Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising
Abstract
:1. Introduction
1.1. Filtering-Based Methods
1.2. Optimization-Based Methods
1.3. Deep Learning-Based Methods
- Using the current band and its adjacent K bands as inputs to the network, the DCM is used to extract spatial information from the inputs, and it is applied on multi-scale spaces to fully learn the spatial structure of the image.
- The non-local memory-augmented spectral attention module is designed to learn the non-local and global correlations among data spectra at each scale.
- A series of ablation experiments were conducted, and the results were compared with those of existing methods on both synthetic and real data, which demonstrate the superiority of the proposed method.
2. Related Work
3. Proposed Method
3.1. Overall Network Architecture
3.2. Spatial Information Extaction Module
3.3. Non-Local Memory-Augmented Attention Module
3.4. Implementation Details
4. Experiments and Discussions
4.1. The Synthetic Data Experiments and Discussions
4.2. The Real Data Experiments and Discussions
4.3. The Ablation Experiments and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, H.; Chen, R.; Chen, W.; Sun, H.; Xie, W.; Lu, X. Pseudolabel-Based Unreliable Sample Learning for Semi-Supervised Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5527116. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, B.; Du, X.; Lu, X. Mutual Attention Inception Network for Remote Sensing Visual Question Answering. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5606514. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. A Deep Scene Representation for Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4799–4809. [Google Scholar] [CrossRef]
- Zheng, X.; Cui, H.; Lu, X. Multiple Source Domain Adaptation for Multiple Object Tracking in Satellite Video. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5626911. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, T.; Li, X.; Lu, X. Generalized Scene Classification from Small-Scale Datasets With Multitask Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5609311. [Google Scholar] [CrossRef]
- Sun, H.; Li, Q.; Yu, J.; Zhou, D.; Chen, W.; Zheng, X.; Lu, X. Deep Feature Reconstruction Learning for Open-Set Classification of Remote-Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6009405. [Google Scholar] [CrossRef]
- Li, S.; Geng, X.; Zhu, L.; Ji, L.; Zhao, Y. Hyperspectral Image Denoising Based on Principal-Third-Order-Moment Analysis. Remote Sens. 2024, 16, 276. [Google Scholar] [CrossRef]
- Feng, X.; Tian, S.; Abhadiomhen, S.E.; Xu, Z.; Shen, X.; Wang, J.; Zhang, X.; Gao, W.; Zhang, H.; Wang, C. Edge-Preserved Low-Rank Representation via Multi-Level Knowledge Incorporation for Remote Sensing Image Denoising. Remote Sens. 2023, 15, 2318. [Google Scholar] [CrossRef]
- Ren, J.; Luo, Y.; Fan, C.; Feng, W.; Su, L.; Wang, H. RAU-Net-Based Imaging Method for Spatial-Variant Correction and Denoising in Multiple-Input Multiple-Output Radar. Remote Sens. 2024, 16, 80. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, Z.; Zhang, Y.; Wang, Z.; Xu, B.; Liu, J.; Li, S.; Fang, H. MD3: Model-Driven Deep Remotely Sensed Image Denoising. Remote Sens. 2023, 15, 445. [Google Scholar] [CrossRef]
- You, H.; Li, Y.; Qin, Z.; Lei, P.; Chen, J.; Shi, X. Research on Multilevel Filtering Algorithm Used for Denoising Strong and Weak Beams of Daytime Photon Cloud Data with High Background Noise. Remote Sens. 2023, 15, 4260. [Google Scholar] [CrossRef]
- Liu, S.; Liu, T.; Gao, L.; Li, H.; Hu, Q.; Zhao, J.; Wang, C. Convolutional Neural Network and Guided Filtering for SAR Image Denoising. Remote Sens. 2019, 11, 702. [Google Scholar] [CrossRef]
- Letexier, D.; Bourennane, S. Noise Removal From Hyperspectral Images by Multidimensional Filtering. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2061–2069. [Google Scholar] [CrossRef]
- Zhang, B.; Aziz, Y.; Wang, Z.; Zhuang, L.; Ng, M.K.; Gao, L. Hyperspectral Image Stripe Detection and Correction Using Gabor Filters and Subspace Representation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5504005. [Google Scholar] [CrossRef]
- Othman, H.; Qian, S.E. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2006, 44, 397–408. [Google Scholar] [CrossRef]
- Jiao, J.; Gong, Z.; Zhong, P. Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection. Remote Sens. 2023, 15, 4675. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S.E. Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 49, 973–980. [Google Scholar] [CrossRef]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction. IEEE Trans. Image Process. 2013, 22, 119–133. [Google Scholar] [CrossRef]
- Ding, M.; Zhou, Y.; Chi, Y. Self-Attention Generative Adversarial Network Interpolating and Denoising Seismic Signals Simultaneously. Remote Sens. 2024, 16, 305. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.; Li, G.; Sun, L.; Ye, H.; Tong, T. Noise Attenuation for CSEM Data via Deep Residual Denoising Convolutional Neural Network and Shift-Invariant Sparse Coding. Remote Sens. 2023, 15, 4456. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Fan, S. Multispectral Image Denoising via Nonlocal Multitask Sparse Learning. Remote Sens. 2018, 10, 116. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, H.; Liu, B. Self-Supervised Denoising for Real Satellite Hyperspectral Imagery. Remote Sens. 2022, 14, 3083. [Google Scholar] [CrossRef]
- Liu, W.; He, C.; Sun, L. Spectral-Smoothness and Non-Local Self-Similarity Regularized Subspace Low-Rank Learning Method for Hyperspectral Mixed Denoising. Remote Sens. 2021, 13, 3196. [Google Scholar] [CrossRef]
- Fu, Y.; Lam, A.; Sato, I.; Sato, Y. Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral Image Denoising. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 343–351. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1888–1902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yuan, Q.; Li, J.; Shen, H.; Zhang, L. Lunar Hyperspectral Image Destriping Method Using Low-Rank Matrix Recovery and Guided Profile. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3050–3061. [Google Scholar] [CrossRef]
- Lian, X.; Yin, Z.; Zhao, S.; Li, D.; Lv, S.; Pang, B.; Sun, D. A Neural Network for Hyperspectral Image Denoising by Combining Spatial–Spectral Information. Remote Sens. 2023, 15, 5174. [Google Scholar] [CrossRef]
- Dou, H.X.; Pan, X.M.; Wang, C.; Shen, H.Z.; Deng, L.J. Spatial and Spectral-Channel Attention Network for Denoising on Hyperspectral Remote Sensing Image. Remote Sens. 2022, 14, 3338. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Wang, X.; Ding, S.; Zhang, H. Deep Convolutional Denoising Autoencoders with Network Structure Optimization for the High-Fidelity Attenuation of Random GPR Noise. Remote Sens. 2021, 13, 1761. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 667–682. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Fu, Y.; Zhang, Y.; Dou, D. Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5805–5814. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, H.; Liu, G. Partial-DNet: A Novel Blind Denoising Model With Noise Intensity Estimation for HSI. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5505913. [Google Scholar] [CrossRef]
- Wei, K.; Fu, Y.; Huang, H. 3-D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 363–375. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; Wu, F.; Shi, G.; Li, X. Deep Spatial–Spectral Representation Learning for Hyperspectral Image Denoising. IEEE Trans. Comput. Imaging 2019, 5, 635–648. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1205–1218. [Google Scholar] [CrossRef]
- Maffei, A.; Haut, J.M.; Paoletti, M.E.; Plaza, J.; Bruzzone, L.; Plaza, A. A Single Model CNN for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2516–2529. [Google Scholar] [CrossRef]
- Han, J.; Pan, C.; Ding, H.; Zhang, Z. Double-Factor Tensor Cascaded-Rank Decomposition for Hyperspectral Image Denoising. Remote Sens. 2024, 16, 109. [Google Scholar] [CrossRef]
- Yang, F.; Chen, X.; Chai, L. Hyperspectral Image Destriping and Denoising Using Stripe and Spectral Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation. Remote Sens. 2021, 13, 827. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, W.; Su, X.; Xu, Z. Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using Optimized Generative Network in Wavelet Transform Domain. Remote Sens. 2021, 13, 1858. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Z.; Chen, F.; Zeng, D. Hyperspectral Image Denoising via Adversarial Learning. Remote Sens. 2022, 14, 1790. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Cao, X.; Ke, Q.; Ji, T.Y.; Zhu, X. Hyperspectral Denoising Using Asymmetric Noise Modeling Deep Image Prior. Remote Sens. 2023, 15, 1970. [Google Scholar] [CrossRef]
- Cao, X.; Fu, X.; Xu, C.; Meng, D. Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5504714. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.; Bo, L.; Mei, T. Memory-Augmented Non-Local Attention for Video Super-Resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17813–17822. [Google Scholar] [CrossRef]
- Cao, C.; Yu, J.; Zhou, C.; Hu, K.; Xiao, F.; Gao, X. Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and Sparse Factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973–988. [Google Scholar] [CrossRef]
Case | Case 1 | Case 2 | Case 3 | Case 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Method | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM |
WDC Mall | Noisy | 20.12 | 0.7881 | 17.6382 | 16.83 | 0.6634 | 24.2778 | 16.1 | 0.6285 | 26.4034 | 16.11 | 0.6277 | 26.4657 |
LRMR | 32.42 | 0.9783 | 4.9984 | 30.02 | 0.9638 | 6.2842 | 29.79 | 0.9626 | 6.2298 | 29.71 | 0.9622 | 6.3255 | |
NAILRMA | 32.07 | 0.9779 | 5.2971 | 30.61 | 0.9686 | 5.9188 | 30.19 | 0.966 | 6.0014 | 30.04 | 0.9654 | 6.1164 | |
LRTV | 33.04 | 0.9807 | 4.2104 | 31.1 | 0.9690 | 5.1222 | 30.8 | 0.9667 | 5.8929 | 30.76 | 0.9665 | 6.8520 | |
Partial-DNet | 34.56 | 0.9870 | 3.4544 | 31.29 | 0.9752 | 5.4685 | 30.43 | 0.9705 | 5.9257 | 30.61 | 0.9718 | 5.8856 | |
SERT | 33.23 | 0.9862 | 3.2852 | 31.04 | 0.9738 | 3.7545 | 30.16 | 0.9653 | 4.3179 | 30.44 | 0.9729 | 4.2128 | |
Ours | 35.05 | 0.9886 | 2.0968 | 32.65 | 0.9809 | 2.7523 | 32.70 | 0.9794 | 2.9013 | 32.16 | 0.9791 | 2.8974 |
Case | Case 1 | Case 2 | Case 3 | Case 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Method | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM |
Pavia Centre | Noisy | 20.11 | 0.7761 | 18.688 | 16.96 | 0.6536 | 24.8008 | 15.34 | 0.5686 | 28.6074 | 15.41 | 0.5707 | 28.5094 |
LRMR | 31.74 | 0.9704 | 5.4259 | 29.13 | 0.9489 | 7.1564 | 28.4 | 0.9407 | 7.2550 | 28.2 | 0.9405 | 7.4484 | |
NAILRMA | 32.99 | 0.9765 | 4.5047 | 30.5 | 0.9605 | 5.784 | 29.31 | 0.9508 | 6.0994 | 28.86 | 0.9492 | 6.5254 | |
LRTV | 32.32 | 0.9712 | 4.9303 | 30.07 | 0.9517 | 7.8147 | 29.51 | 0.9392 | 9.8325 | 29.5 | 0.9373 | 11.3173 | |
Partial-DNet | 34.48 | 0.9863 | 3.4566 | 31.87 | 0.9784 | 4.5559 | 30.15 | 0.9721 | 5.4706 | 30.38 | 0.9724 | 5.3533 | |
SERT | 34.78 | 0.9869 | 2.5432 | 32.61 | 0.9797 | 2.7931 | 31.69 | 0.9934 | 2.9822 | 31.82 | 0.9737 | 3.9649 | |
Ours | 35.16 | 0.9881 | 2.2259 | 33.14 | 0.9826 | 2.7808 | 32.41 | 0.9799 | 3.0055 | 32.22 | 0.9793 | 3.0561 |
T | PSNR | SSIM | SAM |
---|---|---|---|
T = 15 | 31.14 | 0.9733 | 3.4633 |
T = 20 | 31.23 | 0.9753 | 3.3062 |
T = 25 | 31.88 | 0.9776 | 3.2401 |
T = 30 | 32.22 | 0.9792 | 3.0667 |
T = 35 | 32.41 | 0.9799 | 3.0055 |
T = 40 | 32.32 | 0.9797 | 3.0323 |
T = 45 | 32.26 | 0.9790 | 3.0331 |
PSNR | SSIM | SAM | |
---|---|---|---|
o/w | 32.22 | 0.9792 | 3.0667 |
w/o | 31.23 | 0.9749 | 3.3920 |
Ours | 32.41 | 0.9799 | 3.0055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Mo, Y.; Sun, H.; Wu, F.; Dong, W. Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising. Remote Sens. 2024, 16, 1937. https://doi.org/10.3390/rs16111937
Dong L, Mo Y, Sun H, Wu F, Dong W. Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising. Remote Sensing. 2024; 16(11):1937. https://doi.org/10.3390/rs16111937
Chicago/Turabian StyleDong, Le, Yige Mo, Hao Sun, Fangfang Wu, and Weisheng Dong. 2024. "Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising" Remote Sensing 16, no. 11: 1937. https://doi.org/10.3390/rs16111937
APA StyleDong, L., Mo, Y., Sun, H., Wu, F., & Dong, W. (2024). Memory Augmentation and Non-Local Spectral Attention for Hyperspectral Denoising. Remote Sensing, 16(11), 1937. https://doi.org/10.3390/rs16111937