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Abstract: Existing methods for inverse synthetic aperture radar (ISAR) target recognition typically
rely on a single high-resolution radar signal type, such as ISAR images or high-resolution range
profiles (HRRPs). However, ISAR images and HRRP data offer representations of targets across
different aspects, each containing valuable information crucial for radar target recognition. Moreover,
the process of generating ISAR images inherently facilitates the acquisition of HRRP data, ensuring
timely data collection. Therefore, to fully leverage the different information from both HRRP data
and ISAR images and enhance ISAR ship target recognition performance, we propose a novel deep
fusion network named the Separation-Decision Recognition network (SDRnet). First, our approach
employs a convolutional neural network (CNN) to extract initial feature vectors from ISAR images
and HRRP data. Subsequently, a feature separation module is employed to derive a more robust
target representation. Finally, we introduce a weighted decision module to enhance overall predictive
performance. We validate our method using simulated and measured data containing ten categories
of ship targets. The experimental results confirm the effectiveness of our approach in improving ISAR
ship target recognition.

Keywords: target recognition; inverse synthetic aperture radar; high-resolution range profile; deep
fusion; feature separation; weighted decision

1. Introduction

Inverse synthetic aperture radar (ISAR) target recognition, an extension of radar
automatic target recognition (RATR), holds growing importance in both military and
civilian applications owing to its capability to function under diverse weather conditions
and at any time of the day [1,2]. As a result, ISAR target recognition has attracted significant
international attention.

High-resolution range profile (HRRP) data, extensively employed in RATR [3–7],
serves as a valuable source for discerning target size and the distribution of scattering
points along a single dimension. Its acquisition is straightforward, and its quality remains
unaltered by focusing algorithms [1,2]. Notably, during the process of ISAR imaging, HRRP
data can be concurrently captured. Figure 1 illustrates the ISAR imaging framework utiliz-
ing classic range-Doppler (RD) algorithms. The initial step involves range compression of
received ISAR echoes, followed by the extraction of HRRP data through a modulo oper-
ation. Subsequently, translational motion compensation (TMC) is employed to mitigate
the translational component of the target, involving stages of range alignment and phase
adjustment. If significant rotational motion occurs within the coherent processing interval
(CPI), resulting in a blurred ISAR image due to a rotation-induced time-varying Doppler
spectrum, rotational motion compensation (RMC) is necessary to rectify rotational errors.
Once translational and rotational motion components are removed, the ISAR image is gen-
erated through Fourier transformation along the pulse direction. ISAR images effectively
capture the distribution of scattering points along the azimuth direction, providing a clear
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depiction of the target’s structural information, thereby enhancing its visual interpretability
and comprehension.
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Feature extraction plays a pivotal role in target recognition, directly influencing the
performance and accuracy of recognition systems. The evolution of feature extraction,
transitioning from manual methods to deep feature extraction utilizing deep networks for
both HRRP data and ISAR images, has notably enhanced the performance of RATR sys-
tems [1,2,8–11]. In the realm of HRRP target recognition, numerous studies have leveraged
deep neural network methodologies for analyzing HRRP data. For instance, a stacked
corrective autoencoder (SCAE) was employed to extract features from HRRP, with the aver-
age profile serving as the correction term [9]. An enhanced variational autoencoder (VAE)
was introduced to acquire probabilistic latent features [12]. A deep belief network (DBN)
was employed to extract discriminative features, complemented by t-distributed stochastic
neighbor embedding (t-SNE) to enhance HRRP segmentation across different target-aspect
sectors [13]. Furthermore, the efficacy of a fully connected network (FCN) was evaluated
on HRRP data [14]. Recognizing the successful deployment of convolutional networks in
image processing, CNNs were applied to radar HRRP target recognition, with structural
features learned from multiple layers being visualized [15]. In the domain of ISAR image
target recognition, there also has been a notable evolution from manual feature extraction
techniques [16–20] to the adoption of neural networks for feature extraction [1,2,21–23]. In
deep neural network-based methodologies, CNNs serve as the primary feature extractors.
For instance, a spatial transformer network model was utilized to address the unknown
deformations of ISAR images resulting from changes in the attitude of targets [21]. Zhao
et al. [22] proposed a pre-trained CNN tailored for small datasets. CNNs are widely favored
in image recognition tasks due to their capacity to abstractly represent target structures
through iterative learning processes, wherein structural information plays a pivotal role
in accurate recognition. Leveraging the advantages offered by CNNs, our approach in-
volves employing a renowned CNN model in the realm of image recognition, specifically
AlexNet [24], to serve as the feature extraction network for ISAR images.

However, existing RATR methods predominantly rely on a single modality, either
HRRP data or ISAR images [11]. Figure 1 illustrates the process where HRRP data are
obtained before using imaging algorithms to generate ISAR images, ensuring timely data
acquisition and real-time system performance. Combining both modalities for target
recognition has the potential to enhance RATR performance. Some may question the
need for combining the two modalities, given that ISAR images are derived from HRRP
data and presumably contain the same information. However, the distinct generation
mechanisms of HRRP data and ISAR images imply that their information contents are not
identical, as they represent the target in different aspects. By integrating HRRP data with
ISAR images, we are able to acquire a more comprehensive understanding of the target.
Therefore, to effectively integrate the two modalities for target recognition, this paper
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presents the Separation-Decision Recognition network (SDRnet), aimed at recognizing
ISAR ship targets. Initially, in the feature extraction phase, we employ convolutional neural
networks (CNNs) to extract features from both ISAR images and the average HRRP of
the target. These extracted features serve as the initial features for subsequent modules.
Subsequently, we introduce a feature separation module leveraging multi-kernel maximum
mean discrepancy (MK-MMD) to explicitly disentangle each modal feature into shared and
private components. We posit that shared components offer a more abstract representation,
while private components could retain valuable complementary information about the
target. Following the feature separation module, the weighted decision fusion module
is implemented. We create three sub-classifiers and use the private features of the two
modalities after feature separation and the private features after integration as inputs, with
maximum class probability (MCP) used to set the weights of the three sub-classifiers. Finally,
the weighted decision vector is passed into a softmax layer to predict the classification
results. The primary contributions of this work can be summarized as follows:

1. We propose a deep feature fusion method based on ISAR image and HRRP data for
target recognition. This method can fully exploit feature information about the target,
thereby achieving satisfying recognition performance.

2. We used a feature separation module based on MK-MMD to effectively exploit shared
and private information contained in HRRP data and ISAR images for robust target
recognition. The module facilitates thorough consideration of correlation and com-
plementarity between the two modalities to obtain a more robust representation of
the target.

3. We designed a weighted decision fusion module to fit the feature separation module.
We used it to further improve the accuracy and reliability of prediction. We verified
the robustness and effectiveness of the proposed method on simulated and measured
datasets. Moreover, the proposed method could achieve a higher recognition rate
than the traditional fusion methods.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of related works focusing on RATR based on HRRP data and ISAR images.
In Section 3, we introduce the proposed deep fusion network. Section 4 assesses the
performance of the proposed method through a series of experiments and ablation studies
conducted on both simulated and measured data. Finally, Section 5 presents the conclusions
drawn from our research findings.

2. Related Works
2.1. Information Fusion

In recent years, advancements in sensor technology have led to a notable increase
in both the diversity and complexity of available information. This evolution highlights
the need for more advanced information fusion technologies to effectively address these
changes. Information fusion involves the integration, aggregation, and processing of
data from diverse sources, formats, and levels to produce comprehensive, accurate, and
actionable insights [25].

Information fusion can be categorized into three main types based on the level of
abstraction of the information being fused: data-level fusion [26], feature-level fusion [27],
and decision-level fusion [28].

Data-level fusion is the simplest fusion method, but its improvement in model perfor-
mance is very limited. Decision-level fusion can integrate the decision or prediction results
of multiple classifiers, thus introducing diversity and helping to improve the reliability
of model decisions. However, since decision fusion operates at the highest abstraction
level, a single decision fusion will inevitably lose some important details or information.
In addition, determining the weight of each sub-classifier is also a key issue in decision
fusion. A decision-level fusion method that combines ISAR images and range profile
(RP) data were used for target recognition [29]. Feature-level fusion is considered a more
efficient approach of fusion and is frequently used to improve model performance. Several



Remote Sens. 2024, 16, 1920 4 of 20

studies concentrating on image segmentation or classification employ feature-level fusion
to integrate multi-level features [30–38]. However, these studies typically fuse features
derived from the same data at varying levels. In contrast, our approach involves fusing
features extracted from distinct data through their respective feature extraction networks.
Based on the gated recurrent unit (GRU) method, an extended-GRU feature-level fusion
module that combines SAR images and average HRRP was used for target recognition. This
method adaptively learns the weight of each modal feature to distinguish their contribution
to sample discrimination [11]. However, this method does not consider the deep corre-
lation and complementarity between the two modalities when performing feature-level
fusion, although it achieves good results. Hence, this paper introduces feature separation
technology at the feature level to fuse the features of both modalities, fully considering
their correlation and complementarity, thereby resulting in a more robust representation
of the target. Furthermore, this article incorporates a decision-making fusion module
subsequent to feature separation. This hybrid fusion method enhances the reliability of
the model’s decision-making process, compensating for the shortcomings of decision-level
fusion, which may result in the loss of crucial information.

2.2. Feature Separation

Feature separation technology involves explicitly partitioning the latent representa-
tion of each modality to enhance the understanding and processing of multimodal data,
primarily utilized across various tasks in the field of computer vision [39–43]. To the best of
our knowledge, its application in combining ISAR images and HRRP data for radar target
recognition remains unexplored. A feature separation method based on deep networks
was previously employed in the domain separation network (DNS) for unsupervised adap-
tation [39]. DNS employs a shared-weight encoder to capture domain-shared features from
input samples, utilizing auxiliary loss to facilitate the convergence of shared representations.
These shared representations from the source domain are then utilized to train the network
for the task at hand. However, the approach solely relies on modality-shared representa-
tions to accomplish the task. Recognizing this, both modality-shared and modality-private
feature representations were considered for action prediction [43]. In this work, the author
explicitly separates the latent space of each modality into shared and private feature spaces
to enhance recognition robustness. While the shared feature space is obtained using an
auxiliary similarity loss, the private feature space is derived without employing additional
processes. Our approach diverges from this previous work in several key aspects. Firstly, to
obtain two more complementary private feature spaces, auxiliary loss is employed in this
study to guide their formation. Secondly, in our task, we make an assumption regarding
the correlation between the initial modal features, and we investigate the impact of this
assumption on correlating the shared features of the two modalities.

3. The Proposed Method

The structure of the SDRnet for ISAR target recognition is shown in Figure 2. As
shown in Figure 2, the framework of the proposed method can be briefly summarized in
the following parts:

1. Initial feature extraction: As shown in Figure 1, during the ISAR imaging process, we
can obtain the ISAR image of the target and the corresponding HRRP data simultane-
ously. For the HRRP data, we use the average HRRP obtained after preprocessing.
Then, the ISAR image and the average HRRP are fed into the CNNs shown in Figure 3
for training to obtain their corresponding initial features. These initial features serve
as input to the subsequent fusion process.

2. Feature separation: This section introduces feature separation technology into RATR,
aiming to explicitly partition the initial feature space of each modality into shared
feature space and private feature space. Private features play a crucial role: when
disturbances affect one modality’s private features or critical information is lost, the
other modality’s private features can offer valuable support for target differentiation,
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thereby enhancing the recognition system’s robustness. Moreover, shared features are
expected to provide a more abstract common representation of the two modalities,
reducing overfitting to specific modes and improving robustness. Shared feature
information is obtained by maximizing the similarity between the features of the
average HRRP data and ISAR images, while private feature information is derived
by maximizing the difference between the two. However, in our task, we found that
the acquired shared feature representations may not consistently enhance sample
discriminability. Consequently, we decided to forego the shared feature branches and
only retain the private feature components to enhance the sample discriminability,
making the model more robust and stable.

3. Weighted decision fusion: We constructed three sub-classifiers for weighted decision
fusion. We used the private features of the two modalities after feature separation and
the private features after integration as inputs of these three sub-classifiers, with MCP
used to set their weights. The purpose of using this module is to further improve the
accuracy and reliability of decision making.

4. Finally, the decision vector obtained by integrating the outputs of the three sub-
classifiers is fed into a softmax layer to classify the target.
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3.1. Initial Feature Extraction

CNNs have characteristics such as local connection, weight sharing, pooling and
multi-layer structures, which can effectively reduce network complexity and improve
generalization ability [15].

For HRRP-based target recognition, several practical considerations arise, including
translation sensitivity, aspect sensitivity, and amplitude-scale sensitivity. CNNs employ
convolution kernels for feature extraction and filter spatial position information through
pooling operations, endowing the model with spatial transformation invariance. This
characteristic of CNNs effectively mitigates translation sensitivity inherent in HRRP data.
Considering the aspect sensitivity of HRRPs, research suggests that the average HRRP
exhibits a smoother and more concise signal shape compared to individual HRRP pro-
files, potentially enhancing the capture of the target’s scattering property in specific aspect
frames [7]. From a signal processing standpoint, the average profile offers a stable repre-
sentation of the target’s physical structure within a frame, effectively reducing the speckle
impact of HRRPs and mitigating the effects of noise spikes and amplitude fluctuations.
Amplitude-scale sensitivity can be addressed through normalization techniques such as
L1 and L2 normalization. In this study, prior to CNN-based initial feature extraction from
the HRRP data, we first acquire the average profile of the target, and then, perform L1
normalization on it.

Based on the pertinent literature [7], the average HRRP is defined as follows:

xAP =

[
1
M

M
∑

i=1
xi1, 1

M

M
∑

i=1
xi2, . . . , 1

M

M
∑

i=1
xir

]
(1)

where {xi}M
i=1 represents a real-value HRRP sequence following envelope alignment, with

the ith HRRP sample xi = [xi1, xi2, . . . , xir], and r is the dimension of HRRP samples. The
average profile after normalization by L1 norm is

xAP =
xAP

∥xAP∥1
(2)

CNNs also play a vital role in leveraging ISAR images for target recognition, as they
can abstractly extract target structure information from two-dimensional images through
layer-by-layer learning. This structural information serves as a critical component in
image recognition.

Therefore, the deep fusion network proposed in this paper extracts the initial features
of the two modalities, namely, the average profiles and ISAR images, through CNNs. It is
important to note that ISAR images are two-dimensional images, while the average profile
of the target is one-dimensional. Consequently, the initial feature extraction network of
ISAR images in this article uses a general two-dimensional convolutional neural network,
while a one-dimensional convolutional neural network is designed to extract the initial
features of average HRRP data.

Two detailed CNN structures are illustrated in Figure 3. Taking the CNN for ISAR
images as an example, “Conc.64*11*11/ReLU” signifies that there are 64 feature maps,
each with a kernel size of 11 × 11, followed by the rectified linear unit (ReLU) activation
function. Additionally, “Max pool 3 × 3” denotes max pooling with a pooling size of 3 × 3,
while “Fully connected 4096*10” indicates that the fully connected layer has 4096 input
nodes and 10 output nodes. Finally, the softmax classifier generates the predicted label.
The CNN for the HRRP data follows a similar structure, with the convolution and pooling
operations applied in one dimension instead of two.

For the two CNN initial feature extraction networks, their inputs are ISAR images
and normalized average profiles, respectively, and the outputs of the penultimate fully
connected layer are used as the initial features. Therefore, the initial feature dimensions are
4096 and 1000 for ISAR images and average HRRP, respectively. Before proceeding, it is
necessary to standardize them to the same dimensions.
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3.2. Feature Separation

Considering our recognition task, where ISAR images and HRRP data depict target
information from different aspects, there exists complementarity between the two modali-
ties. By incorporating this complementarity, we can further enhance the model’s prediction
performance. In neural network architectures, two common feature-level fusion methods
are the direct concatenation and addition, as shown in Figure 4. Concatenation combines
different features to generate a mixed feature, resulting in a fused feature dimension equal
to the sum of the original feature dimensions. Addition adds different features based on
their element positions, maintaining the original feature dimensions. While these methods
ensure that fused features contain all information from pre-fusion features, thus enhancing
model robustness to some extent, they overlook the deep correlation and complementarity
between the initial multimodal features.

To accomplish this objective, our method incorporates feature separation technology
to construct a more resilient representation of the target. Initially, we address the disparity
in initial feature lengths between the two modalities by standardizing them to the same di-
mension through a fully connected layer. Subsequently, we explicitly divide these features
into private and shared feature spaces. We aim for the private features to be more comple-
mentary compared to the initial features: in instances where one modality’s private feature
is corrupted by noise or lacks essential information, the complementary private feature
from another modality can effectively enhance target discriminability, thereby bolstering
the recognition system’s robustness. Moreover, we also expect that shared features will
exhibit a higher correlation compared to the initial ones, which can furnish more abstract
and informative representations common to both modalities [42]. In the feature separation
part, the core idea is that we explicitly separate the feature of each modality into shared
and private feature spaces. We regard the shared (private) features of the two modalities as
samples of two distributions, so that the feature separation problem is transformed into a
problem of constraining the distance between the distributions. During the training process,
we obtain the shared feature spaces by minimizing the distribution distance between the
two modal features to maximize the similarity. Similarly, the acquisition of private features
relies on maximizing the distance to maximize the difference. Therefore, we use MK-MMD
to access these similarities, as in [43], and we also propose to use it to measure the difference
to obtain more complementary private feature information.
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Before introducing MK-MMD, we need to briefly introduce MMD. In the field of
transfer learning, MMD loss [44] is commonly used to measure the distance between multi-
domain feature distributions and demonstrates excellent performance. By minimizing the
distribution difference of multi-domain features, the feature distributions of the source
domain and the target domain become as similar as possible.
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The general definition of MMD is as follows: given two probability distributions p
and q, it is defined as

MMD(p, q) = sup
f∈F

(
Ep[ f (x)]− Eq[ f (y)]

)
(3)

where f is a mapping function from feature space to real numbers, F is a set of feasible
mapping functions, x is the source domain sample, y is the target domain sample, their
distributions are, respectively, p and q, and f (x) and f (y) are the mapped values of the
source domain and target domain samples, respectively. What this formula means is that
the maximum value of the difference between the expected values of distribution p and
distribution q under the mapping is called the MMD value. The specific form of the MMD
formula is as follows:

MMD(p, q) = ∥ 1
n

n

∑
i=1

ϕ(xi)−
1
m

m

∑
j=1

ϕ
(
yj
)
∥H (4)

where n and m represent the numbers of samples in the source and target domains, respec-
tively. Determining an appropriate ϕ(x) to serve as the mapping function is critical to MMD.
Nevertheless, the nature of this mapping function may vary across tasks, and it could poten-
tially operate in a high-dimensional space, making its definition or selection challenging.

Fortunately, we can solve this problem with the help of the idea of the kernel function.
We square the MMD, yet we continue to denote the label as MMD. We can expand it to
obtain the following form:

MMD(p, q) = ∥ 1
n

n
∑

i=1
ϕ(xi)− 1

m

m
∑

j=1
ϕ
(
yj
)
∥2
H

= ∥ 1
n2

n
∑

i=1

n
∑

i′=1
ϕ(xi)ϕ(x′ i)− 2

nm

n
∑

i=1

m
∑

j=1
ϕ(xi)ϕ

(
yj
)
+ 1

m2

m
∑

j=1

m
∑

j′=1
ϕ
(
yj
)
ϕ(y′ i)∥H

(5)

As shown in Formula (5), the MMD loss contains the inner product after feature
mapping, which exactly meets the definition of the kernel function. By replacing all these
inner products with the kernel function, the following formula can be obtained:

MMD(p, q) = ∥ 1
n2

n

∑
i=1

n

∑
i′=1

k
(
xi, x′ i

)
− 2

nm

n

∑
i=1

m

∑
j=1

k
(

xi, yj
)
+

1
m2

m

∑
j=1

m

∑
j′=1

k
(
yj, y′ i

)
∥H (6)

In this way, with the help of the kernel function, we can skip the calculation of ϕ and
directly use the kernel function to calculate the MMD loss function, making the calculation
of the MMD feasible. Generally, different kernel functions, such as linear kernel and
Gaussian kernel, can be used to define the MMD measuring method. Unlike MMD, MK-
MMD uses multiple sets of mapping functions at different scales. This means that when
calculating MMD, features at multiple different scales will be considered to better describe
the difference between the two distributions. These functions at different scales can be
tuned with parameters to achieve optimal performance on different tasks and datasets. One
of the advantages of MK-MMD is its flexibility, and different kernel functions and scale
parameters can be selected according to the specific problem. In summary, MK-MMD is an
extension of MMD that allows the use of multiple kernel functions of different scales when
measuring distribution differences to improve its performance and adaptability. MK-MMD
expands the kernel function in Formula (6) into the sum of multiple kernel functions.

MK − MMD(p, q) =
L

∑
l=1

∥ 1
n2

n

∑
i=1

n

∑
i′=1

kl
(
xi, x′ i

)
− 2

nm

n

∑
i=1

m

∑
j=1

kl
(
xi, yj

)
+

1
m2

m

∑
j=1

m

∑
j′=1

kl
(
yj, y′ i

)
∥H (7)

where kl is the lth kernel function, and L represents the number of kernel functions.
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In our task, our objective is to maximize the similarity between the shared feature dis-
tributions s1 and s2 of the two modalities, while ensuring that the modality-private feature
distributions p1 and p2 are distinct from each other. Therefore, during the training process
we minimize MK − MMD(s1, s2) and simultaneously maximize MK − MMD(p1, p2). For
simplicity, we write MK − MMD(s1, s2) and MK − MMD(p1, p2) as d(s1, s2) and d(p1, p2),
respectively. The loss function of our feature separation module is as follows:

L f s = d(s1, s2)− d(p1, p2) (8)

After completing feature separation, we aim for both the shared and private compo-
nents to consistently contribute to the discriminative support of the samples. However,
in our task, it intuitively seems that there is no practically significant shared information
between the two modalities; instead, each contains information about different aspects of
the target. Therefore, we assume their correlation is low. When feature correlation is mini-
mal, they may occupy disjoint distribution areas or have very limited overlap in the feature
space, potentially resulting in distant distributions even for features of the same category.
Additionally, the two modalities from different categories might exhibit similar feature
distributions and the MMD loss function, used for global alignment, may inadvertently
induce a “misalignment” phenomenon when extracting shared features, as depicted in
Figure 5. This phenomenon may result in the fused features retaining similar information
from different classes, making it challenging to distinguish differences between various
categories. In our research, we refer to this phenomenon as “feature ambiguity”. In such
cases, incorporating shared feature components in predictive features could detrimentally
affect model performance. Conversely, due to the global nature of the method, we utilize
MK-MMD to maximize the distance between the feature distributions of the two modalities,
typically resulting in the dispersion of the two private feature distributions across the
feature space. The obtained private features serve as personalized representations for each
modality, and their fusion can yield more distinct representations for each category. Hence,
we opt to remove the shared feature branches post-feature separation, retaining solely the
private feature components of both modalities for subsequent processing. This approach
ensures a consistently positive impact on prediction performance.
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3.3. Weighted Decision Fusion

Decision-level fusion belongs to the category of intelligent information processing and
is a high-level information fusion method. It analyzes and integrates multiple decision
vectors to fully utilize a variety of relevant information about the target, resulting in more
reliable and accurate decision results than those obtained from a single decision maker.

In the ISAR target recognition task, decisions based on a single classifier are heavily
dependent on the performance of the current classifier. In complicated real-world circum-
stances, classifiers are easily influenced by external factors, leading to significant risks
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and uncertainties in target recognition. Decision fusion can analyze and process multiple
prediction vectors, alleviating misjudgments caused by relying on a single classifier to some
extent. Therefore, the decision-level fusion method plays an important role in improving
the reliability of recognition systems [45].

Weighted decision fusion methods offer increased flexibility in considering the con-
tributions of different classifiers, thereby enhancing overall performance. In this study,
we employ this strategy and advocate for using the MCP to determine the weight of each
sub-classifier during weighted decision fusion. This weight determination approach is
based on an assumption: when a sample category is misclassified by a sub-classifier, its
decision vector likely exhibits a high probability similar to that of its misclassified category.
Consequently, during misclassification, the maximum probability across the decision vector
may be low, resulting in a smaller weight being assigned to the sub-classifier. This rationale
aligns with practical scenarios, where an incorrectly classified classifier should indeed
carry less influence. To achieve this objective, each sub-classifier undergoes training with a
cross-entropy loss function, aiming to minimize the Kullback–Leibler divergence between
the predicted distribution and the true distribution. This optimization process maximizes
the classification performance of each sub-classifier, laying essential groundwork for the
subsequent decision-making integration.

To obtain the classification confidence of different classifiers, assume that M classifiers
f m : xm

n → yn are constructed. Classifier f m can be regarded as a probability model that
converts sample xm into probability distribution pm(y|xm ) =

(
pm

1 . . . pm
k
)
, and k represents

the number of categories of the classification task. Therefore, the loss function of the
weighted decision fusion module is as follows:

Lwd = −
M

∑
m=1

K

∑
k=1

yk log(pm
k ) (9)

where yk is the true label, pm
k is the softmax probability of classifier fm for the kth class, and

M represents the number of classifiers and is equal to three in our design. Assume that the
prediction vectors of the t hree sub-classifiers are dm =

(
pm

1 , pm
2 , . . . , pm

k
)
, m = 1, 2, 3; the

weight of each sub-classifier in the weighted decision is derived from its prediction vector.

mcpm = max(pm
1 , pm

2 , . . . , pm
k ) (10)

Therefore, the final decision vector obtained by the MCP weighted decision is as follows.

d =
3

∑
i=1

mcpidi (11)

3.4. Overall Loss Function

This article includes a total of three parts in the loss function: the first part is the loss
function used by the feature separation module; the second part is the loss function used
by the weighted decision fusion module; the last part is the cross-entropy loss function,
required for the final decision vector. Therefore, the total loss function used in this article is
as follows:

L = α f sL f s + αwdLwd + CE f inal (12)

where α f s, αwd are hyperparameters to balance the three terms. In our method, the trans-
formed feature dimension of each modal feature is 2048 with the sizes of shared and private
feature both being 1024. For MK-MMD, we use a linear combination of multiple Gaussian
kernels. We set the number of Gaussian kernels to 5 to better form the shared and private
features. The coefficients in the total loss function are all set to 1 without tuning. We trained
the fusion model for 50 epochs using the Adam optimizer, with a learning rate 0.0001 and a
batch size 32.
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4. Experiments and Results
4.1. Simulated Data

For the simulation datasets, 3D ship models are used to generate ISAR images and
corresponding HRRP data using computational electromagnetics software for recognition
processing. The simulation radar parameters include a center frequency of 8.075 GHz, a
bandwidth of 150 MHz, and a pulse repetition frequency (PRF) of 200 Hz, as shown in
Table 1. Ten distinct 3D ship models are designed to construct the dataset. Notably, the
ISAR images of each target type include top-view images at two pitch angles and side-
view images at two azimuth angles. The HRRP data represent the average profiles after
amplitude normalization during the imaging process. For top-view images, the ten target
types are imaged at pitch angles of 80 degrees and 85 degrees, and for each pitch angle, we
conducted two sets of experiments, each with its own yaw motion speed. Consequently,
top-view images captured at each pitch angle exhibit two distinct cross-range resolutions.
The experiment begins with the azimuth angle set to 5 degrees. ISAR top-view images
are then generated at a fixed azimuth angle interval. Different azimuth angle intervals
are configured for the two different yaw motion speeds, resulting in the generation of
25 ISAR images each. Thus, a total of 50 ISAR images are produced across both modes of
movement at each pitch angle. Similarly, side-view ISAR images include imaging outcomes
at two azimuth angles (10 degrees and 15 degrees), with the initial pitch angles set at
40 degrees, and 50 images captured at each azimuth angle under two different pitch motion
modes. The imaging details are shown in Table 2. Figure 6 illustrates typical side-view
ISAR images of ten ship targets at an azimuth angle of 10 degrees under ideal conditions,
accompanied by their corresponding average HRRP shown in Figure 7, where T1 denotes
target 1. The geometric relationship between pitch angle and azimuth angle is depicted in
Figure 8, where the angle with the positive z-axis is denoted as the pitch angle θ, and the
angle between the xOy-plane projection and the positive x-axis is marked as the azimuth
angle φ, with the ship’s bow facing the positive x-axis direction. As depicted in Figure 9,
varying azimuth angles induce severe angle glints and diverse occlusion scenarios in ISAR
images [46,47]. Under such conditions, relying solely on ISAR images for target recognition
becomes challenging when missing angles occur.

Table 1. Settings of radar parameters for simulated data.

Parameter Value

Center frequency 8.075 GHz
Bandwidth 150 MHz

PRF 200 Hz
Observation time 0.32 s

Table 2. The imaging details for top-view and side-view ISAR images.

Top-View Side-View

Target T1 T2–T10 Target T1 T2–T10
Pitch angle (θ) 80◦/85◦ 80◦/85◦ Azimuth angle (φ) 10◦/15◦ 10◦/15◦

Initial azimuth angle (φ) 5◦ 5◦ Initial pitch angle (θ) 40◦ 40◦

Azimuth motion 1 0.04◦/s 0.27◦/s Pitch motion 1 0.08◦/s 0.51◦/s
Azimuth angle interval 1 0.02◦ 0.132◦ Pitch angle interval 1 0.04◦ 0.240◦

Azimuth motion 2 0.08◦/s 0.54◦/s Pitch motion 2 0.16◦/s 1.01◦/s
Azimuth angle interval 2 0.04◦ 0.211◦ Pitch angle interval 2 0.08◦ 0.384◦

To verify the effectiveness and superiority of the algorithm under different signal-to-
noise ratios (SNRs), we added three levels of Gaussian noise of 10 dB, 5 dB, and 3 dB to the
original echo data. Meanwhile, to fully verify the robustness of the fusion method proposed
in this article in the absence of angles, for each SNR data, we can obtain a total of four ways



Remote Sens. 2024, 16, 1920 12 of 20

to divide the training set and the test set, which we call missing_aspect15_pitch85, miss-
ing_aspect15_pitch80, missing_aspect10_pitch85, and missing_aspect10_pitch80. Since the
four situations are similar, we take the case of missing_aspect15_pitch85 as an example.
It means that our training set consists of side-view ISAR images with an azimuth angle
of 10 degrees and top-view images with a pitch angle of 80 degrees, as well as their corre-
sponding average profiles. The side-view ISAR image at an azimuth angle of 15 degrees
and the top-view images at a pitch angle of 85 degrees and their corresponding average
profiles are used as the test set. This allows us to fully verify the robustness of the fusion
method proposed in this article in the absence of angles. For the generality of the results
and the simplicity of the presentation of the results, in experiments with simulated data we
use the average of the recognition rates in the four cases under each SNR as the display
results in our experiments.
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The recognition accuracies of the proposed method are shown in Table 3. In order
to verify the generality of the results and the simplicity in presenting the results, for the
experimental part on the simulated data the results shown are the average value of the
recognition rates under four data division conditions unless otherwise specified.

Table 3. The recognition accuracy with different SNRs and division methods for the proposed method.

Missing_
Aspect15_Pitch85

Missing_
Aspect15_Pitch80

Missing_
Aspect10_Pitch85

Missing_
Aspect10_Pitch80 Average

3 dB 91.34% 97.06% 91.90% 96.08% 94.09%
5 dB 92.53% 97.33% 94.56% 96.15% 95.14%

10 dB 94.45% 97.61% 95.67% 97.53% 96.32%

To showcase the efficacy of our proposed approach, we conducted comparative ex-
periments employing various algorithms. Ensuring fairness, we standardized the initial
features across different fusion methods by transforming the initial features of each modal-
ity into identical dimensions. We evaluated several fusion strategies, including early fusion,
where the ISAR image and its corresponding average profile are concatenated and fed
directly into a CNN. Additionally, we explored two common feature-level fusion meth-
ods [48,49]: the first method involved concatenating the transformed initial features of
both modalities before feeding them into the prediction layer. The second method utilized
element-wise addition for feature fusion, the extended-GRU (Ex-GRU) [11] fusion method,
which adaptively learns the weight of each modal feature to distinguish the contribution to
sample discrimination; the research content of this article is similar to our research content,
and the fusion method in the article has achieved better results than many other methods.
Additionally, we utilized a mask to assess the impact of shared feature branches and private
feature branches after feature separation on sample discriminability. Our findings revealed
that not all branches consistently enhanced prediction performance. When prediction
features included shared components, there was a modest decrease in prediction accuracy.
We conducted comparative experiments across various SNRs and data partitions, with
the accuracy of each method presented in Table 4. The “mask shared” approach involves
masking shared feature branches, retaining only private feature parts after separation,
and then, processing these private features using element-wise addition before feeding
them to the prediction layer. Similarly, “mask private” follows a comparable procedure.
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Notably, “no mask” initially performs an element-wise addition operation on the shared
feature branches of the two modalities, concatenates them with private features [44], and
subsequently feeds the concatenated features to the prediction layer.

Table 4. Comparisons of other fusion methods with the proposed method on simulated data with
different SNRs.

3 dB 5 dB 10 dB

Early fusion 77.24% 82.53% 85.28%
Concatenation 89.17% 91.40% 91.98%

Addition 88.39% 90.70% 90.88%
Ex-GRU [11] 87.48% 90.85% 91.13%
Mask private 91.03% 92.30% 92.53%
Mask shared 93.20% 94.15% 95.51%

No mask 92.43% 93.36% 93.95%
SDRnet (Ours) 94.09% 95.14% 96.32%

Figure 10 visually demonstrates the superior robustness of the method proposed in
this article compared to previous methods, particularly concerning angle missing and
noise. In our experiments evaluating the effectiveness of shared and private features, we
observed a modest decrease in overall prediction performance when the prediction features
included shared components. This decline may stem from the inferred ambiguity of the
shared features. To substantiate our inference, we present the recognition rates of “mask
private”, “mask shared”, and “no mask” under the “missing_aspect15_pitch85” condition,
as outlined in Table 5. Furthermore, we offer corresponding visual feature distribution
maps using t-distributed stochastic neighbor embedding (t-SNE). We specifically chose
this case as the ambiguity of shared features becomes particularly evident under this
partition condition.
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Table 5. The recognition accuracy in the case of missing_aspect15_pitch85.

3 dB 5 dB 10 dB

Mask private 84.31% 86.63% 88.92%
Mask shared 89.35% 90.20% 93.15%

No mask 87.50% 87.85% 89.26%

As can be seen from Figure 11, in our recognition task, the shared features obtained
through MK-MMD auxiliary function constraints exhibit feature ambiguity in some cate-
gories, confirming our hypothesis. In this case, only private features with complementary
properties would be used as predictive features to enhance the prediction performance
of the model rather than using private and shared features at the same time. Therefore,
to achieve better prediction performance, our method chooses to mask the shared feature
branches and only retain the private feature parts after feature separation.
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4.2. Measured Data

We further verified the effectiveness of the proposed method using measured data.
The measured data were acquired using an X-band radar. The measured data also contain
ten categories of target data, each category having different imaging time periods. Typical
ISAR images of the ten types of targets are shown in Figure 12, and the corresponding
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average profiles are listed in Figure 13. In this experiment, part of the data in each category
were used as the training set, and the rest were used as the test set. The number of training
and test sets for the ten categories of targets is shown in Table 6, where T1 represents
Target 1.
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Similar to the analysis conducted on the simulated dataset, the effectiveness of our pro-
posed method was also evaluated using measured data. Consistent with the methodology
applied to the simulated data, the comparison included similar methods. The recognition
outcomes are detailed in Table 7. The superior recognition accuracy attained by our method
further underscores its efficacy compared to alternative approaches.

Table 7. Comparisons of other fusion methods with the proposed method on measured data.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Accuracy (%)

Early fusion 90.00 100 95.76 99.65 87.84 100 93.88 96.00 47.62 84.38 93.40
Concatenation 82.57 100 98.94 100 95.05 100 91.67 100 76.19 68.75 93.14

Addition 80.29 100 98.94 100 94.59 100 91.67 92.00 61.90 68.75 92.08
Ex-GRU [11] 81.43 100 96.83 100 98.20 100 91.67 94.00 85.71 56.25 92.74
Mask private 85.14 97.78 100 100 98.65 100 91.67 84.00 66.67 78.13 93.80
Mask shared 89.71 100 100 100 98.20 100 91.67 94.00 66.67 65.62 94.85

No mask 87.43 100 96.30 100 98.65 98.97 91.11 96.00 85.71 71.88 94.39
SDRnet (ours) 92.00 96.67 100 100 99.55 100 90.56 94.00 90.48 68.75 95.78

4.3. Ablation Study

To gain deeper insight into the network’s functionality and validate the advantages of
fusing HRRP data and ISAR images for ISAR target recognition, an ablation study can be
employed. In this section, we aim to investigate the efficacy and superiority of integrating
two modalities for target recognition in contrast to single-modal target recognition. We
conducted ablation experiments on both measured data and simulated data across three
SNRs. We employed a CNN for classifying the ISAR images of targets and utilized a
1D-CNN for identifying the average profile. The experimental results are shown in Table 8.
It is evident that both simulated and measured data yield low recognition accuracy rates
when utilizing only a single modality for target recognition. Whereas, our fusion method,
which combines the two modalities, achieves higher recognition accuracy.

Table 8. Ablation study.

Only Image Only HRRP Proposed
Fusion Method

Accuracy
(%)

√
× × 82.48

3 dB ×
√

× 83.03√ √ √
94.09

√
× × 83.48

5 dB ×
√

× 86.23 Simulated√ √ √
95.14

√
× × 86.33

10 dB ×
√

× 87.18√ √ √
96.32

√
× × 90.22

Measured×
√

× 89.12√ √ √
95.78

5. Discussion
5.1. Comparison

Table 4 and Figure 10 present the identification performance of our proposed method
compared to other methods on a simulated dataset, while Table 7 shows the performance
on a measured dataset. Our method consistently achieves higher identification accuracy
relative to other approaches. Firstly, after feature separation, our model obtains more robust
representations of the target, thereby improving identification accuracy. This enhancement
is evident in the third row and the fifth to seventh rows of Tables 4 and 7. Secondly, with
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the incorporation of weighted decision making, the model can integrate the decisions or
prediction results of multiple classifiers, enhancing the reliability of the model’s decisions.
This further improves the model’s prediction performance, as demonstrated in the sixth
and eighth rows of Tables 4 and 7.

5.2. Feature Ambiguity

Table 5 and Figure 11 illustrate the influence of shared feature ambiguity that may oc-
cur after separation. In our task, it intuitively appears that there is no practically significant
shared information between the two modalities; instead, each modality contains informa-
tion about different aspects of the target. Therefore, we assume that their correlation is
low. When feature correlation is very low, the features may occupy disjointed distribution
areas or have very limited overlap in the feature space, potentially resulting in distant
distributions even for features of the same category. Additionally, the two modalities from
different categories might exhibit similar feature distributions. The MMD loss function,
utilized for global alignment, may inadvertently induce a “misalignment” phenomenon,
as shown in Figure 5. This phenomenon may result in the fused features retaining similar
information from different classes, thereby making it challenging to distinguish differences
between various categories. In such cases, incorporating shared feature components in
predictive features could detrimentally affect model performance.

To address this, we utilized a mask to assess the impact of shared and private feature
branches on sample discriminability after feature separation. As shown in rows 5 to 7 of
Tables 4 and 7, as well as in Table 5, the “mask private” method consistently results in the
lowest accuracy among the three methods. To understand this, we employed T-SNE to
visualize the distribution of shared features. As depicted in Figure 11, a feature ambiguity
phenomenon indeed exists, confirming our hypothesis. Consequently, our method opts
to mask the shared feature branches and only retain the private feature parts after feature
separation to acquire a stable prediction performance.

5.3. Ablation

A series of ablation experiments were conducted on both simulated and measured
datasets to demonstrate that combining two modalities for target identification yields
higher accuracy compared to single-modality identification. The results of these ablation
experiments are presented in Table 8.

5.4. Future Work

Non-target areas inevitably exist in both ISAR imagery and HRRP data. When these
non-target areas contain noise, it may affect recognition accuracy, making it a significant
issue to investigate. Currently, our method does not consider the impact of redundant
information in non-target areas on target recognition. Therefore, our future research will
focus on addressing this aspect.

6. Conclusions

In this study, we introduced the SDRnet, a novel deep fusion network designed for
ISAR ship target recognition by leveraging feature separation and weighted decision. By
acknowledging the inherent differences between ISAR images and HRRP data, our pro-
posed method aims to provide a more robust representation of the target by considering
the deep correlation and complementarity between the features of these two modalities.
Through experimental evaluation on both simulated and measured datasets, our results
consistently demonstrate the superior performance of our fusion method compared to con-
ventional approaches. These findings underscore the efficacy of our approach in ship target
recognition, highlighting its potential for practical applications in real-world scenarios.
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