetimeformer model with time and space concepts in InSAR deformation prediction
tasks. Overall, the Spacetimeformer model continuously captured important trend changes
in InSAR deformation prediction and provided relatively stable prediction results.

5.3. Combining InSAR Deformation RTSs for Detailed Explanation

Due to the high average altitude of the research area (above 4000 m), using only
descending-track Sentinel-1 data to obtain deformation rates may not accurately capture
all the dynamic changes of the Chumar River’s RTSs. Foreshortening effects may occur on
steep slopes, leading to underestimations of the slopes’ deformation rates. An improvement
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could be to combine ascending-track data or use higher-resolution radar images to enhance
the accuracy of RTS identification. In this study, to enhance the identification accuracy
and reliability of RTSs, the threshold value of LOS deformation rate was set to 15 mm and
was used as an auxiliary index of RTS area recognition. This threshold helped delineate
potential thawing landslide areas. Further, time-series deformation data were used to filter
out deformations unrelated to freeze–thaw degradation. Finally, multi-temporal Sentinel-2
optical remote sensing images were primarily utilized to map out the RTS areas.

The study area is located in the permafrost region of the QTP and experiences con-
sistent permafrost conditions if the ice-rich upper layer does not thaw. The active layer
undergoes precise, repetitive annual freeze–thaw cycles. In winter, soil moisture in the
pores of the active layer freezes, causing the ground to rise; in summer, the pore ice melts
into water, leading to ground subsidence. Therefore, their deformation patterns are char-
acterized by periodic, seasonal subsidence and uplift. Typical RTSs are caused by the
melting of ground ice on sloping terrain, resulting in irreversible subsidence due to the
thawing of ice-rich permafrost. Initially, RTSs exhibit a stable deformation trend due to
undisturbed vegetation cover on the surface. RTSs begin in summer with the melting of
exposed ground ice at the headwall [60]. In the deformation sequence results, the headwall
showed a pronounced melting trend. However, RTSs stabilized in autumn, as lower temper-
atures inhibited ice melting. After the onset of thaw slumping, the expansion of disturbed
permafrost and the loss of protective vegetation increased the heat flux underground,
accelerating permafrost thaw [61]. Additionally, the topographic depressions formed by
RTSs led to winter snow accumulation, preventing soil heat from escaping into the cold
atmosphere. In spring, snowmelt increased pore water pressure, further reducing slope
stability. Thus, the deformation results of the RTSs represent a long-term linear subsidence
trend and an increase in seasonal amplitude [7]. As shown in Figure 14, the deformation
predicted using the Spacetimeformer model accurately forecasted the periodic deformation
patterns of permafrost and the degradation trends of RTSs, providing quantitative data for
studying the changing deformation trends of RTSs and permafrost degradation.

6. Conclusions

In this study, the Chumar River Basin was selected as the test area. A displacement
prediction method for InSAR time series based on the Spacetimeformer is proposed; the
study highlights the outstanding performance of the Spacetimeformer model in short-term
deformation prediction for degradative thaw slumps. The method shows great potential
for application in deformation prediction in areas of RTSs. Based on the research results,
the following conclusions are drawn:

For the degradative melting slumps in the permafrost regions, three types of products
were derived: ground LOS velocity maps, periodic amplitude maps, and melting slump
distribution maps. The SBAS results of Sentinel-1 remote sensing images from 2018 to
2023 showed that in most areas, the range of LOS velocity change was −10 mm/year
to 10 mm/year, and the seasonal displacement range was −60 mm to 10 mm. Through
combining the deformation results derived from InSAR and optical images from Sentinel-
2, we identified 72 degradative melting slump areas in the study area. Compared with
normal permafrost degradation, the displacement speed of the degradative melting slump
permafrost zones was faster (−35 to 20 mm/year). Compared with 2019, the area of RTSs
increased by 3.98 km2 in 2023, and the number of such slumps rose by 19.

The network based on Spacetimeformer can accurately simulate the seasonal de-
formation signals of degradative melting slumps and predict the degradation trend of
permafrost. This displacement prediction method was shown to have high accuracy, with
RMSE, MAE, MAPE and SMAPE of 1.249 mm, 0.898 mm, 0.408 and 0.223, respectively, for
displacement points predicted three months later. The prediction error of the predicted
time series deformation map compared with the InSAR-inverted time-series deformation
map was within 20 mm. Additionally, the density distribution of the predicted deformation
aligned consistently with that derived from Sentinel-1A data results, achieving a fitting
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result R2 of 0.95. Compared with other deep learning methods, the Spacetimeformer model
with its spatiotemporal concept demonstrated better deformation prediction performance
than the transformer and LSTM models. The Spacetimeformer model can continuously
capture important trend changes in deformation prediction and provide relatively stable
prediction results.

In the future, more Sentinel-1 SAR data will be incorporated into the Spacetimeformer
network, and factors influencing degradative melting slumps such as air temperature
data and precipitation data will also be considered for inclusion in the Spacetimeformer
model to improve prediction accuracy. In addition, the fusion of InSAR data with other
high-temporal-resolution data for predicting RTS deformation is also a valuable direction.
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