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Abstract: The lakes of Jianghan Plain, as an important component of the water bodies in the middle
and lower reaches of the Yangtze River plain, have made significant contributions to maintaining
the ecological health and promoting the sustainable development of the Jianghan Plain. However,
there is a relatively limited understanding regarding the trends of lake area change for different types
of lakes and their dominant factors over the past three decades in the Jianghan Plain. Based on the
Google Earth Engine (GEE) platform, combined with the water body index method, the changes
in area of three different types of lakes (area > 1 km2) in the Jianghan Lake Group from 1990 to
2020 were extracted and analyzed. Additionally, the Partial least squares structural equation model
(PLS-SEM) was utilized to analyze the driving factors affecting the changes in water body area of
these lakes. The results show that from 1990 to 2020, the area of the lakes of the wet season and level
season exhibited a decreasing trend, decreasing by 893.1 km2 and 77.9 km2, respectively. However,
the area of dry season lakes increased by 59.27 km2. The areas of all three types of lakes reached their
minimum values in 2006. According to the PLS-SEM results, the continuous changes in the lakes’
area are mainly controlled by environmental factors overall. Furthermore, human factors mainly
influence the mutation of the lakes’ area. This study achieved precise extraction of water body areas
and accurate analysis of driving factors, providing a basis for a comprehensive understanding of the
dynamic changes in the lakes of Jianghan Plain, which is beneficial for the rational utilization and
protection of water resources.

Keywords: Jianghan Plain; Google Earth Engine; water body aera extraction; PLS-SEM; driving
force analysis

1. Introduction

Water resources play a crucial role in human life and in promoting social, economic,
and ecological sustainable development [1]. Lakes, rivers, and other surface water bod-
ies, as important components of water resources, provide a range of ecological services
such as climate regulation and material cycling [2,3]. In recent decades, China has expe-
rienced rapid urbanization. Due to climate change and human activities, surface water
bodies have undergone significant alterations, thereby affecting surface temperature, soil
moisture, biodiversity, ecosystem functions, and the socioeconomic development of hu-
man society [4–7]. Therefore, conducting dynamic monitoring of surface water bodies
is of paramount importance for maintaining ecosystem health and fostering sustainable
socioeconomic development.

Remote sensing imagery plays a vital role in monitoring the spatiotemporal changes
of surface water bodies. For instance, Moderate Resolution Imaging Spectroradiometer
(MODIS) [8–12], Land Remote Sensing Satellite (Landsat) [13–16], and Sentinel imagery [17–19]
have played significant roles in this context. However, in the processing of long time series
remote sensing imagery, the large volume of data and high computational complexity make
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it difficult to handle a large number of remote sensing images, thus making it challenging
to achieve spatiotemporal monitoring of water bodies over a long time series [20]. In recent
years, with the establishment and development of Google Earth Engine (GEE), its powerful
cloud computing and massive multi-source data have greatly propelled the development
of large-scale and long-term spatial research [21–24]. The GEE cloud platform can be used
to access remote sensing images from databases, reducing the need for a large number
of images. Recently, many scholars have successfully extracted a large amount of surface
water using the GEE platform [25–28]. During the threshold iteration process of the water
index method, it is possible to simultaneously observe the effectiveness of water extraction
images and validate the accuracy of results. In theory, the GEE platform can be utilized to
explore the optimal water extraction methods for any image area, significantly improving
efficiency. Furthermore, the vast remote sensing data available on the GEE platform can be
used to analyze the driving forces behind changes in water area within a watershed [28].

The water index method is widely applied in the extraction of surface water bodies [29–32].
Common water indices include the normalized difference water index (NDWI) [33], modi-
fied normalized difference water index (MNDWI) [34], automated water extraction index
(AWEI) [35], and others. But it is challenging to distinguish water bodies from non-water
bodies using a single threshold due to the spatiotemporal heterogeneity of water spectral
characteristics [29]. Another commonly used method involves developing classification
models using a series of predictor variables, including original spectral bands and water
indices, to extract water bodies. Common classification models include support vector
machines (SVMs), maximum likelihood (ML), random forest (RF), and others [36–39]. How-
ever, for these classification models, the accuracy is influenced by the training samples,
predictor variables, and model parameters. Additionally, these classification models also
require more time for generating classification results. However, for large-scale mapping
of open-surface water bodies by using GEE, there is a need to develop a simple and high-
precision extraction method for water. Recently, Zou et al. [26] established water detection
rules for long-term open-surface water bodies over the United States, by using the Modified
Normalized Difference Water Index (MNDWI), a Normalized Difference Vegetation Index
(NDVI) [40], and an Enhanced Vegetation Index (EVI) [41]. If pixels meet the following
criteria: EVI < 0.1 and (MNDWI > NDVI or MNDWI > EVI), they are classified as water
bodies [26]. In contrast to classification models that require a large number of training
samples and computational resources, this method achieves water body extraction by
combining water body indices. It has the advantages of low data requirements and ease of
implementation [26]. Zhou et al. [42] used Zou’s water detection rules on the GEE platform.
They applied them to monitor lake dynamics in the Mongolian Plateau. These rules ensure
high precision and rapid efficiency [42]. Therefore, it is suitable for large-scale applications
in GEE.

Compare structural equation modeling (SEM) to traditional multivariate statistical
methods such as multiple regression, principal component analysis, and cluster analysis.
Use SEM to simultaneously study the correlations between structures composed of numer-
ous variables, and it can clearly demonstrate the strength of each association [43]. Partial
Least Squares Structural Equation Modeling (PLS-SEM), as one of the SEM models, relaxes
assumptions about data normality and does not impose constraints on the number of
observed variables [44]. And traditional statistical techniques may not effectively analyze
these latent variables. However, SEM can efficiently analyze both these latent variables and
their indicators [45]. The main advantages of PLS-SEM include its ability to simultaneously
handle multiple sets of dependent variables, accommodate measurement errors in both in-
dependent and dependent variables, estimate the structure of factors and their relationships,
provide greater flexibility to measurement models, and estimate the overall model [46].
Currently, PLS-SEM has garnered increasing attention in other fields and is widely applied
in areas such as geography, economics, and natural environment studies [47–50].

So far, despite the increased attention of many researchers on the changes in water
bodies in the middle and lower reaches of the Yangtze River, they have conducted in-
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depth studies on the changes in water bodies in the Yangtze River basin. These studies
have revealed the impact of factors such as climate change and human activities on water
body changes, providing important scientific evidence for water resource management
and ecological conservation [51–54]. Chang et al. [50] analyzed the spatial patterns of
water bodies in the Jianghan Plain from 2000 to 2020. Their findings indicated a trend of
fragmentation, reduced shape complexity, and diminished connectivity in water bodies.
These changes were primarily driven by human activity. Wei et al. [52] quantitatively
analyzed the area changes of Hong Lake and Chang Lake from 2000 to 2018. They found
that Hong Lake fluctuated due to groundwater and human factors, while Chang Lake
remained stable under water control measures. Feng et al. [53] analyzed the spatiotemporal
evolution of lakes and their relationship with human activities from 1984 to 2014. The results
indicated that the return of farmland to lakes had a positive impact on lake conservation
and restoration, while rapid agricultural development led to excessive exploitation of lake
resources. Song et al. [54] used XGBoost and ICESat-2 imagery to analyze changes in water
levels and storage volumes of Chinese lakes. The results indicate that the Jianghan Plain
region contributes significantly to variations in lake storage volume in China, primarily
due to the changes in lake water levels in that area. However, there is a relatively limited
amount of long-term time series research on the dynamic changes of lakes area in the
Jianghan Plain. Additionally, further research is needed to investigate the effects of different
influencing factors on the dynamic changes of a lakes’ area during different periods in the
Jianghan Plain.

Therefore, our specific research objectives are (1) to extract and analyze the annual
trends of the lakes’ area and their dynamic changes during different periods. (2) To
investigate the relationship between changes in lake water area during different periods and
climates, as well as climate factors, utilizing meteorological data and statistical yearbook
data. (3) Use the PLS-SEM model to identify the primary influencing factors of lake
water area changes during different periods in the Jianghan Plain. The innovation of this
study lies in conducting a long-term time-series analysis of the changes in lake water area
and their driving factors during different periods in the Jianghan Plain, by integrating
GEE and PLS-SEM. Additionally, at the watershed scale, this study identifies the primary
drivers of changes in the lakes’ area during the wet periods, level periods, and dry periods.
This study contributes to a better understanding of the dynamic changes in lakes during
different periods in the Jianghan Plain. It aids in maintaining regional ecological balance
and improving the rational utilization and management of water resources.

2. Materials and Methods
2.1. Study Area and Experimental Design

The Jianghan Plain, located in the central-southern part of Hubei province, is formed
by the alluvial deposits of the Yangtze River and the Han River. The Jianghan Plain has a
subtropical monsoon climate, with an annual average temperature ranging from 15.9 to
16.5 degrees Celsius. The annual average precipitation falls between 1100 and 1400 mm,
with the majority occurring during the summer months. Considering the completeness of
administrative divisions, the Jianghan Plain is defined as all areas within the administrative
units of districts where the elevation is below 50 m. It extends between the east longitudes
of 111◦14′24′′ to 116◦7′52′′ and the north latitudes of 29◦25′59′′ to 31◦27′52′′ (Figure 1).
However, the Jianghan Lake Group is located within the geographical boundaries of the
Jianghan Plain.
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Figure 1. The location map of the study area.

2.2. Data Source and Materials

All data were obtained along Jianghan Plain.
The data of the lakes were obtained through Google Earth Engine (GEE) from Landsat

satellites. The vector boundary of the study area from the Resource and Environment Data
Cloud Platform website (https://www.resdc.cn/DOI/DOI.aspx?DOIID=121, accessed
on 22 May 2024) was used to delineate the image. Based on this foundation, lake data
are obtained utilizing both the water body index method and the permanent water body
threshold [42]. Last, lake data with an area exceeding 1 square kilometer were obtained
through filtering and visual interpretation from images processed between 1990 and 2020.

As we all know, the dynamic changes of lakes are affected by natural ecological factors.
However, various factors influence the dynamic changes of lakes at different spatial scales.
To further explore the multi-scale significant correlations between the dynamic changes of
lakes and its influencing factors, the following factors were investigated.

First in the local scale of Jianghan Plain, we chose these natural factors to describe
changes in lake area because they are crucial indicators of water quantity and ecosystem
health. Actual evapotranspiration (AET) and runoff (RO) reflect water inflow and outflow.
Climate moisture deficit (DEF), Palmer Drought Severity Index (PDSI) [55], soil moisture,
and cumulative precipitation (pr) provide essential information on the climate and hydro-
logical cycle. Maximum temperature (TMMX), minimum temperature (TMMN), potential
evapotranspiration (PET), shortwave radiation (SRAD), and vapor pressure deficit (VPD)
indicate surrounding climate conditions. Monitoring and analyzing these factors help us
better understand the mechanisms behind changes in lake area.

Secondly, in the region scale, the dynamic changes of lakes are also affected by re-
gional atmospheric circulation. We selected these factors to explain changes in lake area
because they are significant indicators of regional climate variability. The Indian Summer
Monsoon Index (ISM) [56], Western North Pacific Monsoon Index (WNP) [56], and East
Asian Summer Monsoon Index (EASM) [57] are crucial for understanding the intensity and
distribution of monsoon rainfall, which directly affects the water input to lakes in these
regions. Additionally, the North Atlantic Oscillation (NAO) [58] and Atlantic Multidecadal
Oscillation (AMO) [59] influence atmospheric circulation patterns and sea surface tempera-
tures, impacting precipitation patterns and drought conditions, which in turn affect lake

https://www.resdc.cn/DOI/DOI.aspx?DOIID=121
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levels and areas. By considering these indices, we gain insights into the broader climatic
drivers influencing lake dynamics.

Apart from natural ecological factors, the dynamic changes of lakes are affected by
human activities. The increase in Gross Domestic Product (GDP) reflects economic develop-
ment, often leading to urbanization and industrialization, which could result in increased
land development and pollution around lakes, thus reducing their surface area. Addi-
tionally, population growth (POP) typically accompanies urban expansion and increased
land use pressure, potentially leading to the development of residential or industrial areas
around lakes, thus decreasing their size. Expansion of cropland (CROP) around lakes may
trigger agricultural activities, including the use of fertilizers and pesticides, leading to
soil erosion and water pollution, impacting lake ecosystems and reducing their surface
area. Factors such as nighttime lights (LIGHTS) [60], normalized difference vegetation
index (NDVI) [40], and normalized difference built-up index (NDBI) [61] usually reflect
land use and coverage. High nighttime lights and a high built-up index may indicate
increased urbanization and land development, while a high vegetation index may indicate
higher natural coverage. These factors collectively affect land use around lakes and water
quality, ultimately influencing changes in lake surface area. Therefore, we have selected the
aforementioned factors as climate influences (Table 1).

Table 1. Introduction of driving factors data (accessed on 22 May 2024).

Factor Type Driving Factor Resolution Data Sources Date

Human factor Gross domestic product (GDP) https://data.cnki.net/yearbook 1990–2020
Human factor Population (POP) https://data.cnki.net/yearbook 1990–2020
Human factor Crop area (CROP) https://data.cnki.net/yearbook 1990–2020
Human factor Night light index (LIGHTS) 1000 m https://poles.tpdc.ac.cn/ 1990–2020

Human factor Normalized difference
vegetation index (NDVI) 30 m https://landsat.gsfc.nasa.gov/ 1990–2020

Human factor Normalized difference
Built-up index (NDBI) 30 m https://landsat.gsfc.nasa.gov/ 1990–2020

Climatic factor Actual evapotranspiration (AET) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Climate water deficit (DEF) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Drought severity index (PDSI) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Maximum temperature (TMMX) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Minimum temperature (TMMN) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Cumulative precipitation (PR) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Reference evapotranspiration (PET) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Climatic factor Vapor pressure deficit (VPD) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Hydrologic factor Runoff (RO) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Hydrologic factor Soil moisture content (SOIL) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/
TERRACLIMATE 1990–2020

Hydrologic factor Downward surface
shortwave radiation (SRAD) 4638.3 m Earth Engine’s public data/IDAHO_EPSCOR/

TERRACLIMATE 1990–2020

Remote factor Indian Summer
Monsoon Index (ISM)

http://apdrc.soest.hawaii.edu/projects/monsoon/
seasonal-monidx.html; 1990–2020

Remote factor Western North Pacific
Monsoon Index (WNP)

http://apdrc.soest.hawaii.edu/projects/monsoon/
seasonal-monidx.html; 1990–2020

Remote factor East Asian summer
monsoon Index (EASM) http://ljp.gcess.cn/dct/page/1 1990–2020

Remote factor North Atlantic oscillation (NAO) https://psl.noaa.gov/data/correlation/nao.data 1990–2020

Remote factor Atlantic Multidecadal
Oscillation (AMO) https://psl.noaa.gov/data/correlation/amon.us.data 1990–2020

https://data.cnki.net/yearbook
https://data.cnki.net/yearbook
https://data.cnki.net/yearbook
https://poles.tpdc.ac.cn/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html
http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html
http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html
http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html
http://ljp.gcess.cn/dct/page/1
https://psl.noaa.gov/data/correlation/nao.data
https://psl.noaa.gov/data/correlation/amon.us.data
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2.3. The Extraction of Lakes

For water body extraction, we utilize the ee.ImageCollection function to retrieve
data from the GEE database, specifically the USGS Landsat 5 Collection 1 Tier 1 Surface
Reflectance (LANDSAT/LT05/C01/T1_SR), the USGS Landsat 7 Collection 1 Tier 1 Surface
Reflectance (LANDSAT/LE07/C01/T1_SR), and the USGS Landsat 8 Collection 1 Tier
1 Surface Reflectance (LANDSAT/LC08/C01/T1_SR) datasets. Subsequently, perform
cloud and shadow removal operations.

The calculation of the Modified Normalized Water Difference Index (MNWDI) [34],
Normalized Difference Vegetation Index (NDVI) [40], and Enhanced Vegetation Index
(EVI) [41] is performed on the GEE platform using normalized difference functions. If
pixels meet the following criteria, EVI < 0.1 and (MNDWI > NDVI or MNDWI > EVI), they
are classified as water bodies [26]. The calculation formulas are as follows:

MNDWI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(1)

NDVI =
ρNIR − ρred
ρNIR + ρred

(2)

EVI = 2.5
ρNIR − ρred

ρNIR + 6ρred − 7.5ρblue + 1
(3)

In the equation, ρred , ρgreen , ρblue, ρNIR , ρSWIR1 respectively, represent the reflectance of
red, green, blue, near-infrared, and Shortwave Infrared 1 wavelengths.

According to the water body identification rules mentioned above, we set the pixel
values of water bodies to 1 and the pixel values of non-water bodies to 0. Different types of
water bodies are extracted based on the frequency of water presence, which represents the
frequency of pixel values being water during the 12 months of the year. Water frequency
was calculated by using Equation (4):

F(y) =
1

Ny

Ny

∑
i=1

wy,j × 100% (4)

where F is the water frequency of the pixel, y is the specified year, Ny is the number
of total Landsat observations of the pixel in that year, and wy,j denotes whether one
observation of the pixel is water, with one indicating water and zero indicating non-water.
The definition of water frequency is as follows: a frequency of 0.75 represents dry season
water, indicating that the pixel is water in 9 months of the year. A frequency of 0.5 represents
level season water, indicating that the pixel is water in 6 months of the year. A frequency
of 0.25 represents wet season water, indicating that the pixel is water in 3 months of the
year [62]. Present the extraction results using the Map.addLayer function. Utilize the
Export.image.to Drive function to export and download the final water body extraction
raster image.

We converted the obtained raster images into vector format, and then filtered out
water bodies with areas smaller than 1 square kilometer. Subsequently, we referenced
actual images to remove any remaining rivers, thereby obtaining a distribution map of
lakes with areas greater than 1 square kilometer.

Next, accuracy evaluation was conducted. Using Google Earth’s ground data as a
reference, a total of 2000 sample points were randomly selected for visual interpretation
in the Jianghan Plain area, including 1000 water body samples and 1000 non-water body
samples. A confusion matrix was generated based on Producer’s Accuracy (PA), User’s
Accuracy (UA), Overall Accuracy (OA), and Kappa coefficient (KC) to evaluate the accuracy
of water bodies in the Jianghan Plain. PA represents the consistency between the referenced
data and classified pixels, while UA is an evaluation index of the degree of conformity
between classified pixels and referenced data. OA is the percentage of correctly classified
pixels out of the total classified pixels, serving as an indicator of the overall performance of



Remote Sens. 2024, 16, 1892 7 of 19

the water body identification algorithm. The formulas for the confusion matrix calculations
are as follows:

PA =
Sij

Si
× 100% (5)

UA =
Sij

Sj
× 100% (6)

OA =
S
N

× 100% (7)

KC = NS −
r

∑
i=1

SiSj

N2 −
r

∑
i=1

SiSj (8)

where S represents the total sum of correctly classified pixels, N is the total sum of validation
pixels, r is the number of rows, Sij is the observed value at the i-th row and the j-th column,
Si is the marginal total of the i-th row, and Sj is the marginal total of the j-th column.

2.4. Method of Obtaining the Driving Factor

Regarding the extraction of driving factors, the process is divided into two aspects.
One type involves gathering data from remote sensing images. In this study, a series of
climate factors’ annual mean values from 1990 to 2020 in the region were extracted, by
using the ee.reducer.mean and ee.reducer.sum functions on GEE platform. These serve
as driving factors for lake area changes. The other type involves data that can be directly
downloaded. After downloading, the data are synthesized by year to obtain the respective
datasets. Next, MATLAB was used to analyze the trend of these data changes. Additionally,
the data sources for extracting each driving factor are as shown in Table 1.

2.5. Mann–Kendall Trend Test and Mutability Test

The Mann–Kendall trend test is a non-parametric statistical test used to analyze the
trend of data sequences over time. Water and meteorological data are typically random and
non-normally distributed. However, this method does not require data to follow a specific
distribution, making it widely applicable. Hence, it is widely used to test trends in hydro-
meteorological variables [63,64]. Therefore, Mann–Kendall trend tests and mutation tests can
be computed for the driving factor data trends, by using MTALABR2023a-based programs.

2.6. Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT), recognized as a powerful signal processing
tool, finds application in time-series analysis across fields such as meteorology, geography,
and hydrology studies [65–67]. It provides a way to analyze signals at different scales and
at different positions in time, which makes it particularly useful for studying signals with
varying frequency content over time. The continuous wavelet transform is an effective
method to decompose a signal vector ( f (t)) by finite basis wavelet function (ψ(t)) with a
scale (a) and a shift (τ) into wavelet coefficients (W f ), as described in Equation (9):

W f (a, τ) =
1√
a

∫ +∞

−∞
f (t)ψ(

t − τ

a
)dt; (9)

The continuous wavelet transform allows for the identification of localized changes
or patterns in the lakes’ area changes. And it is also beneficial for constructing structural
equation models to analyze the driving factors. The continuous wavelet transform applied
in this study was computed by MATLAB-based programs.

2.7. Pearson Correlation Analysis and PLE-SEM

Pearson correlation analysis entails quantifying the degree of association among two or
more variables [68]. The Pearson correlation coefficient, bound between −1 and 1, serves
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as a measure of this association. The computational formula for the Pearson correlation
coefficient is presented in Equation (10):

Rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(10)

where xi and yi (i = 1,2. . ... n) are the sample value, and x and y represent the mean of
two samples, respectively.

Using Rstudio 4.2.3, we analyze the correlation between changes in water area and
driving factors. We incorporate the trends obtained from Mann–Kendall trend tests and
mutation tests for driving factors to select appropriate ones and construct a structural
equation model [69]. Partial Least Squares Structural Equation Modeling (PLS-SEM) can be
used to examine the contribution of each individual observed variable to latent variables
and how these individual observed indicators are interrelated [70]. In this study, there
are the following two hypotheses. (1) Climate elements, remote sensing-related elements,
and hydrologic elements directly affect the lakes’ area. (2) Climate elements and remote
sensing-related elements indirectly affect the lakes’ area by influencing hydrologic elements,
thereby constructing a structural equation model. In this model, there are four latent
variables: climate elements, human elements, hydrologic elements, and remote sensing-
related elements. Climate elements consist of observed variables such as PDSI, TMMX,
TMMN, PR, PET, and VPD. Human elements consist of observed variables such as GDP,
LIGHTS, and NDVI. Hydrologic elements consist of observed variables such as RO, Soil,
and SRAD. Remote sensing-related elements consist of the observed variable EASM. By
using PLS-SEM, the relationships between the different seasonal lake area and various
influencing factors were explored. The results were analyzed and presented using the
plspm package in RStudio.

2.8. Conceptual Framework and Procedures of the Study

Figure 2 shows the conceptual framework of this study.

Figure 2. A flowchart showing the study’s conceptual framework and procedures.
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The first step is water body extraction. Initially, Landsat images are preprocessed
using the Google Earth Engine (GEE) platform. Then, based on water extraction rules and
water frequency, three different types of water bodies are extracted. Subsequently, data
processing is conducted on the ArcMap platform to obtain lake area data.

The second step is obtaining driving factors. This involves processing Earth Engine’s
public data/IDAHO_EPSCOR/TERRACLIMATE, Landsat images, and statistical yearbook
data to organize and obtain the data related to driving factors.

The final step involves the analysis of driving factors. By combining coherence analysis and
continuous wavelet transform analysis results, a structural equation model is constructed
to quantitatively explain the impact of driving factors on changes in lake area.

3. Results
3.1. Evaluation of Water Body Extraction Accuracy

As shown in Table 2, by computing the confusion matrix, the overall accuracy of the
water body identification algorithm in the Jianghan Plain has reached 94.15%. Moreover,
with a Kappa coefficient of 0.86, exceeding 0.8, it indicates that the algorithm’s accuracy
in identifying water bodies in the Jianghan Plain is high when utilizing remote sensing
vegetation indices and water indices, allowing for batch extraction of Jianghan Plain water
bodies across different time series.

Table 2. Evaluation table of accuracy of water body information extraction results. Overall Accuracy
(OA), and Kappa coefficient (KC) to evaluate the accuracy of water bodies in the Jianghan Plain.

Samples
Google Earth

Total User’s Accuracy
Water Non-Water

Landsat
Water body 943 57 1000 94.30%

Non-water body 60 940 1000 94.00%
Total 1003 997 2000 Overall accuracy = 94.15%

Producer’s accuracy 94.02% 94.28% Kappa coefficient = 0.861

3.2. Characteristics of Changes in Area of the Lakes of Jianghan Plain

By using the aforementioned water body extraction algorithm and combining visual
interpretation, lakes with an area greater than 1 km2 in the Jianghan Plain area were
extracted annually from 1990 to 2020. These lakes were classified into the following categories
based on different water body frequencies: the wet seasonal lakes, the level seasonal lakes,
and the dry seasonal lakes. According to the extraction results, the lakes in the Jianghan Plain
exhibit the following characteristics in terms of area changes (Figures 3 and 4).

Figure 3. Changes in the lakes’ area from 1990 to 2020. The W-W is the area change trends of the wet
seasonal lakes. The L-W is the area change trends of the level seasonal lakes. The D-W is the area
change trends of the dry seasonal lakes.
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As shown in Figure 4, for the lake area of the wet seasonal lakes (W-W) and the level
seasonal lakes (L-W), the trend of lake area change shows an initial increase followed by a
decrease. However, for the lake area of the dry seasonal lakes (D-W), the trend of lake area
change shows an initial increase, followed by a decrease, then an increase again, and finally
another decrease.

Figure 4. The M–K mutation test of W-W (a), L-W (b), and D-W (c). UF stands for upward trend, UB
stands for downward trend, and the two red dashed lines represent the 95% confidence interval.

The largest lake area of the wet seasonal lakes (W-W) was 4244.765 km2 in 1993, and
the smallest was 2151.441 km2 in 2006. The total decrease in area from 1990 to 2020 was
893.1 km2, with a decrease rate of 28 km2/year. The largest lake area of the level seasonal
lakes (L-W) was 3504.553 km2 in 1993, and the smallest was 2140.046 km2 in 2006. The total
decrease in area from 1990 to 2020 was 77.9 km2, with a decrease rate of 2.5 km2/year. The
largest lake area of the dry seasonal lakes (D-W) was 3088.72 km2 in 1999, and the smallest
was 1833.67 km2 in 2006. The total increase in area from 1990 to 2020 was 59.27 km2, with
an increase rate of 1.9 km2/year.

3.3. The Pearson Correlation between Changes in Lake Area and Driving Factors

As shown in Figure 5, the areas of the three types of lakes are significantly negatively
correlated with factors such as TMMX, TMMN, PET, SRAD, and VPD, while they are
significantly positively correlated with the RO factor.

Figure 5. The Pearson correlation analysis results of all the factors.
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3.3.1. The Pearson Correlation between the Area of the Wet Seasonal Lake and the
Driving Factors

In terms of human factors, the area of the wet seasonal lake exhibits significant negative
correlations with GDP, LIGHTS, NDVI, and CROP, while showing positive correlations with
POP and NDBI. In terms of natural factors, the area of the largest lake shows significant
negative correlations with TMMX, TMMN, PET, SRAD, VPD, and AMO, while exhibiting
significant positive correlations with RO, PDSI, ISM, EASM, and NAO. Additionally, it
shows negative correlations with AET, DEF, and WNP, and positive correlations with SOIL,
PR, and NAO.

3.3.2. The Pearson Correlation between the Area of Level Seasonal Lakes and Driving Factors

In terms of human factors, the area of seasonal lakes exhibits a significant negative
correlation with LIGHTS and NDVI, a significant positive correlation with population
(POP), and a negative correlation with GDP, with a weaker correlation with CROP. In terms
of natural factors, the area of level seasonal lakes shows a significant negative correlation
with TMMX, TMMN, PET, SRAD, and VPD. It exhibits a significant positive correlation
with RO, PDSI, PR, and EASM. Additionally, it demonstrates a negative correlation with
AET, DEF, WNP, and AMO, and a positive correlation with SOIL, ISM, and NAO.

3.3.3. The Pearson Correlation between the Area of Dry Seasonal Lakes and Driving Factors

In terms of human factors, the area of dry seasonal lakes shows a positive correlation
with POP, CROP, and NDBI, while exhibiting negative correlations with LIGHTS and NDVI,
with GDP showing a weaker correlation. In terms of natural factors, the area of permanent
lakes shows a significant negative correlation with TMMX, TMMN, PET, SRAD, and VPD,
while showing significant positive correlations with PR, and NAO. It exhibits negative
correlations with AET, DEF, WNP, and AMO, and positive correlations with PDSI and soil
EASM. The correlation with ISM is not high.

Therefore, the following conclusions can be drawn. (1) In terms of different types
of influencing factors, human elements primarily affect the changes in the wet and level
seasonal lake areas, while the area changes of dry seasonal lakes are mainly governed by
natural factors. (2) In terms of spatial scale of influencing factors, at smaller scales, envi-
ronmental factors exert similar effects on the area changes of the three types of lakes, with
natural elements like RO and SRAD showing strong correlations. However, at larger spatial
scales, different environmental factors exhibit varying correlations with the three types
of lakes. The area changes of the wet seasonal lakes are strongly correlated with a wider
range of remote sensing indices, while the level seasonal lakes and the dry seasonal lakes
are strongly correlated with EASM and NAO, respectively.

3.4. Drivers of Water Body Area Based on PLS-SEM

Further integrating the results of the Continuous Wavelet Transform (CWT) (Figure 6),
during the period from 1995 to 2000, there was a strong fluctuation cycle of approximately
2 years in lake area changes, as indicated by the yellow region within the solid black line. It
is closely associated with human factors such as POP, NDVI, and NDBI, as well as climate
factors like AET, RO, and PDSI. They exhibit similar cyclic variations to the changes in
lake area. Combining correlation analysis, GDP, LIGHTS, and NDVI were selected as
latent variables for human factors, while RO, PDSI, SOIL, TMMX, TMMN, PR, PET, SRAD,
VPD, and EASM were chosen as latent variables for environmental factors to construct the
structural equation model, eliminating redundancy in the driving factors.

Through correlation analysis and mutation tests, to better explain changes in lake area,
the driving factors influencing lake area changes were divided into four latent variables:
human factors, climatic factors, remote sensing factors, and hydrologic factors. Based on
this, a structural equation model was constructed.

Through structural equation modeling (Figure 7), the path coefficients of each latent
variable on water area change are determined. The PLS-SEM model can display the
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contribution of each latent variable to water area change. As shown in Table 3, the path
coefficients of each observed variable to the latent variable can be observed.

Table 3. The path coefficients of observed variables.

Name Block W-W L-W D-W

GDP Human 0.323 0.276 0.154
LIGHTS Human 0.529 0.547 0.742

NDVI Human 0.221 0.254 0.159
EASM Remote 1.000 1.000 1.000
PDSI Climate −0.232 0.210 0.210

TMMX Climate 0.178 −0.172 −0.156
TMMN Climate 0.134 −0.124 −0.113

PR Climate −0.202 0.229 0.230
PET Climate 0.263 −0.273 −0.278
VPD Climate 0.258 −0.257 −0.270
SOIL Hydrologic 0.296 0.282 0.284
RO Hydrologic 0.453 0.465 0.454

SRAD Hydrologic −0.375 −0.376 −0.385

Figure 6. The continuous wavelet transform of all the factors. The black line represents the wavelet
boundary effect about the cone of influence. The vertical axis of the image represents the cycle of
change, while the horizontal axis represents the years. The color of a point on the graph indicates the
strength of the energy of the change cycle for that year. The closer the color is to red, the stronger the
energy of the cycle change, and vice versa.
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Figure 7. (a) The wet seasonal lake structural equation model. (b) The level seasonal lake structural
equation model. (c) The dry seasonal lake structural equation model (Orange lines indicate positive
path coefficients; light green lines indicate negative path coefficients). * indicates that p < 0.05, the
path is significant.

3.4.1. The Wet Seasonal Lake Structural Equation Model

The overall fit is 0.74, exceeding 0.7, indicating a good fit. During this period, the
influences of human, hydrologic, and climate factors on lake area change are negatively
correlated, while the remote factor is positively correlated. Additionally, the influence of the
remote factor is smaller than the other three factors. Climate is the most influential latent
variable. Within the climate latent variable, precipitation (PR) and the Palmer Drought
Severity Index (PDSI) have a positive correlation with climate change, while vapor pressure
deficit (VPD), potential evapotranspiration (PET), maximum temperature (TMMX), and
minimum temperature (TMMN) have a negative correlation. In the models of the remaining
latent variables, all observed variables have a positive correlation with their respective
latent variables, except for shortwave radiation (SRAD) in the hydrologic latent variable,
which has a negative correlation.

3.4.2. The Level Seasonal Lake Structural Equation Model

The overall fit of the model is 0.70, which is equal to or greater than 0.7, indicating a
good fit. During this period, the effects of hydrologic and climate factors on lake area change
are negatively correlated, while those of human and remote factors are positively correlated.
Climate is the most influential latent variable. Within the climate latent variable, vapor
pressure deficit (VPD), potential evapotranspiration (PET), maximum temperature (TMMX),
and minimum temperature (TMMN) show positive correlations, while precipitation (PR)
and the Palmer Drought Severity Index (PDSI) exhibit negative correlations with climate
change. The correlation of observed variables in the remaining latent variable models is
similar to that in the model of the wet seasonal lake.

3.4.3. The Dry Seasonal Lake Structural Equation Model

The overall fit is 0.65, greater than 0.6 but less than 0.7, indicating a relatively good fit.
During this period, the effects of human, hydrologic, and climate factors show negative
correlations with the change in lake area, while the remote factor exhibits a positive
correlation. Climate remains the most influential latent variable; however, the remote
factor’s influence, as indicated by the absolute values of path coefficients, has increased
and is second only to climate. Additionally, the correlations between observed variables in
each latent variable model are similar to those in the model for the wet seasonal lake.

From this, the following conclusions can be drawn. (1) The overall fit of the models
for the three different periods are 0.74, 0.70, and 0.65, respectively. Generally, the models
exhibit a good fit, with the structural equation model showing the greatest explanatory
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power for the changes in area during the period of the largest lake. (2) In terms of the factors
influencing the models, the path coefficients of the remote factor for the lake area change
are positive, while those of the climate and hydrologic factors for the lake area change in
the three different periods are negative. The human factor exhibits different correlations
with the lakes in different periods: negative correlation during the wet seasonal lake and
the dry seasonal lake periods, and positive correlation during the level seasonal lake period,
with path coefficients of −0.452, 0.112, and −0.192, respectively. The path coefficients of
the climate factor are −0.706, −0.944, and −0.723, respectively. Considering the absolute
values and signs of the comprehensive path coefficients, it indicates that environmental
factors are the main contributors to the continuous changes in lake area, and the impact of
human factors on lake area change is smaller than that of environmental and hydrologic
factors. However human factors mainly influence the mutation of the lakes’ area.

4. Discussion
4.1. Water Extraction

This study combines the use of the MNDWI, NDVI, and EVI to extract water bodies at
different thresholds. In this study, the results from the confusion matrix showed an overall
accuracy of 94.15%, with a kappa coefficient of 0.86. Therefore, it can be considered that the
extraction results are quite satisfactory [62]. In practice, the field of remote sensing water
body extraction often employs various machine learning classification techniques, However,
classification methods typically require a large number of interested sample points [71–73].
The Jianghan Lake Basin has complex terrain and diverse land types, which greatly affect
the quality of classification results and classification rules, leading to low efficiency in water
body extraction. Therefore, in the research process, based on the Google Earth Engine
(GEE) platform, the water index method remains a fast and accurate method for extracting
water bodies over a long period of time [26]. Visual discrimination based on the results of
water body extraction improves the efficiency and accuracy of lake identification [42].

By observing the results of water body extraction, it was noticed that the minimum
values of the three types of lakes in terms of area and quantity all occurred in 2006. The main
reason for this was the completion and operation of the large-scale hydraulic project, the
Three Gorges Dam, in 2006, which affected the area of water resources in the downstream
Jianghan Plain and led to a decrease in water area [74]. Later, with the introduction of the
new concept of ecological civilization development, the country implemented measures
such as returning farmland to forests to improve the ecological environment of water
bodies. These measures had a positive effect on the expansion of water body areas in the
Jianghan Plain, leading to further enlargement of water body areas [53].

4.2. Driving Factors of Water Area Change

In terms of the types of influencing factors, human factors mainly affect the area of the
wet seasonal lakes and the level seasonal lakes, while their impact on the dry seasonal lakes
is relatively minor. The reason for this is that these two types of water bodies have larger
water areas at the spatial scale, making them more susceptible to various human activities.
During the wet seasonal lakes and the level seasonal lakes periods, lakes exhibit augmented
water volume and elevated water levels, leading to an expansion of lake surface area.
Human activities can exacerbate this phenomenon, notably through interventions such as
river diversion and dam construction aimed at water level regulation, thereby exerting
influence on lake extent [75]. In contrast, the dry seasonal lakes period corresponds to a
relatively reduced lake surface area and lower water levels. Consequently, human activities
exert a comparatively diminished impact on lake area during this period. Even activities
such as land reclamation may yield limited effects due to constrained water availability [76].

Furthermore, in terms of the spatial scale of influencing factors, the reason why the wet
seasonal lakes show a significant correlation with more remote sensing indices compared
to the level seasonal and the dry seasonal lakes is because the area of the wet seasonal
lakes is broader. Remote sensing indices include various monsoon elements, and the
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larger water area of the largest lakes allows for more exposure to monsoon climates [77].
Therefore, at a larger scale, the largest lakes exhibit significant correlations with more
remote sensing indices.

4.3. Applicability of Structural Equation Models

In terms of the overall fit of the models, the high goodness-of-fit of the structural
equation models for the three types of lakes can be attributed to several factors. Firstly,
significant correlated factors were selected based on correlation analysis. Secondly, in
addition to selecting highly correlated factors, continuous wavelet transform was also
incorporated to identify factors with similar trends [65–67]. By combining correlation
analysis with continuous wavelet transform analysis, relevant factors can be effectively
identified, thus enabling the construction of a structural equation model [43].

In terms of the factors influencing the models, the dominance of climate factors in
driving continuous changes of area across the three types of water bodies is attributed to
the inclusion of key factors such as evaporation, temperature, and precipitation within
the climate variables. These factors are critical factors affecting the changes in lake area in
the study area [27]. Generally, evaporation has a negative impact on lake area; the greater
the evaporation from the lake surface, the more severe the loss of water from the lake,
resulting in a reduction in lake area. Higher temperatures lead to enhanced lake surface
evaporation, consequently causing a decrease in lake area [27]. Increased precipitation
directly adds water to the lake or collects water from surrounding areas, resulting in an
increase in lake area [52].

Another issue worth discussing is why the Three Gorges Dam is considered the main
factor driving mutation in water area but does not appear to be reflected in the structural
equation model. Upon observing the trend of water body area changes, it is evident that all
three types of lakes experienced a sudden decrease in area around 2006. One reason for this
discrepancy is the difficulty in directly selecting a representative indicator to signify the
completion of the Three Gorges Dam project. Over a thirty-year time frame, its construction
represents a singular event, making it challenging to incorporate into the analysis of
the structural equation model [43]. Another reason may be that the primary function
of the Three Gorges Dam is to regulate water bodies for various purposes. Although
some water bodies are impounded by the dam, the remaining water bodies still primarily
participate in hydrological cycles through processes such as temperature, precipitation,
and evaporation. Therefore, despite the completion and operation of the Three Gorges
Dam being a significant cause of the sharp decrease in water body area, the environmental
factors remain the predominant drivers of continuous changes in the overall lake area in
the Jianghan Plain [74,78,79].

4.4. Limitations of the Study and Prospects

In terms of the temporal scale of the research content, due to limitations in climate and
climate data availability, this study only explored the changes in lake area in the Jianghan
Plain from 1990 to 2020 and investigated its driving factors, failing to achieve research on a
longer time scale.

In terms of the selection of elements in the research content, although significant
remote sensing indices were selected to investigate their influence on lake changes at a
larger spatial scale, a series of extreme weather and climate events affecting lake area
changes were difficult to quantitatively analyze [55–59]. Additionally, limitations in the
precision of the dataset itself may also impose constraints on the research conclusions [55–59].

In the future, with the further development of image recognition technology, the pro-
duction of higher-precision remote sensing image products may advance the understanding
of dynamic changes in the Jianghan Plain lakes [26].
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5. Conclusions

This study utilized the GEE platform and structural equation modeling to explore
the dynamic trends of lake area changes in different types of lakes in the Jianghan Plain
from 1990 to 2020, as well as the primary drivers of lake area variation. In terms of the
trend of changes in lake area for different types of lakes, the water bodies of different types
exhibited varying trends in overall area changes. The area of the wet seasonal lake and
the level seasonal lake showed a decreasing trend, decreasing by 893.1 km2 and 77.9 km2,
respectively. Conversely, the area of the dry lake increased by 59.27 km2. The areas of all
three types reached their minimum values in 2006. In terms of dynamic change influencing
factors, human factors primarily affect the variation in water body area of the wet seasonal
lakes in the Jianghan Plain, while the level seasonal and the dry lake bodies are mainly
regulated by climate factors. And it was found that climate factors are the dominant drivers
of lake area continuous changes in the Jianghan Plain over the three different periods,
and human factors mainly influence the mutation of lakes area. The results of this study
enhance our understanding of the impact of surface water changes in the Jianghan Plain
and provide important references for the monitoring and restoration of water resources
over long time series.
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