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Abstract: The study focused on the prediction of the Temperature Vegetation Dryness Index (TVDI),
an agricultural drought index, for a Mango orchard in Tamale, Ghana. It investigated the temporal
relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and
TVDI. The SPI was calculated based on utilizing precipitation data from the World Meteorological
Organization (WMO) database (2010–2022) and CMIP6 projected precipitation data (2023–2050) from
35 climate models representing various Shared Socioeconomic Pathway (SSP) climate change scenar-
ios. Concurrently, TVDI was derived from Landsat 8/9 satellite imagery, validated using thermal
data obtained from unmanned aerial vehicle (UAV) surveys. A comprehensive cross-correlation
analysis between TVDI and SPI was conducted to identify lag times between these indices. Building
on this temporal relationship, the TVDI was modeled as a function of SPI, with varying lag times as
inputs to the Wavelet-Adaptive Neuro-Fuzzy Inference System (Wavelet-ANFIS). This innovative
approach facilitated robust predictions of TVDI as an agricultural drought index, specifically relying
on SPI as a predictor of meteorological drought occurrences for the years 2023–2050. The research
outcome provides practical insights into the dynamic nature of drought conditions in the Tamale
mango orchard region. The results indicate significant water stress projected for different time frames:
186 months for SSP126, 183 months for SSP245, and 179 months for both SSP370 and SSP585. This
corresponds to a range of 55–57% of the projected months. These insights are crucial for formulating
proactive and sustainable strategies for agricultural practices. For instance, implementing supple-
mental irrigation systems or crop adaptations can be effective measures. The anticipated outcomes
contribute to a nuanced understanding of drought impacts, facilitating informed decision-making for
agricultural planning and resource allocation.

Keywords: drought; lag time; SPI; TVDI; Wavelet-ANFIS

1. Introduction

Global climate changing, especially in arid and semi-arid regions, has caused notable
shifts in precipitation patterns. Consequently, this has led to changes in the occurrence
of hydrological extreme events like floods or droughts, both temporally and spatially [1].
Responding appropriately to these threatening impacts requires specific measures to protect
the population, increase their resilience, and support more sustainable and climate-resilient
agricultural practices [2]. In this regard, the simulation and prediction of drought condition
using historical data and climate change scenarios for agricultural farmland is needed. This
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can be done by downloading the data of Coupled Model Intercomparison Project Phase
6 (CMIP6), which is based on different shared socioeconomic pathway (SSP) scenarios of
projected socioeconomic global changes up to the end of this century [3,4]. One of the major
threats to agricultural productivity is drought. Drought is a multidimensional concept
and categorized as a natural hazard. It is a complex phenomenon, which is difficult to
monitor and define. In order to have a tangible understanding of drought, it is better to
categorize different types of droughts. Then the best definition for each category can be
provided. Agricultural water management studies have mostly focused on two types of
droughts, meteorological and agricultural [5]. Meteorological drought occurs when there
is a deficit in precipitation compared to the long-term average. Standard precipitation
index (SPI) makes it possible to calculate meteorological drought base on the amount
of precipitation [6]. Agricultural droughts are usually accompanied by meteorological
droughts. If the available water for a crop in each stage of the development is not sufficient,
the farming system will be faced with water stress and consequently the crop yields
will drop and agricultural drought occurs [7,8]. Indication of water stress of plants are
manifested in increased leaf temperature and decreased vegetation (leaf) water content
(VWC). Thus, many studies focusing on vegetation water balance are based on land surface
temperature (LST). In the past, the LST was measured by infrared thermometers, which
was costly and time-consuming. Since the 1980s, remote sensing (RS) data, particularly
satellite imagery, has been used for LST calculations [9]. When referring to satellite position,
the term “surface” denotes anything visible from the atmosphere on the Earth’s surface. For
instance, in a mango orchard, the tree canopy is regarded as a surface, therefore the Land
Surface Temperature (LST) is equivalent to the leaf surface temperature [10]. In this regard,
many studies developed and improved LST retrieval methods to estimate crop water stress
and consequently irrigation water demands for RS data [11–14]. Furthermore, RS has been
used to calculate vegetation indices (VIs) like the normalized difference vegetation index
(NDVI). The relationship between NDVI and LST has been used to track crop and orchard
water stress through the temperature vegetation dryness index (TVDI). The TVDI measures
a combined signal of both soil moisture under trees and the leaves water status [15]. The
Landsat 8 and 9 satellite platform combines multispectral and thermal band information
and comes with relatively high spatial resolutions, consistency and the free availability
of the data by the U.S. Geological Survey (USGS), which made these platforms especially
useful for calculating TVDI information [16–19].

Various fields of science and technology have utilized data-driven computing tools
such as artificial neural networks (ANNs) and fuzzy logic, for modeling purposes [20,21].
These techniques are based on ideas how information is processed in biological systems.
One of the advantages of such “soft” computing methods in system modeling is getting
accurate results without having well-defined nonlinear physical relations between vari-
ables [22,23]. Adaptive Neuro-Fuzzy Inference System (ANFIS) is a method that combines
the advantages of both neural networks and fuzzy logic. ANFIS are a type of adaptive
networks that functions like fuzzy inference systems, and are potent processing tools for
solving complex problems [24,25]. Many studies have been shown that ANFIS is one of
the most suitable data driven models for drought monitoring [26–30]. Although artificial
intelligence-(AI) methods such as ANFIS and feed forward neural network (FFNN) are
flexible and useful methods in meteorological simulation studies, they have some limita-
tions with non-stationary time series data, and input/output data requires pre-processing.
One way to accomplish this is using signal processing with wavelet transforms, which, in
combination, lead to hybrid models known as Wavelet-ANFIS [31].

The main aim of the present study is to predict the TVDI as an agricultural drought
index for a Mango orchard located in Tamale, Ghana. The research focuses on exploring
the lag time between the meteorological drought index, SPI, and the TVDI. The approach
involves utilizing precipitation data obtained from the World Meteorological Organization
(WMO) database, which contains 18 years of monthly-observed data from 2005 to 2022.
Additionally, CMIP6 projected precipitation data between 2023 and 2050 from 35 different
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climate models representing various SSP scenarios are included. The SPI is then calculated
based on the latter data. The TVDI is calculated in the next step using Landsat 8 and
9 satellite data validated with an unmanned aerial vehicle (UAV) thermal data survey. By
analyzing the cross-correlation between the TVDI and SPI, the lag time between the two
indices is identified. Based on this, the TVDI is defined as a function of SPI with varying
lag times as inputs to a machine learning model, Wavelet-ANFIS, i.e., the TVDI will be
predicted based on SPI as an agricultural drought index for upcoming decades (2023–2050).

2. Materials and Methods
2.1. Study Area and Precipitation Data

In this study, a Mango orchard located in the northern region of Ghana with the
distance of about 9 km from Tamale meteorological station was selected (Figure 1). The
longitude and latitude of the field center and meteorological station are 9◦32′44.1′′N,
0◦55′58.2′′W and 9◦33′00.0′′N, 0◦51′00.0′′W, respectively (path/row: 194/53 for Landsat 8
and 9 satellite images).
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Figure 1. The study area: Mango orchard northwest from Tamale (Ghana).

Monthly precipitation data for the time interval of January 2005 to December 2022 were
obtained from SYNOP/BUFR (SYNoptic/Binary Universal Form for the Representation
of meteorological data) meteorological observations, which are provided by the World
Meteorological Organization (WMO) for global exchange of meteorological data between
national weather services (Figure 2).
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2.2. Extracting Precipitation Data for Time Interval of 2023–2050 Using CMIP6 Data

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is a multi-model ap-
proach aimed at improving the prediction of climate change. It involves the coordinated
use of global climate models developed by various research groups worldwide. CMIP6
provides a platform for comparing and synthesizing projections of future climate change.
In total, it incorporates 35 climate models (Table 1) representing 4 different shared socioe-
conomic pathway (SSP) climate scenarios. These SSP based scenarios span a range from
sustainable and green pathway (SSP126) to ongoing growth in emissions from fossil fuels
(SSP585). SSP245 and SSP370 fall in between the two scenarios mentioned above [32].

Table 1. The list of the complete names of the 35 models in CMIP6.

No Acronym Name

1 UKESM1-0-LL United Kingdom Earth System Model

2 TaiESM1 Taiwan Earth System Model version 1

3 NorESM2-MM Norwegian Earth System Model-medium atmosphere-medium ocean resolution

4 NorESM2-LM Norwegian Earth System Model-low atmosphere-medium ocean resolution

5 NESM3 The NUIST Earth System Model version 3

6 MRI-ESM2-0 The Meteorological Research Institute Earth System Model Version 2.0

7 MPI-ESM1-2-LR Max Planck Institute Earth System Model-Lower-Resolved version

8 MPI-ESM1-2-HR Max Planck Institute Earth System Model-Higher-Resolution version

9 MIROC6 Model for Interdisciplinary Research on Climate

10 MIROC-ES2L MIROC-Earth System version 2 for Long-term simulations

11 KIOST-ESM Korea Institute of Ocean Science and Technology Earth System Model

12 KACE-1-0-G Korea meteorological Administration advanced Community Earth-system model

13 IPSL-CM6A-LR Institut Pierre Simon Laplace Climate Model

14 INM-CM5-0 Institute for Numerical Mathematics-Climate Model version 5.0

15 INM-CM4-8 Institute for Numerical Mathematics-Climate Model version 4.8

16 IITM-ESM Indian Institute of Tropical Meteorology-Earth System Model

17 HadGEM3-GC31-MM Hadley Centre Global Environment Model ver. 3-General Circulation Model 31-Model Mean

18 HadGEM3-GC31-LL HadGEM3-GC31-Low Latitude

19 GISS-E2-1-G NASA Goddard Institute for Space Studies-Earth sys. model ver. 2, config.1-Grand Ensemble

20 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory-Earth System Model version 4

21 GFDL-CM4_gr2 Geophysical Fluid Dynamics Laboratory-Climate Model version 4, grid resolution 2

22 GFDL-CM4 Geophysical Fluid Dynamics Laboratory-Climate Model version 4

23 FGOALS-g3 Institute of Atmospheric Physics Global Ocean-Atmosphere-Land System Model

24 EC-Earth3-Veg-LR ECMWF Earth System Model with Vegetation

25 EC-Earth3 ECMWF Earth System Model

26 CanESM5 Canadian Earth System Model

27 CNRM-ESM2-1 Centre National de Recherches Météorologiques Earth System Model

28 CNRM-CM6-1 Centre National de Recherches Météorologiques Climate Model

29 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change-Earth System Model version 2

30 CMCC-CM2-SR5 CMCC-Climate Model version 2, Spectral Resolution 5

31 CESM2-WACCM Community Earth System Model with Whole Atmosphere Community Climate Model

32 CESM2 Community Earth System Model version 2

33 BCC-CSM2-MR Beijing Climate Center Climate System Model

34 ACCESS-ESM1-5 Australian Community Climate and Earth System Simulator

35 ACCESS-CM2 Australian Community Climate and Earth System Simulator
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As shown in Figure 3, the climate change scenarios can be obtained from the NASA
Earth Exchange Global Daily Downscaled Projections-CMIP6 (NEX-GDDP-CMIP6) archive
using a GitHub repository [33]. Since the estimation of monthly meteorological drought
index is needed for the present study, the time series of monthly precipitation drought
for each SSP scenario has been extracted from the global climate models. To mitigate
the influence of outlier data (extreme values) for each month, the median values of the
35 models have been selected to represent monthly precipitation in the study area (see
Figure 4). Specifically, the median precipitation value across the 35 global climate models
(GCMs) has been utilized to assess changes in monthly precipitation [34]. The median
value reflects the consensus among the majority of models regarding drought, normal, or
wet conditions. For instance, if at least 18 models indicate a drought condition, the median
value would indicate a drought condition for each Shared Socioeconomic Pathway (SSP)
scenario.
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Figure 4. The monthly precipitation values for of CMIP6 climate change scenarios for Tamale, Ghana
(lat/lon: 9◦32′44.1′′N/0◦55′58.2′′W).

2.3. Landsat 8 and 9 Satellite Image Acquisition and Data Preprocessing

Landsat 8/9 satellite provides nine spectral bands based on the Operational Land
Imager (OLI) sensor that covers the range from 0.45 to 2.29 µm, and two thermal bands
based on the Thermal InfraRed Sensor (TIRS) sensor that work in the high infrared range
of 10.0–12.5 µm. The OLI bands have a relatively high horizontal resolution of 30 m, and
the frequent sweep of the satellite over the same corridor at the earth’s surface appeared
in intervals of 16 days. These images are freely available through the USGS website,
http://earthexplorer.usgs.gov (accessed on 21 March 2024). In total, 52 cloud-free Landsat
images (39 from Landsat 8 and 13 from Landsat 9), with less than 5% cloudiness, were
acquired during the time interval of 2020–2022 (Table 2).

http://earthexplorer.usgs.gov
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Table 2. Landsat 8 and 9 (L8/L9) overpass over the orchards; path/row: 194/53, Time: between 10:20
and 10:21 Local time (equal to Greenwich Mean Time).

Satellite Date Satellite Date Seattleite Date Seattleite Date

L8 9 January 2020 L8 23 October 2020 L8 7 August 2021 L9 5 December 2021
L8 25 January 2020 L8 24 November 2020 L8 26 October 2021 L9 21 December 2021
L8 10 February 2020 L8 10 December 2020 L8 11 November 2021 L9 6 January 2022
L8 26 February 2020 L8 26 December 2020 L8 27 November 2021 L9 22 January 2022
L8 13 March 2020 L8 11 January 2021 L8 13 December 2021 L9 7 February 2022
L8 29 March 2020 L8 27 January 2021 L8 29 December 2021 L9 23 February 2022
L8 14 April 2020 L8 12 February 2021 L8 14 January 2022 L9 11 March 2022
L8 30 April 2020 L8 28 February 2021 L8 30 January 2022 L9 27 March 2022
L8 16 May 2020 L8 16 March 2021 L8 15 February 2022 L9 18 August 2022
L8 1 June 2020 L8 1 April 2021 L8 3 March 2022 L9 5 October 2022
L8 17 June 2020 L8 17 April 2021 L8 19 March 2022 L9 21 October 2022
L8 4 August 2020 L8 3 May 2021 L8 4 April 2022 L9 6 November 2022
L8 20 August 2020 L8 19 May 2021 L8 29 October 2022 L9 22 November 2022

To preprocess the satellite images for analysis, the digital numbers (DN) of the TIRS
and OLI bands were transformed into spectral radiance and top-of-atmosphere (TOA) plan-
etary reflectance. The formula below was utilized to convert the DNs to radiance [35,36].

Lλ = ML × Qcal + AL (1)

where Lλ is the spectral radiance (W/(m2 × sr × µm)), ML is the radiance multiplicative
scaling factor, Qcal is the DN value of each pixel and AL is the radiance additive scaling
factor. TIRS data were converted from spectral radiance to brightness temperature [35,36].

BTi =
K2

ln
(

K1
Lλ

+ 1
) (2)

where BTi is Top of Atmosphere (TOA) brightness temperature for TIRS band i (=10, 11) in
Kelvin. The K coefficients are thermal conversion constants for Landsat 8/9 TIRS bands
(Table 3).

Table 3. Thermal conversion constants for Landsat 8 and 9 (L8 and L9).

Satellite Parameter i K1 K2

L8 Band 10 774.8853 1321.0789
L8 Band 11 480.8883 1201.1442
L9 Band 10 799.0284 1329.2405
L9 Band 11 475.6581 1198.3494

The NDVI is computed by TOA planetary spectral reflectance with solar angle correc-
tion. The DNs are converted to TOA planetary reflectance by the equation below [35,36]:

ρλ = ρ́λ/sin θ = (M p ∗ Qcal + Ap

)
/sin θ (3)

where ρλ and ρ́λ are TOA planetary spectral reflectance with and without solar angle
correction (unitless), Mp is reflectance multiplicative scaling factor, Ap is reflectance ad-
ditive scaling factor and θ is solar elevation angle. ML, AL, Mp, Ap and θ parameters
in Equations (1) and (3) are extracted from metadata file obtained from satellite images
downloaded from the USGS EarthExplorer.
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2.4. NDVI and TVDI Calculation Using Landsat Satellite Imagery

After conversion of the DN to reflectance, the normalized difference vegetation index
(NDVI) was calculated by the following equation using the red and near infrared (NIR)
bands [37]

NDVI = ρNIR − ρRed/ρNIR + ρRed (4)

The NDVI range lies between −1 and 1. If the NDVI value is negative, it suggests the
presence of water bodies or snow cover. On the other hand, if the NDVI value is greater
than 0.5, it indicates the existence of dense vegetation cover [17].

In order to calculate TVDI, the land surface temperature (LST) should be determined
using radiative transfer theory (RTT) equation and split-window (SW) algorithm. A simpli-
fied radiative transfer equation expresses the apparent radiance received by a sensor [38].

Bi(BTi) = τi(θ)
[
εiBi(LST) + (1 − εi)I↓i

]
+ I↑i (5)

where Bi(BTi) radiance received by channel i (i = 10, 11) of the sensor with brightness
temperature BTi; Bi(LST) is the ground radiance and τi(θ) is the atmospheric transmittance
for channel i when viewing zenith angle is θ. The Landsat-8 TIRS is at an altitude of
705 km with a swath width of 185 km., TIRS was treated as nadir viewing, because the
maximum zenith viewing angle is not more than 7.5◦. Therefore, θ was ignored because
at that angle, the effect of the atmospheric transmittance on TIRS band is negligible. εi is
land surface emissivity (LSE); I↓i and I↑i are down-welling and up-welling path radiance,
respectively [39]. In order to retrieve LST from Landsat TIRS bands by RTT equation,
split window (SW) algorithm that proposed by [40] has been used in the present study
Equation (6)

LST = A0 + A1∗BT10 + A2 ∗ BT11 (6)

where:

A0 =
[a10D11(1 − C10 − D10)− a11D10(1 − C11 − D11)]

(D11C10 − D10C11)
(7)

A1 = 1 +
[D10 + b10D11(1 − C10 − D10)]

(D11C10 − D10C11)
(8)

A2 =
D10[1 + b11(1 − C11 − D11)]

(D11C10 − D10C11)
(9)

C and D are middle term variables:

Ci = ετi, Di = [1 − τi][1 + (1 − ε)τi] (10)

a and b coefficients are determined by linear regression between intermediate param-
eter (Li) and BTi. Li is the derivative of the Plank’s law function for band i(= 10, 11) at
brightness temperature [41].

Li =
Bi(BTi)[
∂Bi(BTi)

∂BTi

] =

(
λi × (BT i)

2

C2

)(
1 − eC2/λi×BTi

)
= ai + bi ∗ BTi i = 10, 11 (11)

As shown in the above equations the A coefficients depend on LSE (εi) and atmospheric
transmittance (τi).

The LSE is the ratio of radiated thermal energy by surface and a blackbody in the same
temperature [9]. It can be estimated by NDVI-based emissivity method (NBEM):

εi =


m + nρRed NDVI < NDVIs
εvPv + εs(1 − P v) + Ci NDVIs ≤ NDVI ≤ NDVIv

εv + Ci NDVI > NDVIv

(12)



Remote Sens. 2024, 16, 1942 9 of 23

where m and n are constant coefficients. For Landsat TIRS band 10, m and n are 0.973
and 0.047, respectively; NDVIs = 0.2 and NDVIv = 0.5 are the thresholds of soil and full
vegetation pixels; εs = 0.966 and εv = 0.973 are soil and vegetation emissivity values [42];
Pv is proportion of vegetation in mixed pixels Equation (13).

Pv =


0 NDVI < NDVIs[

NDVI−NDVIs
NDVIv−NDVIs

]2 NDVIs ≤ NDVI ≤ NDVIv

1 NDVI > NDVIv,
(13)

Ci is cavity effect due to the surface roughness. It is considered zero for flat surface,
otherwise the value needs to be estimated [43]:

Ci = (1 − εs)εvF’(1 − P v), (14)

where F′ is a geometrical factor, which spans the range 0 to 1, and is frequently set
to 0.55 [43]. The atmosphere absorbs surface spectral reflections, and the main factor
affecting reflector absorption is the amount of water vapor (w) present. This quantity can
be estimated by:

w = 0.0981 ×
{

10 × 0.6108 × exp
(

17.27(T0 − 273.15)
237.3 + (T0 − 273.15)

)
× RH

}
+ 0.1697 (15)

where T0 is the temperature near the surface of the earth. The atmospheric transmittance
(τi) mainly depends on w. The relation between w and τi is shown in Table 4.

Table 4. Relation between atmospheric transmittance factor (τi, i = 10, 11) and water vapor content
(w) for mid-latitude atmospheric profile.

Range of w (g/cm2) Equation [44]

0.2–3.0
τ10 = −0.0164 w2 − 0.04203 w + 0.9715

τ11 = −0.01218 w2 − 0.07735 w + 0.9603

3.0–6.0
τ10 = −0.00168 w2 − 0.1329 w + 1.127
τ11 = 0.009186 w2 − 0.2137 w + 1.181

The calculated LST (Figure 5) and NDVI scatter plot produces a space with a trapezoid-
like shape [45,46]. As depicted in Figure 6, every region within this space carries valuable
information regarding the water content of both the canopy and soil, enabling the extraction
of details about the orchard’s water status. The dry and wet edges can be leveraged to infer
the water condition of the orchard. Specifically, a negative correlation between NDVI and
LST can be observed in the dry edge, indicating the occurrence of water stress. Conversely,
the tree is not experiencing stress in the wet edge. The TVDI, which ranges between 0 and
1, is defined as follows:

TVDIi =
LSTi − LSTmin

(a1 + b1NDVI)− (a2 + b2NDVI)
=

LSTi − LSTmin
LSTmax − LSTmin

, (16)

where a1 and b1 are the intercept and slope of dry edge line (Figure 6), i is the pixel number.
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Figure 6. Land surface temperature (LST)—NDVI trapezoidal space for temperature vegetation
dryness index (TVDI [0, 1]) estimation, from [13].

2.5. Ortho Image Creation from UAV Imagery

The validation of satellite-based TVDI was carried out with a UAV survey on
23 March 2023 (Figure 7). A quadrocopter (Matrice 300 RTK, DJI, China) was mounted with
a combination of a multispectral and thermal camera sensor (Altum, MicaSense, Seattle,
WA, USA). During the UAV survey, multispectral as well as thermal imagery data were
collected from an altitude of 50 m in nadir perspective. Images were taken with over 90%
forward and side overlap. Total flight distance over the site with an area of 18.7 ha was
about 28.8 km and took over 3 h and 12 min. The thermal band took measurements from
8–14 µm with a focal length of 1.77 mm and a sensor resolution of 160 × 120 px. Images
were stored once a second with a 33.75 cm ground sample distance.
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Figure 7. Orthoimages showing NDVI and thermal band from UAV survey completed on
19 March 2022.

From the UAV flights, 1800 multispectral and thermal images were collected. The
imagery was photogrammetrically processed with structure-from-motion in Metashape
(version 1.8.4, Agisoft LLC, St. Petersburg, Russia, 2020) to calculate orthoimages of the
individual bands of the area. The surface temperature, measured in centi Kelvin, was
transformed to ◦C as follows:

ϑ(◦C) = T(cK) × 100 − 273.15 (17)

for which T is the thermal sensor response of the surface temperature in centi Kelvin and
ϑ is the temperature transformed to ◦C. From the multispectral bands, the NDVI was
calculated as follows:

NDVI =
NIR − RED
NIR + RED

(18)

for which NIR is the reflectance measured in the near infrared wavelengths (840 nm center
with 40 nm bandwidth) and RED in the red wavelengths (668 nm center with 10 nm
bandwidth) recorded by the multispectral camera.
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2.6. Standard Precipitation Index (SPI)

Regarding the availability of data and the rainfed agricultural system in Tamale, Ghana,
alongside the popularity of the standardized precipitation index (SPI), the SPI index was
chosen over other meteorological drought indices such as Palmer drought severity Index
(PDSI), percent of normal precipitation, standardized precipitation-evapotranspiration
Index (SPEI), effective drought index (EDI), rainfall anomaly index (RAI) and deciles index.
SPI is the most common drought index, developed by [46]. It is based on precipitation data
for different time scales. In order to calculate SPI, long-term monthly precipitation data
are needed. For SPI calculation, it has been assumed that the frequency distribution of
precipitation data (g(x)) follows the two-parameter gamma probability distribution [46,47]:

g(x) = xα−1e
−x
β /βαΓ(α), (19)

where x is precipitation accumulation; α and β are the shape and scale parameters of the
gamma distribution; Γ(α) is the gamma function. To calculate the SPI, the fitted data to
gamma distribution was transformed to standard normal distribution function. The SPI
can be calculated for 3, 6, 12, 24 and 48-month time scales. Positive SPI values show greater
precipitation than median and negative values indicate less than median precipitation. The
SPI spans are between −3 to +3, because it has been transformed to the standard normal
distribution. The classification of drought severity is shown in Table 5 [46].

Table 5. SPI classification [46].

SPI Class SPI Class

2 or more Extreme wet −1 to −1.49 Moderate drought
1.5 to 1.99 Very wet −1.5 to −1.99 Severe drought
1 to 1.49 Moderate wet −2 or less Extreme drought

−0.99 to 0.99 Near normal

The seasonal drought in Tamale, Ghana can be classified into two categories: wet/dry
seasons, which divide the year into 6-month periods, and the year divided into four seasons.
Therefore, 3 and 6-month time scales has been used to calculate the SPI (SPI3 and SPI6). It
is important to note that the calculated SPI is based on n-month cumulative precipitation
data, which means that the precipitation accumulation (x) in Equation (19) is calculated
by adding up the precipitation from the current month, as well as the 2 (SPI3) and 5 (SPI6)
preceding months.

2.7. Prediction of Agricultural Drought by a Hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM)
Clustering Model

To study the effects of meteorological drought on the agricultural one, a hybrid
Wavelet-Adaptive Neuro-Fuzzy Inference System (ANFIS) model based on fuzzy C-means
(FCM) clustering was developed, which is a data-driven input-output prediction model [31].
The following input-output prediction model for TVDI at time t, TVDIt as a function of
SPI3,t-i and SPI6,t-i is used:

TVDIt = f
(
SPI3,t−i, SPI6,t−j

)
f or i = 0, 1, 2, . . . , n&j = 0, 1, 2, . . . , n (20)

For determining the maximum i and j, the cross-correlation function RTVDI, SPI between
two time series is defined by following Equation (21), i.e., the discrete cross correlation
between TVDI and SPIm (m = 3, m = 6) with N data at the lag time l, which reads as [48]:

RTVDI,SPI =
1
N ∑N−1

n=1 TVDI(n)SPIm(n − l) (21)
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The cross-correlation functions (R TVDI, SPI

)
between both drought indices have been

calculated to see the lag-time between SPI with different time scales and TVDI. Figure 8
shows that the TVDIt is mostly correlated with SPI3, t−5, t−6 and SPI6, t−2, t−3, t−4, t−5.
Therefore, the final input-output Wavelet-ANFIS model Equation (19) can be written as:

TVDIt = f (SPI3,t−5, SPI3,t−6, SPI6,t−2, SPI6,t−3, SPI6,t−4, SPI6,t−5) (22)
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Figure 8. Cross correlation function between meteorological and agricultural drought indices, namely
standard precipitation index (SPI) and temperature vegetation dryness index (TVDI).left panel:
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To conduct model training and testing, the 52 TVDI values were distributed across
36 months. When there were two satellite overpasses in a given month, the average of
those values was used as the month’s representative TVDI. Additionally, 8 extreme data
points (with TVDI values of 0.2 and 0.9, corresponding to SPI values of 2.9 and −2.9,
representing extremely wet and dry conditions) were introduced artificially to ensure that
all data fell within the specified range [0, 1]. In order to augment the TVDI dataset, a
specific TVDI value (denoted as TVDIt) have been assigned to each corresponding SPI
input (SPI3 or 6, t−i, where i ranges from 2 to 6). This resulted in 191 TVDI data points for
191 SPI inputs (199 considering 8 extreme values). Furthermore, for each of these data
points, a random value within the range [0, 1] was generated and multiplied by ±0.05.
These random values, falling within the interval [−0.05, 0.05], were then added to the
original TVDI values. This augmentation process increased the dataset size to a total of
597 data points.

The proposed scientific methodology comprises of three distinct components: discrete
wavelet transform/multiresolution analysis (DWT/MRA), fuzzy C-means (FCM) clustering
and ANFIS [31]. These techniques will be elaborated in subsequent sections.

2.7.1. Multiresolution Analysis of Input Data Using the Discrete Wavelet Transform

The analysis of a time series using wavelets is an expansion of traditional Fourier anal-
ysis. Unlike Fourier analysis, wavelet analysis enables the identification of the frequency
content of a time signal at a specific time point, even if the signal is non-stationary. In prac-
tical applications, two main forms of wavelet analysis are distinguished: the continuous
wavelet transform (CWT), which is used to generate two-dimensional time-frequency (or
scale) scalograms of a time-series, and the discrete wavelet transform (DWT), which is used
primarily to approximate high-frequency signals at lower frequency levels by performing a
low-pass (resolution) filtering, see [31] for more details. The DWT of a time series of x(t) is
defined as [49,50] and was chosen here:

DWT j,k(t) = 2−j/2
∫ +∞

−∞
x(t)ψ

(
t − bk

aj

)
dt, j, k ϵ Z, (23)
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where aj = 2j is the scale (i.e., inverse of frequency) (dilatated/compressed), bk = k 2j is the
shift (translate) parameter, and ψ(t) is the wavelet, i.e., ψj,k(t) are the scaled and shifted
wavelets. If the wavelet function ψj,k(t) belongs to a so-called tight frame of wavelet
classes, ψj,k(t) forms a complete and orthonormal basis, so that the signal x(t) can be
reconstructed by the classical formula

x(t) =∑j,k < x(t), ψj,k(t) > |ψj,k(t) = ∑j,k DWT j,k(t)|ψj,k(t). (24)

This equation is the basis of the MRA [51] Using the fundamental decomposition
exposed by Equation (23) over the finite range of scales and shift times, one obtains the
equation for the complete decomposition of the signal x(t). The wavelet function ψj,k(t)
can cover the whole frequency range of the signal, starting from the Nyquist sampling
frequency (the lowest scale) down to a minimum frequency (highest scale). High scale (low
frequency) component of x(t), generated by the low-pass scaling function. It represents
the Aj max-approximation of the signal at the highest decomposition level. The low-scale,
high frequency details Dj of the signal, generated by the high-pass wavelet functions ψj,k(t)
(j = 1,.., jmax). Thus, Equation (24) can be simplified as [23,25,51]:

x(t) = Aj max + D1 + D2.. + ..Dj max (25)

When it comes to selecting the discrete scaling and wavelet filter functions for DWT/MRA,
the popular choices include Haar, Daubechies wavelet (db), and Symlet (sym) irregular wavelet.
Haar is the most basic mother wavelet function that is orthogonal. However, it may not be able
to capture nonlinear shifts between input and decomposed signals because it only has two
filtering taps and a linear phase. In contrast, db and Sym mother wavelets have 2N filtering
taps and are better suited for applications where capturing nonlinear shifts is necessary. In this
study, the sym irregular wavelet with order 4 was the most appropriate option (Figure 9).
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2.7.2. Fuzzy C-Means (FCM) Clustering

After applying MRA to decompose the input signals, SPI3, t−5, t−6 and SPI6, t−2, t−3, t−4, t−5
the resulting approximations are included into the fuzzy C-means (FCM) clustering module. FCM
is a modified and enhanced version of K-means clustering, in which every data point belongs
partially to each cluster with a varying membership degree between 0 and 1.

2.7.3. Hybrid Wavelet-ANFIS/FCM Model

The ANFIS model is the last step in the machine learning methodology. The ANFIS
class of adaptive neural networks is functionally equivalent to fuzzy inference systems.
As introduced by [26], ANFIS is a network-based model that combines fuzzy logic and
artificial neural networks (network-based architecture) By putting all pieces together, the
flowchart of the whole hybrid Wavelet-ANFIS/FCM model developed by [26] is obtained
(Figure 10).
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3. Results and Discussions
3.1. Meteorological and Agricultural Drought Index

The SPI have been calculated for 3 and 6-months time scales, using the gamma
distribution parametric method (Figure 11) for the long-term time series of observed
monthly precipitation (2005–2022) in Tamale, Ghana. In Figure 12, the SPI values for the
period 2020–2022 extracted from the gamma distribution are shown. For the first half of
2020, higher than normal rainfall conditions with maxima in March and April can be stated.
Then the SPI values decline and it becomes dryer than normal for the first half of 2021.
With beginning of 2022, SPI values strongly increase again showing higher than usual wet
conditions for August until October for this year.
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Figure 12. The SPI values for three consecutive years (2020–2022).

For the same time interval, all agricultural drought events were calculated using
the TVDI values delineated from satellite data (Landsat 8 and 9). The TVDI is based on
LST-NDVI (Land surface temperature-normalized difference vegetation index) using the
trapezoidal area and split window method, for more details please see. [9]. Using the
equation of dry and wet edges of trapezoidal space, the TVDI was estimated for each pixel
of Landsat 8/9 satellite images. Figure 13 shows the procedure of TVDI calculation for
Landsat 9 satellite image (path/row: 194/53) on 6 November 2022.
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Figure 13. (a) The spatial distribution of normalized difference vegetation index (NDVI), (b) land sur-
face temperature (LST) using the split window (SW) method, (c) the Trapezoidal space of LST/NDVI,
and (d) the Temperature Vegetation Dryness Index (TVDI) based on Landsat 9 satellite images
(path/row: 194/53) acquired on 6th November 2022. The wet edge is represented by the blue line
(TVDI = 0), while the dry edge is marked by the red line (TVDI = 1).
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The TVDI for the Tamale Mango orchard was determined by isolating the specific
study area from all satellite-based TVDI maps listed in Table 2 (refer to Figure 14 for details).
The average TVDI value has been utilized as an indicator to assess agricultural drought
conditions within the orchard. In order to validate the accuracy of the satellite-based TVDI
maps, the resolution of the satellite data recorded on 27 March 2022, has been adjusted to
match the resolution of the UAV ortho image obtained on 22 March 2022, and the results
were subsequently compared for consistency. As Figure 15 shows, within the dataset, 74%
(133 out of 180) of the pixels exhibit an absolute error of less than 0.1 when comparing two
similar pixels from the TVDI maps, while 93% of the pixels have an absolute error of less
than 0.2.
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3.2. Climate Change Scenarios

In order to project the standard precipitation index (SPI) values for the period spanning
from 2023 to 2050, the SPI 3 and 6-month values were extrapolated based on projected
rainfall data obtained from the four Shared Socioeconomic Pathways (SSPs)—namely,
SSP126, SSP245, SSP370, and SSP585. The analyses were conducted within the framework
of CMIP6 (Coupled Model Intercomparison Project Phase 6), which has been utilized to
provide a comprehensive basis for climate model comparison and projection. Across all
35 models for each SSP scenario, the median values of monthly precipitation were used to
calculate the SPI 3 and 6-month values. Figure 16 shows an overview of the SPI patterns
and variations associated with these different scenarios.
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Figure 16. The standard precipitation index (SPI) with time scale of 3 and 6 months using 4 dif-
ferent Shared Socioeconomic Pathways (SSPs) within the framework of CMIP6 (Coupled Model
Intercomparison Project Phase 6).

Using Equation (22) (TVDIt = f (SPI3,t−5, SPI3,t−6, SPI6,t−2, SPI6,t−3, SPI6,t−4, SPI6,t−5)),
the agricultural drought based on the TVDI was predicted using the Hybrid Wavelet-ANFIS/FCM
model from 2023 to 2050.

3.3. Wavelet ANFIS Model Results

By employing the sym4 wavelet for Multiresolution Analysis (MRA) on all SPI values
within Equation (22) and subsequently applying Equations (24) and (25), we have success-
fully obtained the 2-level multiresolution decompositions of the monthly data time series
spanning three years (2020–2022), as depicted in Figure 17.
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Using the algorithm of the hybrid wavelet-ANFIS/FCM-model as sketched in Figure 10,
TVDI-fluctuations were simulated first. The results are shown in Figure 18 for the training
and testing phases of the data period and they indicate that the simulated TVDIs match the
observed ones rather well with a root mean square errors, RMSE, of less than 0.1 in both
training and testing phases. More details of the statistical results of the hybrid Wavelet-
ANFIS/FCM model are illustrated by errors plots of the simulated over the observed TVDI-
data in the left panel of Figure 19, which clearly indicate that the selected hybrid model
delivers good and reliable predictions of the TVDI. All data-driven prediction methods are
based on the idea that the random errors are drawn from a normal distribution and the
hybrid Wavelet-ANFIS model is not an exemption. The histograms of Figure 19 illustrates
that a posteriori computed errors of the computed TVDIs with this model follow indeed a
normal distribution.
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Figure 20 shows the monthly TVDI predictions calculated from utilizing Equation (22)
with the hybrid wavelet-ANFIS model for the Mango orchard located in Tamale for the



Remote Sens. 2024, 16, 1942 20 of 23

time period of 2023 to 2050. These predictions were based on input values derived from the
SPI modeled by using various climate change scenarios under the Shared Socioeconomic
Pathways (SSPs). It can be used as an agricultural drought indicator, where TVDI values
exceeding 0.5 serve as an indicator of orchard water stress.
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(SSPs) climate change scenarios.

An examination of the outcomes depicted in Figure 20 reveals that, across the SSP126,
SSP245, SSP370, and SSP585 scenarios, 186, 183, 179, and 179 months are estimated to
exceed TVDI levels of 0.5. Within the timeframe, spanning from 2023 to 2050, this orchard is
expected to experience agricultural drought conditions depending on climate change. This
implies that over 50% of the time, under all climate change scenarios, the area will grapple
with such conditions. These findings highlight the pronounced prevalence of water stress
in the Tamale mango orchard, underscoring the imperative need for the implementation
of supplementary irrigation systems to mitigate the adverse consequences of agricultural
drought, particularly in light of the evolving climate conditions.

In this study, the agricultural drought index, the TVDI, has been modelled using the
meteorological drought index, the SPI. Drawing upon climate models outlined by the
IPCC, frequency of drought conditions in a mango orchard located in Tamale, Ghana, has
been projected for the forthcoming decades. Aligning with results of present study, Bedair
et al. [14] underscore the heightened vulnerability of Ghana to drought. This heightened
risk jeopardizes food security and poses threats to both human and livestock well-being.
While current models relying on the SPI have provided acceptable short-term predictions
for drought conditions [7], the results this research emphasis on a comprehensive, long-
term projection. It has been indicated that the region will be significantly (more than 50%
of the projected months) affected by agricultural drought conditions across all types of SSP
climate change scenarios.

4. Conclusions

The research findings unveiled a comprehensive understanding of the relationship
between the meteorological and agricultural drought indices, namely, SPI and TVDI. They
were subsequently integrated into the Wavelet-ANFIS predictive model, which was em-
ployed to estimate TVDI as an agricultural drought indicator for the extensive period
spanning from 2023 to 2050.

The results revealed that significant water stress will be observed in the Tamale mango
orchard under diverse climate change scenarios represented by the Shared Socioeconomic
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Pathways (SSPs). A high number of months, specifically, 186, 183, 179, and 179 months
for SSP126, SSP245, SSP370, and SSP585, respectively, was characterized by agricultural
drought conditions for this forthcoming period. That corresponds to 55–57% of the pro-
jected months. These findings underscored the pressing need for proactive measures like
supplementary irrigation to safeguard the orchard’s agricultural sustainability in the next
decades. According to [52], models can be used to support decision making for long-term
transformative responses that require strategic planning. Such measures are pivotal in
ensuring the resilience of agricultural activities in the face of climate change and thus
guarantee local food security.

In conclusion, this research was a critical step towards unraveling the complex dy-
namics of meteorological drought and its profound implications for agriculture. The
Wavelet-ANFIS predictive model exposed imminent challenges faced by the Tamale mango
orchard, which can point the way to a more resilient and sustainable agricultural future.
Acknowledging these challenges and implementing decisive measures, e.g., supplementary
irrigation systems or crop adaptations, holds the key to ensure economic stability in the
midst of ongoing climate change. To enhance our understanding of agricultural drought
dynamics and adaptation strategies, future research should focus on improving data-driven
predictive models by integrating additional spatial and temporal data sources. This entails
considering climate model uncertainty, evaluating socioeconomic impacts, establishing
long-term monitoring programs, and expanding research to other geographic regions with
varying climate conditions.
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