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Abstract: A key feature for urban digital twins (DTs) is an automatically generated detailed 3D
representation of the built and unbuilt environment from aerial imagery, footprints, LiDAR, or a
fusion of these. Such 3D models have applications in architecture, civil engineering, urban planning,
construction, real estate, Geographical Information Systems (GIS), and many other areas. While the
visualization of large-scale data in conjunction with the generated 3D models is often a recurring
and resource-intensive task, an automated workflow is complex, requiring many steps to achieve a
high-quality visualization. Methods for building reconstruction approaches have come a long way,
from previously manual approaches to semi-automatic or automatic approaches. This paper aims
to complement existing methods of 3D building generation. First, we present a literature review
covering different options for procedural context generation and visualization methods, focusing
on workflows and data pipelines. Next, we present a semi-automated workflow that extends the
building reconstruction pipeline to include procedural context generation using Python and Unreal
Engine. Finally, we propose a workflow for integrating various types of large-scale urban analysis
data for visualization. We conclude with a series of challenges faced in achieving such pipelines
and the limitations of the current approach. However, the steps for a complete, end-to-end solution
involve further developing robust systems for building detection, rooftop recognition, and geometry
generation and importing and visualizing data in the same 3D environment, highlighting a need for
further research and development in this field.

Keywords: 3D reconstruction; digital twin; geospatial visualization; urban simulation; LiDAR
integration; procedural generation; spatial data analysis

1. Introduction

The urban environment is a complex and dynamic system that is subject to continuous
evolution and change [1]. In the field of urban planning and urban analysis, traditional
methods have often struggled to keep pace with these rapid changes. The use of remote
sensing data has become more accessible over the past decade, providing more accessible
means for regular monitoring and collection of urban data [2]. In this context, DTs [2],
virtual replicas of the physical world, have become a popular approach for simulating and
analyzing the urban environment.

Traditional 3D modeling approaches for creating DTs, while useful, are often time-
consuming and inflexible [3,4]. In contrast, procedural model generation provides a more
flexible workflow. It enables the automatic regeneration of the virtual built environment
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as new data become available, addressing one of the key limitations of conventional
methods [5,6].

In recent years, the concept of urban DTs has emerged in the context of urban modeling
and planning [1]. DTs can represent a city through its physical assets [7] by creating a digital
replica of the physical asset and its rich semantic data that represent city processes [2]. They
can potentially address the challenges of effective decision making in complex systems like
cities [8].

The Digital Twin Cities Center at Chalmers (DTCC) [9] outlines six characteristics a
DT must possess: realistic, interactive, simulated, integrated, scalable, and open. Achieving
these characteristics is critical to ensure the accuracy and reliability of urban DTs. One of
the most important aspects of achieving these characteristics is the process of visualization.
Visualization can help to ensure that the DT is realistic, interactive, and scalable and can
facilitate the effective dissemination of information within the DT.

This paper presents a novel workflow for the procedural generation of urban DTs using
multiple data sources, such as GIS data on building footprints, land use, and road networks
in a game engine using Python. The procedural approach provides a more flexible and
efficient workflow that can be easily updated as the data are updated, contributing to urban
modeling and planning by offering a streamlined method for generating urban DTs. The
proposed workflow and effective visualization techniques using isoline data, volumetric
data, and streamline data can improve decision making in complex urban systems by
providing a more accurate and reliable representation of the urban environment.

The primary research question of this study is: How can we integrate diverse datasets
into a reproducible and procedural workflow to create accurate and reliable urban digital
twins? The aim of this paper is threefold:

1. First, to develop a methodology for integrating various data sources for urban modeling.
2. Second, to establish a reproducible and procedural workflow for generating urban

digital twins.
3. Finally, to incorporate effective visualization techniques to enhance the interactivity

and scalability of the digital twins.

2. Related Work

The field of 3D city modeling has seen a surge in activity from various research areas,
each employing different methods and tools to create DTs of cities from raw data. A
common goal among researchers is to develop automated, robust, and efficient workflows
to generate DTs of cities with the highest level of detail possible. Ideally, the implementation
should also be fast enough to allow for user interaction. In this section, we explore different
methods for efficient workflows in generating DTs and using large-scale visualization
to produce DTs. To conduct a comprehensive literature review, we utilized the Scopus
research database (https://www.scopus.com/sources.uri accessed on 3 March 2023). Our
search strategy involved querying the title, abstract, and keywords of relevant papers
using a specific set of terms. The search string was designed to capture studies focusing
on procedural methods, pipeline development, or workflow modeling within the context
of GIS applied to urban environments. Additionally, the search included a focus on
visualization techniques.

2.1. Methods for Efficient Workflows in 3D Building Reconstruction

For the efficient production of DTs, many researchers have focused on investigating
methods and approaches concerning efficient workflows in 3D urban context reconstruction,
visualization of the built environment, and related data. Muñumer Herrero et al. [10]
compare different methodologies and software packages for exploring the possibility of
creating various levels of detail (LoDs) from a single data source. The methods used
were TU Delft’s 3Dfier (version 1.3.2) [6], ArcGIS API version 2.1.0 for Python version
3.0 (https://developers.arcgis.com/python/), and two different reconstruction processes,
one called Polyfit version 1.5 [11] by Poux et al. [12], and another called RANSAC [13].

https://www.scopus.com/sources.uri
https://developers.arcgis.com/python/
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However, none of these methods offered a complete solution, and the authors acknowledge
that 3D generalization is essential. They also conclude that 3D models of different LoDs
that are reconstructed in an automated way are of great interest.

Visualization models for urban planning and LoDs: Regarding landscape modeling,
Wang [14] discusses using 3D landscapes in landscape design while comparing landscape
modeling methods. According to the author, people tend to automatically make decisions
based on physiological responses and engage more with nature when visualizing an
interactive landscape. The paper concludes that introducing 3D technology is critical in
optimizing urban planning and management.

At the same time, Coors et al. [15] attempt to specify the application-specific require-
ments for 3D urban models and distinguish between those that are simulatable and those
that are just for visualization purposes. The study results show no one-size-fits-all approach
to LoD and geometry attributes, the same as García-Sánchez et al. [16]. They indicate that
the oversimplification of 3D city model geometries can affect the results of computational
fluid dynamics (CFD) for wind flows. The authors conclude that models at different LoDs
(1.3 and 2.2) and semantic configurations (e.g., areas of water and vegetation) show signifi-
cant differences in wind patterns in built environments. They advocate for higher LoDs
(LoD 2.2) and semantics for better results.

Deininger et al. [17] addressed the challenges of generating CFD-ready models, high-
lighting the need for accurate and efficient models that can simulate fluid flows through
urban environments. They discuss the various techniques for generating such models, in-
cluding meshing techniques, data assimilation methods, and machine learning algorithms.
Kolbe et al. [18] also explored the differences between semantic 3D models and building
information models (BIMs) on the urban scale. They conclude that the achievable and
manageable data quality of urban models is limited by the data collection processes and
the employed standards concerning the data modeling frameworks and data exchange
capabilities. These findings highlight the need for standardization in 3D city modeling to
enable interoperability and data sharing between different systems and applications.

Regarding creating 3D city models, building footprints and digital elevation models
are commonly used as datasets [19]. Singla et al. [20] presented a cost-effective approach to
generating 3D city models from digital elevation models and OpenStreetMaps [21] data.
Building on this work, Girindran et al. [4] proposed another cost-effective and scalable
methodology for generating 3D city models that rely only on open-source 2D building data
from OpenStreetMap [21] and open satellite-based elevation datasets. The approach allows
for increased accuracy should higher-resolution data become available. This methodology
targets areas where free 3D building data are unavailable and is largely automated, making
it an attractive option for cities with limited budgets.

Other data sources used to create city models include stereo aerial images. Pepe et al. [22]
presented a 3D city model generation method using high-resolution stereo imagery as
input. The proposed approach generates high-quality 3D models while overcoming some
of the limitations of traditional photogrammetry-based methods. With high-resolution
satellite images and LiDAR scanning becoming more available, these new data sources are
more commonly used for creating city models. Buyukdemircioglu et al. [23] attempted to
combine ortho-photos and high-resolution terrain models to serve as the base data for a
DT built in a GIS application. They showcased the different stages involved in generating
and visualizing higher LoD (LoD 2 and LoD 3) DTs and the potential extension to LoD 4 in
the future.

Expanding on the work regarding LoDs in DTs, Dollner et al. [24] leveraged the
LandXplorer system as an implementation platform to create continuous LoDs. Their
approach enabled buildings to offer a continuous LoD, which is significant for various
urban planning stages. Ortega et al. [25] presented a method for creating LoD 2 3D city
models from LiDAR and cadastral building footprint data. They also classified the roofs of
the buildings into one of five possible categories using purely geometrical criteria to enable
the creation of higher LoD models.
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Exploring other city-scale simulations, Katal et al. [26] proposed a workflow that
integrates urban micro-climate and building energy models to improve accuracy in 3D
city models. Non-geometric building parameters and micro-climate data were included
after creating 3D models of buildings to capture the two-way interaction between buildings
and micro-climate. By coupling CityFFD and CityBEM, significant changes in calculated
building energy consumption were achieved.

Towards procedural workflows: Researchers have been making strides toward de-
veloping automated, robust, and efficient workflows for creating DTs of cities from raw
data. However, there is no one-size-fits-all approach to LoD and geometry attributes.
García-Sánchez et al.’s work highlights that the oversimplification of 3D city model ge-
ometries affects CFD results for wind flows, emphasizing the need for higher LoDs and
semantics [16]. Singla et al. and Coors et al.’s work provide cost-effective approaches to
generate 3D city models and specify application-specific requirements for 3D urban models,
respectively [15,20]. The study results also indicate that automated 3D models capable of
different LoDs are of great interest for visualization and simulation purposes. TU Delft’s
work is extended by [27] where the paper presents a methodology for the automated recon-
struction of 3D building models in the Netherlands, focusing on different levels of detail
(LoD 1.2, LoD 1.3, and LoD 2.2). The process utilizes building polygons and LiDAR point
cloud data to produce models suitable for various applications, ensuring consistency and
robustness for future updates. Recent advancements in integrating Geographic Information
Systems (GIS) and 3D City Modeling (3DCM) have played a significant role in supporting
automated workflows. The work by Alomia et al. [28] presents an innovative workflow
that combines GIS data with procedural modeling techniques to generate dynamic 3DCMs.
This approach not only allows for the creation of detailed urban models but also paves the
way for the automation of computer-generated architecture (CGA) rules directly from GIS
data. The flexibility of this workflow is demonstrated through a case study, showcasing its
potential in urban planning and simulation. This represents a considerable step forward in
the field, as it addresses the previously unmet need for efficient and automated generation
of 3D urban models from GIS data. In addition to GIS techniques included in procedural
workflows, recently, Chen et al. [29] demonstrated a promising method that uses deep
neural networks and Markov random fields to reconstruct high-fidelity 3D city models.
They compared their work with other methods and found that their new approach offers
better overall results and is fast enough for user interaction.

On the same topic, but on a smaller scale, Dimitrov et al. [19] explore creating a 3D
city model for Sofia, Bulgaria. It discusses the development of a CityGML 2.0-compliant
model and emphasizes the importance of this 3D model as a foundational step towards
establishing a DT for urban planning and analysis. In the southern hemisphere, Diakite
et al. [30] explores the development of a DT for Liverpool, Australia, and focuses on
integrating existing data into a 3D model using CityGML, incorporating IoT sensors, and
assessing urban liveability.

2.2. Large-Scale Data Visualization in the Production of DTs

Apart from 3D city modeling, large-scale data visualization is a crucial component
in developing DTs for cities. With the growing use of Internet of Things (IoT) devices
and smart technologies, an enormous amount of data are generated by various sources
in a city, ranging from traffic patterns, energy consumption, air quality, and more. The
challenge is to make sense of these data, and one way to achieve this is through effective
data visualization techniques [1,31,32].

As highlighted by Lei et al. [33], DTs face a range of both technical and non-technical
challenges. Through a systematic literature review and a Delphi survey with domain
experts, Lei et al. identified and elaborated on these challenges, presenting a comprehensive
list encompassing both perspectives. This study underscores the importance of addressing
data-related issues, such as interoperability, and effectively communicating information
from the DT to stakeholders.
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Data visualization is the process of representing data graphically, enabling people
to quickly and easily understand complex information. In the context of DTs for cities,
large-scale data visualization can provide valuable insights into the functioning of a city,
such as identifying patterns, trends, and anomalies [34]. It can help city planners and
policymakers to make informed decisions about various aspects of the city’s infrastructure,
including transportation, energy, and environmental management [35].

Furthermore, as discussed in the work of Ferre (2022) [36], visualization tools in urban
DTs play a pivotal role not only in data representation but also in facilitating interaction
between the DT and urban management processes. These tools, such as maps and 3D
models, serve as a medium for indirect interaction, influencing decision making, and
can facilitate effective communication among different stakeholders, such as citizens,
businesses, and government agencies [37–40]. By presenting data in an accessible and
engaging manner, it can help build awareness and support for various initiatives to improve
the quality of life in cities. Overall, research on large-scale data visualization is critical
for the development of DTs for cities, as it provides a powerful tool for understanding
and managing the complex urban systems of today and tomorrow [2]. Types of data
visualization: In a recent study, a novel interactive system for fast queries over time series
was presented [41]. The developed system can perform efficient line queries and density
field computations while providing fast rendering and interactive exploration through the
displayed data. Jaillot et al. [42] propose a method to model, deliver, and visualize the
evolution of cities on the web. The authors developed a generic conceptual model with a
formalization of the temporal dimension of cities. Next, the researchers proposed a model
for time-evolving 3D city models. The authors suggest that their visualization platform
drastically improves temporal navigation.

On a lower computer architectural level, a GPU-based pipeline ray casting method
was proposed to visualize urban-scale pipelines as a part of a virtual globe [43]. The results
of the approach indicated that the proposed visualization method meets the criteria for
multiscale visualization of urban pipelines in a virtual globe, which is of great importance
to urban infrastructure development. GPS and mobility data: By leveraging trajectory data
generated by vehicles with GPS-capable smartphones, researchers performed a network-
wide traffic speed estimation [34]. The proposed system can generate congestion maps
that can visualize traffic dynamics. By visualizing the data, the system became vital as
it enabled experts to continuously monitor and estimate urban traffic conditions, which
ultimately improved the overall traffic management process.

In another study, by visualizing a novel analytical method of bike-sharing mobil-
ity [44], the authors obtained relevant mobility flows across specific urban areas. The data
visualization can aid public authorities and city planners in making data-driven planning
decisions. The authors conducted an assessment of their system with field experts. They
concluded that the proposed system was easy to use and could be leveraged to make
decisions regarding the cycling infrastructure of cities that provide bike-sharing.

To help alleviate urban traffic congestion, a deep learning multi-block hybrid model
for bike-sharing using visual analysis about spatial-temporal characteristics of GPS data in
Shanghai was proposed [45]. The authors rendered the supply–demand forecasting of the
bike-sharing system. By capturing spatiotemporal characteristics of multi-source data, they
could effectively predict and optimize supply–demand gaps, which are vital to rebalancing
the bike-sharing system in the whole city.

Jiang et al. leveraged large-scale vehicle mobility data to understand urban structures
and crowd dynamics better [46]. The authors combined visualization systems with a
data-driven framework that senses urban structures and dynamics from large-scale vehicle
mobility data. Additionally, they included an anomaly detection algorithm to correlate
irregular traffic patterns with urban social and emergency events. The authors concluded
that their framework effectively senses urban structures and crowd dynamics, which is
crucial for urban planning and city management. Land-use and energy data: Apart from
different traffic scenarios, data visualization is also used for visualizing other thematic
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datasets in a DT, such as energy consumption of buildings or energy generation for power
plants. When mapping essential urban land-use categories (EULUC), a review by [35]
presents the progress, challenges, and opportunities using geospatial big data. The authors
indicate that land-use information is essential for landscape design, health promotion,
environmental management, urban planning, and biodiversity conservation. Additionally,
the authors propose various future opportunities to achieve multiscale EULUC mapping
research.

A novel visual analysis system, ElectricVIS, for urban power supply situations in
a city was proposed by [47]. The system can be leveraged to interactively analyze and
visualize large-scale urban power supply data. Using time patterns and different visual
views, ElectricVIS aids power experts in detecting the cause of anomalous data. After
performing user evaluation, the authors concluded that experts spent less time overall
when using ElectricVIS compared to a traditional view system to make estimations and
informed decisions. Interactivity in data visualization: Using the right visualization
workflow can have real-world benefits by providing valuable insights to decision-makers
at the city level in complex scenarios [48]. Deng et al. proposed a visual analytics system
combining inference models with interactive visualizations in order to allow analysts to
detect and interpret cascading patterns in spatiotemporal context [48]. After conducting
two case studies with field experts, the authors concluded their system could be leveraged
to reduce the time-consuming process of identifying spatial cascades. Additionally, based
on expert feedback, the system applies to large-scale urban data.

An empirical investigation is presented by Gardony et al. in [49] regarding how user
interaction in AR systems can affect users. The users were given an interactive 3D urban
environment to learn an embedded route between two locations. The study indicated that
users who used the city model to gain an overhead followed the designated route. On
the other hand, users who consistently interacted with the model could unexpectedly and
efficiently return to the route’s origin. The paper concludes that depending on the task at
hand, more research should be performed on whether to provide task-relevant views or
fully dynamic interaction to users.

Visualization platforms: Previously, researchers have presented web-based traffic
emulators [50] to visualize traffic flows. The application used collected data from roadside
sensors to visualize near-real-time and historical traffic flows. User evaluations indicated
that visualizations of traffic flow with LoD techniques could reveal traffic dynamics of
emulated traffic from the microscopic to the macroscopic scale.

More recently, real-time rendering using game engines has gained popularity in
visualizing 3D city models. Lee et al. proposed a planetary-scale geospatial open platform
using the Unity3D game engine in [51]. To generate objects in the 3D world, they used
VWorld’s geospatial data. Their platform can visualize large-capacity geospatial data in
real time, while the authors believe the proposed platform meets the needs of various 3D
geospatial applications.

In addition to technology developed for games and film, techniques from these do-
mains have also been adopted to generate effective visualization. A camera-shot design
approach to tracking evacuation changes and correlations in earthquake evacuation is
proposed by Q. Li et al. in [52]. After several different case studies, the authors conclude
that their system is efficient in helping experts and users alike gain a better insight into
earthquake evacuation by assisting them in developing a comprehensive understanding of
the situation.

3. Materials and Methods

The methodology described in this paper consists of two parts. They are world creation
and data visualization. World creation uses available GIS data to generate a 3D virtual city
model (VCM) and visualize the data using Unreal Engine (version 4.27). Data visualization
is concerned with visualizing raw data spanning a large spatial extent. This step aims to
achieve large-scale visualization while maintaining the procedural nature of the workflow
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(see Figure 1). The following sections describe the methods and datasets used in each
step. All the following steps were first prototyped using the Feature Manipulation Engine
(FME version 2021.2.5), and then, implemented in Python (version 3.9,0), a popular general-
purpose programming language (a repository containing the Python workflow is provided
in the data sources section). We also used several Unreal Engine features, such as the
Niagara particle system, the Procedural Foliage Spawner (PFS), and the Experimental
Python scripting functionality (version 4.27) to make this work possible.

Figure 1. Combined workflow for world creation and data visualization.

3.1. World Creation

For world creation, we use GIS data provided by Lantmäteriet [53] (see Table 1), the
National Department of Land Survey in Sweden, to procedurally build the natural and built
environment of the selected region. For the natural environment, the features we choose for
this paper are geographical features and vegetation, whereas the built environment consists
of existing buildings and roads. However, this workflow can be extended to finer details of
the built environment, such as road markings, traffic signage, and street furniture. We use
three pre-defined processes (PPs) repeatedly throughout the world generation workflow.
Figure 2 illustrates the workflow of these PPs. The PPs are used to rasterize vector GIS data
and combine them into a single mosaic raster image (PP 00), subtract the buffered road
networks from the raster layers (PP 01), and generate Unreal Engine-compatible tiled raster
images from the previously processed mosaic (PP 02). Additionally, we use a Gaussian
function to interpolate the values between two raster masks to simulate a blurring effect
between them. This allows the transitions between the raster masks to appear more natural.

Figure 2. Pre-defined processes used in world generation workflow.
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Table 1. Used datasets from Lantmäteriet (the National Department of Land Survey for Sweden).

Swedish Name English Name Description Format

Bebyggelse Property map Building footprints as closed polygons ShapeFile (*.shp)
Kommunikation Transport networks Transportation network as center lines ShapeFile (*.shp)
Markdata Land data Land-use classification as closed polygons ShapeFile (*.shp)
Höjddata Elevation data Ground elevation data as raster images Tagged Image Format (*.TIF)
Laserdata Laser data LiDAR scan data as point clouds Zipped LiDAR Aerial Survey (*.LAZ)

3.1.1. Terrain

Digital terrain models (DTMs) are commonly available from most national mapping
agencies. A DTM is often made available as tiled raster images, where each pixel is assigned
a value representing the height of the ground at that position. In Sweden, Lantmäteriet
provides a DTM at a two-meter-per-pixel resolution of 6.25 square kilometer tiles. To
ensure the workflow is procedural, we introduce a post-processing step that re-samples
the incoming DTM raster to a pre-determined cell spacing. The DTM is then combined
into a single raster mosaic and further re-tiled into specific dimensions to ensure the
maximum area while minimizing the number of tiles within the Unreal Engine (https:
//docs.unrealengine.com/5.0/en-US/landscape-technical-guide-in-unreal-engine/ ac-
cessed on 3 May 2023). The final step in creating the terrain tiles is to ensure the tiles are
systematically named for Unreal Engine to identify the tiling layout. Once the terrain tiles
are generated, they can be imported into the Unreal Engine using the World Composition
feature. Figure 3 shows a flowchart of the different steps used to generate the terrain masks.

Figure 3. Workflow to generate terrain tiles.

3.1.2. Roads

Road networks are also commonly available from national traffic authorities and are
often made available as center-line data with attributes such as width, speed limit, and
access. In Sweden, Lantmäteriet and Trafikverket provide road data as road center lines in
the form of LineStrings or MultiLineString vector data. The vector data consist of twenty
road classes, such as tunnels, thoroughfares, public roads, roads under construction, and a
range of road widths for each line. We simplify the roads into four common classes with
the same width and assign fixed road widths to their respective classes. The center-line
data are then post-processed to form landscape masks for the Unreal Engine. First, we
offset each road center line by a fixed distance to create a polygon around each line by
performing a spatial buffer across all center-line polylines per road class. Then, we dissolve
the resulting polygon buffer to form the road boundary regions. If there are disjointed road
networks, we create multiple dissolved regions, but in most cases, a single closed region
is created to form the road boundary region. We then rasterize (PP 00), tile (PP 01), and
rename (PP 02) the road tiles, as shown in Figure 4.

Figure 4. Workflow to generate road masks.

3.1.3. Vegetation

Lantmäteriet provides data regarding land-use classification in the form of vector
polygons. The data consist of 13 natural and human-made land-use classes: water, conif-
erous forests, low built-up, high built-up, and industrial areas. For simplicity, we reduce

https://docs.unrealengine.com/5.0/en-US/landscape-technical-guide-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/landscape-technical-guide-in-unreal-engine/
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the land-use classes to five: water, forest, farm, and urban. For each land-use class, the
vector data are first rasterized with binary cell values (0 representing the absence of the
land-use class and 1 representing its presence) to the pre-defined cell spacing as the terrain
tiles. The PP of rasterizing, tiling, and renaming output tiles is carried out as shown in
Figure 5. Additionally, as illustrated in Figure 1, we use the Unreal Engine Procedural
Foliage System (PFS) to randomly populate instances of pre-selected foliage models such
as coniferous or deciduous trees in the appropriate land-use classes.

Figure 5. Workflow to generate terrain masks.

3.1.4. Buildings

The building meshes are generated using two datasets provided by Lantmäteriet, the
building footprints, and a LiDAR point cloud using the Builder platform [54]. First, we
determine the mean height of the buildings by averaging the values of points in the z
dimension above a building’s footprint. An LoD1 building mesh is generated by extruding
the building footprints to their respective heights. The buildings are then repositioned in
the z dimension to meet the terrain and generate the building mesh. The building mesh is
translated to be compatible with the modified coordinate system within the Unreal Engine
to align with the rest of the generated data. This mesh is then imported into the Unreal
Engine, as shown in Figure 6.

Figure 6. Workflow to generate building meshes.

3.2. Unreal Engine Workflow
3.2.1. Integration of Landscape Tiles

The final step in preparing the landscape tiles is to ensure that the different layers are
incorporated into a seamless composition. We address two issues in this step. First, the
land-use boundaries are generated irrespective of the road networks; this causes an overlap
of binary raster values at the intersection of a land-use class and a road segment. Second,
the process of rasterizing vector data results in a steep drop in the cell values, which are
presented as pixelated boundaries at the edge of the boundaries. First, we subtract the
raster data for the land-use layers with the road network to avoid any overlap; then, we
apply a raster convolution filter across the layers using the Gaussian function, ensuring a
gradual falloff in values at the boundaries of the layers. To complete the integration process,
we import the terrain mask into the Unreal Engine using the World Composition feature, then
provide the scaling factors in the x, y, and z dimensions to ensure real-world dimensions
and assign the subsequent landscape masks to a procedural landscape material, as shown
in Figure 7.
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Figure 7. Combined workflow to generate textured terrain.

3.2.2. Procedural Landscape Material

In its material editor, Unreal Engine offers a Landscape Layer Blend feature. This feature
enables us to blend together multiple textures and materials linked to the landscape masks
generated in the world creation step. A layer is added for each class of landscape material
(farm, forest, water, etc.), and a texture is assigned to it.

3.3. Data Visualization

Visualization, virtual experimentation, and test-bedding are some of the key appli-
cations of VCMs [1]. The data to be visualized are produced by sensors, analysis, and
simulations in various data types. The following section outlines visualization methods for
isoline, volumetric, and 3D streamline data (see Figure 8). The isoline data are visualized
by overlaying a scaled color value on the terrain texture. Volumetric data are visualized as
volumetric particles of scaled color values, and 3D streamlines are visualized as either static
or moving streamlines of particles also of a scaled color value. Urban wind simulations
are conducted using the Immersed Boundary Octree Flow Solver (IBOFlow®), previously
validated for such purposes [55]. For wind comfort evaluation, historical meteorological
data and local wind conditions are considered, taken from the Swedish National Weather
Agency, and the expected wind speeds are statistically related to the perceived wind com-
fort of pedestrians. The Lawson LDDC criterion is employed for this analysis [56]. Wind
data from 1961 to 2021 are sourced from the Swedish Meteorological and Hydrological
Institute at Gothenburg, Sweden, at a height of 10 m above ground.

Figure 8. Illustration of the three data visualizations presented in this paper (from left to right):
isoline, volumetric, and streamlines.

The simulations take into account the city’s features, such as its cityscape, vegetation,
and forests, applying a Davenport–Wieringa roughness classification with a roughness
length of 0.5 m. They are run in eight discrete wind directions with a reference velocity of
5 m/s in a domain that spans 1.3 km by 1.8 km, surrounded by a larger non-modeled area
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of 3.5 km by 3.5 km. The mesh used in the simulation contains approximately 10 million
grid cells.

A novel approach is taken where the domain remains cuboidal and fixed while the
geometries rotate according to the wind direction, which suits the immersed boundary
method. Boundary conditions include a total pressure outlet, symmetry conditions on the
domain sides and top, and standard wall functions for the ground and building surfaces.

The steady-state Reynolds-averaged Navier–Stokes equations are solved with the K-G
SST model to estimate the pressure coefficient on building surfaces. This approach provides
a comprehensive analysis of wind impact on urban environments, particularly assessing
wind comfort for pedestrians in city settings.

The noise levels due to road traffic in the area are calculated according to local regula-
tions, following the Nordic Prediction Method for Road Traffic Noise [43]. The model uses
data on the elevation of the terrain, ground type (acoustically soft or hard), buildings and
noise barriers (footprint and height), and location of road segments, with accompanying
data on traffic flow (driving speed and number of light and heavy vehicles per 24 h). The
model can be used to predict both 24 h-equivalent noise level and maximum noise level
due to the passage of the noisiest vehicle type. Here, equivalent levels were calculated and
presented as day–evening–night noise levels (Lden in dB). The indicator Lden applies a
penalty on evening and night levels and is used within the EU. In the presented study, the
daytime level (Lday) is also of interest, which is estimated to be 1.6 dB lower than Lden.
The model is implemented in numeric code (using Matlab version r2018b and Python
version 3.8) to calculate the noise level at a grid of receiver positions elevated 2 m above
the ground surface, i.e., a grid noise map. Also, facade noise level calculations can be made.
The ground surface model (sampled at a 2 m grid size) and built elements are provided
from the developed workflow described above, whereas the road segments are imported
as ShapeFiles with the traffic data as attributes. In the calculation, each road segment is
divided into a set of acoustic point sources, and for each source–receiver pair, the noise level
contribution is calculated following the Nordic Prediction Method (including one facade
reflection), where a vertical cut plane defines the propagation condition in terms of ground
profile, ground type, and shielding objects. As post-processing, the total noise level at each
receiver position (grid point) is collected and exported as a CSV file for further analysis.

3.3.1. Isoline Data

Results from analyses conducted over a large area, such as noise and air quality, are
available as 2D isolines from other project partners. The closed curves in the dataset
represent a region with a constant value, and adjacent curves represent a fixed change in
the value. The isoline data are first converted to a raster image, where we pack our data
into a single grayscale image to have normalized values. We then extend the procedural
landscape material to visualize data on top of the terrain, allowing us to paint pixels in
certain areas that match our data. Considering that our data were packed into a single
texture and each terrain tile had the same material instance applied, we introduced a
custom material function in the editor that allowed us to use different data textures with
various dimensions and colormaps.

First, we scaled the data texture to match the available terrain data. Then, in the
material code, we accessed each pixel of the data texture and read its normalized value
to map it to its respective color from the assigned color map. Next, we performed a
linear interpolation between the base terrain layer (containing the existing materials of the
environment, such as water, grass, and earth) and the visualized data texture, thus allowing
us to display colored data on top of the terrain while showcasing the natural environment
in the areas where no data were available in the data texture.

3.3.2. Volumetric Data

To visualize volumetric data available throughout a 3D space, such as air pollution
or noise levels, we again employed the strategy of encoding the data into textures (data
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textures) (see Figure 9) that can be used for real-time visualization in Unreal Engine. These
textures are then used to, e.g., create dynamic cut-planes using materials coded in Unreal
Engine to look up the data dynamically based on the current 3D position on the surface. As
these textures fold 3D data into a 2D texture, particular care must be taken to interpolate
data along the z-axis (up/down in Unreal Engine). Data from the same x–y-coordinate is
sampled from two places in the data texture, corresponding to the two closest z-coordinates
in the data. Then, these data are interpolated to reflect the exact z-coordinate that should be
sampled. The same data textures are also used as the basis for particle visualizations using
the Niagara particle system in Unreal Engine, changing color, size, lifetime, etc., of particles
depending on the data corresponding to the particle’s position in three dimensions.

Figure 9. Data texture with 64 (8 × 8) z-levels. The contrast has been enhanced here for illustrative
purposes.

The support for Python scripting in the Unreal Engine Editor provides an efficient
workflow for generating the data textures. We used the experimental Python Editor Script
Plugin to use the Python scripting language in Unreal Engine. Python makes it easy to
read and prepare most data types using commonly available libraries, such as NumPy, and
automatically imports these into native Unreal Engine Textures.

3.3.3. Particle Streamlines

We explored two different strategies for generating 3D streamlines, which show, for
example, air flows in the 3D space around and between buildings.
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First, we used C++ to generate procedural meshes, creating a colored tube for each 3D
streamline. This visualization was high-fidelity and suitable for a limited number of static
streamlines but did not allow for performant visualization of a large number of streamlines.

To enable the visualization of several thousand streamlines, we used the Niagara parti-
cle system integrated into Unreal Engine. By encoding streamlined data into data textures,
as described above, the locations of streamlined segments were made accessible to the GPU
using the Niagara particle system in Unreal Engine. These data generated one particle per
segment of the streamlines and placed them with the correct positions and orientations
to make up streamlines. With this approach, we can achieve real-time performance with
10,000+ streamlines with up to 1000 line segments per streamline, corresponding to several
million line segments.

One challenge with this approach was that the position data saved into the texture
needed higher precision than what is commonly used in textures for computer graphics.
To properly encode the data, 32-bit textures were required. While this is supported in
many key places along the pipeline (e.g., in Python and Niagara), it is not supported
in the standard functions for importing textures into Unreal Engine at the time of this
implementation. As such, we created and imported two 16-bit textures and merged them
into one 32-bit texture using RenderTargets that currently supports 32-bit texture data. This
32-bit RenderTarget texture can be accessed directly from Niagara, providing the required
data precision.

Procedural Meshed Streamlines

To create procedural streamlines, we parse the data for each streamline, a collection of
points. Once we have parsed all the points for a given streamline, we generate a cylinder-
like mesh around each point. The mesh generation process requires the following steps:

1. Generating vertices around each parsed point of the streamline;
2. Creating triangles between the generated vertices;
3. Connecting sequential vertices that belong to different points.

To demonstrate how the algorithm works, consider the following case. Assume that
we have parsed point O from our data. As a first step, based on the description above,
we need to generate vertices around that point. For that, we choose a value that can be
modified in Unreal Engine, called CapVertices, which is the number of vertices that will
be generated around point O. Using the polar coordinate system, we can create an initial
vector O⃗A which we are going to rotate 360/CapVertices degrees for CapVertices times around
X axis to create the required vertices for the parsed point:

Once the vertices have been generated, the next step of the process is to create the
required triangles to connect them. Considering Figure 10, we generate a cylinder cap
for the parsed point by connecting every three vertices counterclockwise. This process is
repeated for all the parsed points of a single streamline. For the mesh to look streamlined,
we must connect the generated vertices belonging to different points. Figure 11 displays
the generated vertices for the first and second points of a streamline, respectively. Then, to
create a cylinder-like mesh between the two streamline caps, we generate a parallelogram
for vertices 1, 2, 13, and 14 (displayed in the lower image section on Figure 11.

For the mesh to appear smooth and consistent, we must connect vertices 2, 13, and
1 and 2, 14, and 13 in a counterclockwise fashion. By repeating this process for all the
generated vertices around all points in each streamline, we create a single cylinder-like
mesh for the whole streamline.
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Figure 10. Generated vertices around point O.

Figure 11. Upper images: Generated vertices around the first and second points of streamline. Lower
image: A flattened display of connected vertices of two sequential points.

4. Results

This section presents the results of the world creation and data visualization workflows.
The results from the world creation workflow consist of asset generation using our workflow
and the time required to generate and load the assets. Then, we present the results of the
Unreal Engine workflow. Finally, we present the results of each visualization type—isoline
data, volumetric data, and streamline data.
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4.1. World Creation

World creation is the process of generating assets for Unreal Engine to consume and
produce a realistic 3D representation of the real world. There are two steps to this process,
generating the assets and the Unreal Engine workflow itself.

4.1.1. Generating Assets

The procedural workflow described in the Materials and Methods section is imple-
mented in the Python programming language and designed to be easily adaptable to
different data sources. It is an automated pipeline, and the only input required is the raw
GIS data.

4.1.2. Unreal Engine workflow

Lantmäteriet provides the data containing the boundary for each land-use category
(see Figure 12). These categories include land-use types such as roads, water, forest, farm,
urban, and open land. Since this information is available as vector data, it must be first
converted into raster data before Unreal Engine can use it. Unreal Engine uses these black
and white masks as raster images to identify where the different materials must be applied
within the 3D model (black representing the absence of a category and white representing
the presence of it). One of the problems we encounter in this process is the interaction
between the different land-use types at the edges of the boundary. The edges are sharp
and do not blend into one another naturally. The final image with the blended materials
overlaid with simulation data is shown in Figure 13.

Figure 12. Aerial view of terrain model with landscape masks applied—Unreal Engine. The colours
represent different land use regions

We use a Gaussian function to smooth the edges naturally to solve this. The softening
of the edges is achieved using convolution, where a matrix operation is performed on an
array of pixels according to a set of pre-defined weights. Figure 14(A1,A2) show a land-use
mask for a region containing forests and roads, respectively, with no filtering. Figure 14B,C
show the results of different weights provided to the Gaussian function. Figure 14D,E show
the results of the layer blending once the processed masks are loaded into Unreal Engine.



Remote Sens. 2024, 16, 1939 16 of 24

Figure 13. Aerial view of the final 3D model—Unreal Engine.

Figure 14. (A1–C1,A2–C2) Results of convolution filters on the landscape masks. (D,E) Result of
convolution on landscape masks—Unreal Engine.

Combining multiple layers allows adding a level of detail to the geometry without
increasing the complexity of the 3D model. This is achieved by layering specific textures
that inform Unreal Engine on how light interacts with these materials. Figure 15 shows an
image from the final model with the diffuse colors turned on and off. In the sections where
the colors are turned off, we see fine details on the ground that vary depending on the
land-use type. These details are created using bump and displacement textures that contain
information on how the smooth terrain can be distorted to provide natural imperfections
to the model without requiring additional polygons. The buildings are loaded into Unreal
Engine as LoD1 building meshes and aligned to their coordinate position (see Figure 16).

Figure 15. Composition of material details in the 3D model—Unreal Engine.



Remote Sens. 2024, 16, 1939 17 of 24

Figure 16. LoD1 meshes within Unreal Engine.

4.2. Data Visualization

Once the 3D representation of the world is achieved, DTs must also be able to visualize
various data types resulting from urban simulations like CFD and noise studies. In this
section, we outline three common result data types that are visualized in DTs, isoline,
volumetric and streamline data, with examples provided for each.

4.2.1. Isoline Data

A dataset containing the results of a noise simulation for a region was used to illustrate
the visualization of isoline data. The dataset contains vector data in the form of polygons
representing different intensities of noise levels. The vector data are encoded into a 2D
texture. The 2D texture is then remapped within Unreal Engine to a color scale selected
by the user and draped over the landscape. Figure 17 shows the results of visualizing the
isoline data.

Figure 17. (Left, top) Unreal Engine user interface for loading the color scale image and the grayscale
mask of data to be visualized. (Left, bottom) Grayscale mask to be visualized. (Right) Final
visualization of grayscale mask—Unreal Engine.

4.2.2. Volumetric Data

A dataset covering a volume of 512 × 512 × 64 was encoded into a data texture by
folding the z-coordinate into an 8 × 8 grid in a 2D texture. This requires the total resolution
of the texture to be (512 × 8) × (512 × 8) = 4196 × 4196. The calculations required to look up
the data in this texture are performed directly in the Niagara particle system module, which
can run on the GPU. Particles can be spawned and placed within this volume in several
ways, but we primarily spawn particles randomly within the volume and kill them if they
are, e.g., below a set threshold value (see Figure 18). This approach makes it easy to vary
the number of particles used to visualize the data depending on performance requirements.
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Figure 18. Volumetric data visualized with particles on top of generated building and terrain
geometry. With up to 2 million particles, colored to show NO2 concentration and moving to visualize
wind. The median frame time is 7 ms, with approximately 5 ms for the environment and 2 ms for the
particle visualization.

4.2.3. Streamlines

Any vector flow data can be visualized as 3D streamlines, where each streamline is a
representation of the path a vector field takes. The components of a streamline are a vector
and a magnitude at a resolved interval. In the case of CFD data, streamlines can show the
direction and path of the wind along with the intensity of wind speed. It is also desirable to
interpolate along the streamline to show the magnitude variation along the path the wind
is moving in.

Procedurally generated streamlines and particle streamlines have complementary
values, as procedurally generated streamlines have higher visual quality up close, but
particle streamlines perform better with many streamlines. Figure 19 shows an overview at
a distance where it is not possible to tell the difference visually. Here, it would generally
be preferable to use particle streamlines. Figure 20 shows a close-up comparison, where
artifacts can be seen in the sharp turns of particle streamlines to the left. Table 2 lists
performance numbers for the two options with different numbers of streamlines.

Figure 19. Streamlines overview showing 1003 (from a specific dataset) streamlines over generated
building and landscape geometry.
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Figure 20. Streamlines comparison. (Left) displays the particle system implementation and
(Right) streamlines with the procedural mesh.

Table 2. Comparison of performance of procedural streamlines and particle streamlines, with different
numbers of streamlines. Median frame timings over 15 s on Nvidia GeForce RTX 2080 Ti. (Nvidia
Corporation, Santa Clara, CA, USA)

Streamlines Number Procedural Streamlines Particle Streamlines

1003 12 ms 5 ms

4158 47 ms 12 ms

8316 134 ms 51 ms

12,474 247 ms 127 ms

5. Limitations and Discussion

The results of the proposed workflow show how a realistic virtual city model can
be generated and how large-scale data can be visualized efficiently and accurately for
various data types. One of the main advantages of our proposed workflow is that it
allows decision-makers to view alternate scenarios, both real and simulated, to make well-
informed decisions. For instance, decision-makers can use the resulting virtual city model
to test different traffic scenarios and assess air pollution or noise levels resulting from a new
construction project. In comparison to techniques previously described in the literature,
the aim of this paper was to combine data acquisition pipelines with reproducible and
procedural workflows that anyone can access. Our methods do not explicitly require access
to any proprietary software or datasets and can be implemented on almost all modern
personal computers.

Our workflow’s final output is a visual representation of the real world. Like any
representative technique, our methods use different levels of abstraction to simplify this
process. As such, a “validation” of this process goes beyond the technical details of im-
plementation. While there is significant literature on visualizing scientific data, such as
simulation results, validating the visual quality of the digital twin can be highly subjective.
It depends on the context in which the visualization is presented, the audience, and, most
importantly, the intent of the communication. While the scope of the paper is limited to the
technical description of the methods, we point readers interested in the qualitative valida-
tion of our methods to [57], where we conducted user studies in real-world scenarios with
stakeholders to gather feedback on their subjective experiences within the 3D environments
generated through our methods in virtual reality.
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The proposed workflow is not intended to be an absolute solution for creating DTs;
rather, it is a starting point on which further research can build. The steps for a complete,
end-to-end solution involve developing robust systems for building detection, rooftop
recognition, and geometry generation and importing and visualizing data in the same
3D environment. The workflow may be enriched by adding new semantic categories for
land-use types. With developments in artificial intelligence and computer vision, it may
be possible to identify additional LoD elements from the urban environment, such as
roofs [58,59], facade details [60,61], and the positions of park benches, street lights, and
other urban furniture. New real-time data sources may also be visualized, such as dynamic
positions of public transport systems, cars, and pedestrian flows. The landscape of real-time
game engines such as Unity and Unreal Engine is developing at a rapid pace; the main
bottlenecks to achieving higher accuracy and detail lie in the quality and availability of
data sources. As new data sources become more readily available, the workflow can be
adapted to cover new data types to be visualized.

With developments in communication systems and cloud-based computing, it is also
now becoming possible to run complex real-time multi-domain urban simulations such as
noise, radiation, energy, and wind [62] and optimize the architectural design variables [63]
to improve the sustainability of cities [64]. The preliminary data types supported by our
workflow should be sufficient in the near future to support the visualization results from
any such simulations.

However, there are limitations to the proposed method. Spatial data is often not
available in all regions and, when available, may not be of high quality. Additionally,
spatial data may use several different coordinate reference systems, which are generally
not natively supported by software like Unreal Engine. This necessitates manually aligning
meshes such as buildings and terrain with data visualizations and analysis layers, leading to
inconsistencies. Another limitation is the significant computational resources and expertise
in GIS and game development required. Moreover, maintaining and updating digital twins
of cities demands constant integration of extensive and dynamic data from multiple sources
to accurately represent the evolving urban landscape [65]. Our proposed workflow does
not address these complexities despite the importance of a synchronous digital twin [66].
The methods presented are limited to the procedural creation of virtual 3D environments
as a base for an urban digital twin system. Currently, the workflow supports only static
data visualization, and further research is necessary to enable simulations within a digital
twin and the visualization of large-scale, real-time urban data.

6. Conclusions

Generating virtual environments that represent the physical world is time-consuming
and often complex. This paper presents a workflow for the procedural generation of such
virtual worlds using commonly available GIS datasets enabled through modern game
engines like Unreal Engine. In addition to generating virtual worlds, we present workflows
to visualize data from large-scale analysis of the built environment in raster and vector
formats. The methods presented in the paper can be elaborated to include a greater level
of detail, such as the number of land-use classes included in the model, increasing the
points in the material and texture composition, and increasing the level of detail in the
building meshes.

For researchers interested in building on these techniques, we suggest further in-
vestigating how to efficiently visualize real-time sensor data from IoT sensors and how
can visualization techniques developed within the game development industry be car-
ried over into the research and development of urban digital twins. We point readers to
open-source work on visualizing sensor data by developers at the consulting firm WSP
(https://github.com/Azure-Samples/azure-digital-twins-unreal-integration (accessed on
20 May 2024)) as a practical starting point. We also encourage researchers to conduct
empirical user studies to evaluate the effectiveness of visualization techniques in urban DTs
for different types of data sources (see [67]). The role of LoDs in communicating scenarios

https://github.com/Azure-Samples/azure-digital-twins-unreal-integration
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of planning and redevelopment through DTs is another interesting research direction to
pursue, building on research from the fields of architecture and urban planning. While the
exploration of multi-domain urban simulations was not within the scope of this paper, it
offers an under-explored research area for DTs. Urban simulations are often carried out in
silos by domain experts; researchers can investigate what additional value DTs may offer
and how these results may be communicated to decision-makers effectively (see [62]).

In conclusion, the workflow presented in this paper shows an innovative approach to
creating 3D virtual city models, visualizing large-scale urban data using GIS, and leveraging
the advances in real-time game engines like Unreal Engine. Viewing urban data in a
realistic context can help decision-makers make more informed decisions. However, our
workflow requires significant computational resources and expertise, and the availability
and accuracy of GIS data needed for this workflow may be a limiting factor.
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