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Abstract: Pavement adhesion plays a crucial role in driving safety, while traditional test methods exhibit
some limitations. To improve the efficiency and accuracy of asphalt pavement texture characterization
and adhesion assessments, this paper uses three-dimensional (3D) laser technology to detect the continu-
ous point cloud data of road surface and reconstruct the 3D topography of pavement texture. On this
basis, a volume parameter Volume of peak materials (Vmp) is innovatively proposed to comprehensively
characterize the 3D spatial characteristics of road surface texture. The correlation analysis between
the proposed Vmp and the traditional adhesion evaluation index Transversal Adhesion Coefficient
(CAT) is conducted, and then refined graded adhesion prediction models based on the proposed Vmp
are proposed. Results show that the proposed volume parameter Vmp can reliably and accurately
characterize the asphalt pavement texture by considering more structural properties of the road surface
texture. According to the research findings of this paper, it is feasible to achieve rapid and correct
assessment of asphalt pavement adhesion using 3D laser detection technology by comprehensively
considering the 3D characteristics of the road surface texture.

Keywords: asphalt pavement condition evaluation; pavement texture; point cloud processing; 3D
laser technology; data fusion; volume parameter; pavement adhesion; CAT

1. Introduction

Pavement adhesion plays an important role in providing skid resistance and ensuring
driving safety. It provides the grip required to maintain control of the vehicle and brake
in case of emergency [1]. Many studies indicated that crash rate increases when roadway
sections have low adhesion [2–5]. Pavement adhesion is the result of a complex interplay
between pavement texture and vehicle tire, which is prone to variation due to rainfall, ice
and snow, environmental temperature, and texture decay, thus influencing vehicular travel
safety [6,7]. Therefore, fast, correct, and real-time assessment of pavement adhesion is an
important task faced by transportation agencies all over the world, many have performed
pavement adhesion testing on their highways to monitor the safety and condition for years.

Traditionally, several types of equipment have been developed to measure pavement
adhesion which can be classified into two types. One is to directly measure road pavement
adhesion or measure the braking force to assess the adhesion, including the British Pendulum
Tester [8], Dynamic Adhesion Tester [9], Locked-Wheel Skid Trailer [10], Grip Tester [11], and
Side-Force Coefficient Routine Investigation Machine (S.C.R.I.M.). All these direct test devices
have been widely used in many studies [12–14]. However, due to the requirement of water
and testing tires or rubber slides in adhesion devices, collecting adhesion by these devices
is always affected by water film depth and temperature. Another is to calculate pavement
adhesion by measuring the depth of the road texture. Exemplars include using the volumetric
“sand patch” test, the circular track meter, or a high-speed profiler to detect the Mean Texture
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Depth (MTD) and Mean Profile Depth (MPD) [15–17]. The operation of most of these devices
is manual, which is time-consuming, spot-based, and labor-intensive [18,19]. Nevertheless,
these methods can measure adhesion only periodically, it hardly meets the requirements of
the real-time inspection for pavement adhesion while the adhesion varies.

The advance in computer science has greatly promoted the development of image
processing technology in extracting texture information from two-dimensional (2D) road
surface images. Which is non-contact, fast, low cost, and quickly become the prevailing
pavement texture detection method nowadays [20]. Lots of image processing technologies
have been applied to enhance the pavement texture detection from 2D images. Traditional
image processing methods include threshold methods [21], Wavelet-based methods [22],
and texture-anisotropy approach [23], etc. The developing machine learning methods
include artificial neural networks [24], support vector machines [25], and Logistic regres-
sion [26], etc. The innovation of CNN-based deep learning methods has been driving
advances in large-scale image processing [27,28]. All these methods improve the detection
speed of pavement texture, but the 2D technologies extract the pavement texture informa-
tion relying strongly on the image greyscale, the identification result is easily impacted
by oil spills, spots, shadows, etc. [29]. Moreover, pavement adhesion evaluation relies on
comprehensive three-dimensional (3D) pavement surface properties. Using the 2D methods
will lead to the loss of key information on texture morphology, thus affecting the accuracy
of pavement texture extraction and the reliability of the pavement adhesion assessment.

The emerging laser-based technology can yield high-resolution, high-density, full-lane
pavement 3D data, and has been used extensively in the detection and evaluation, of cracks,
rutting, pothole, and faulting [30–34]. In recent years, some studies have applied this
technology to measure and evaluate pavement texture automatically [35]. 3D data of a
road pavement surface were obtained, and the MTD and MPD of the road segment were
calculated Liang et al. [13], Alamdarlo and Hesami [36], Chen et al. [37]. The estimated
model of pavement adhesion can be analyzed by investigating the relationship between
the adhesion index and surface texture [38,39]. Ref. [40] applied a deep learning technique
to predict adhesion numbers based on the macrotexture information collected on different
pavement surfaces in situ and achieved good prediction accuracy. Ref. [41] established
an adhesion prediction model incorporating the pavement texture of asphalt pavement
samples prepared in the laboratory. Ref. [42] conducted a multi-resolution analysis using
three-dimensional (3D) asphalt pavement texture data to correlate pavement texture to
adhesion measurements. Ref. [43] used a novel 0.1 mm 3D Safety Sensor to collect the
pavement texture and estimated the pavement adhesion based on the detected texture
characteristics by using an artificial neural network, ref. [44] conducted a field evaluation of
pavement texture under actual traffic polishing using 3D areal parameters. However, these
methods generate limited success primarily due to data from MPD and MTD processes
that only include a small portion of pavement surface characteristics, and other important
surface characteristics (such as spatial, hybrid, and so on) relevant to adhesion are ignored
in the index.

To improve existing asphalt pavement adhesion measurement surveys and Motivated
by the recent achievements of 3D laser technology, this study aims to propose a novel
method to comprehensively characterize the asphalt pavement texture using 3D technology.
We reconstruct the 3D morphology of asphalt pavement texture by using the collected 3D
point cloud data. Then we used the volume parameter, which can fully consider the three-
dimensional morphology of the road surface, to characterize the pavement texture. Finally,
we innovatively established the graded adhesion evaluation models based on the proposed
volume parameter. Then we conduct the correlation analysis between the proposed Vmp
and the traditional adhesion evaluation index Transversal Adhesion Coefficient (CAT).
Finally, we innovatively established the graded adhesion evaluation models based on the
proposed volume parameter. Results show that the proposed Vmp can more accurately
characterize the structural properties of the road surface texture from a three-dimensional
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perspective. The research findings of this paper can provide technical support for the fast,
real-time, and accurate prediction of saphalt pavement adhesion.

The rest of this paper is organized as follows: In Section 2, the methodology adopted in
this paper is presented, including experimental equipment, data collection, and processing
methods, as well as the calculation methods of the volume parameter. Section 3 presents the
experiment processes and experimental results. In Section 4, we discuss the advancement
of the proposed method. The paper is concluded with some remarks in Section 5. Based on
the result found in the paper, future development of the research is discussed.

2. Methodology
2.1. E.R.M.E.S. Instrument

According to the research aim of this study of characterize pavement surface texture and
access pavement adhesion by using 3D laser technology. 3D point cloud data of pavement
surface texture should be collected, and the adhesion data at the same detected surface should
be acquired to conduct the verification. In the previous study, correlating the data from
different detecting methods is very tedious [40]. In this study, we conduct the field test
and data collection by using the E.R.M.E.S. (Figure 1a), a high-performance multifunctional
equipment that allows to detection of multiple kinds of survey data relating to the surface
characteristics of road pavements in a single pass. The E.R.M.E.S. is integrated by the Road
Experimental Center of Anas S.p.A [45], who used it for routine evaluation of macrotexture,
evenness, and skid resistance in approximately 32 thousand km of roads and motorways in
Italy. As shown in Figure 1b. E.R.M.E.S. is equipped with two adhesion testers S.C.R.I.M,
two sets of road scanners for 3D data collection, two sets of point laser units for MPD and IRI
detection, and one photocell for 2D picture collection. In addition, a GNSS system is installed
for position correction. All information is archived in a georeferential database with DGNSS
(Differential global Navigation Satellite System) and kilo-metric progression.

(a)

(b)

Figure 1. Demonstration of data collection system: (a) shows the E.R.M.E.S. Instrument developed by
Anas S.p.A., (b) is a schematic layout of the location of each type of data collection equipment within
the E.R.M.E.S. system. With the E.R.M.E.S. instrument, the pavement adhesion index and pavement
texture 3D point cloud at the same position can be collected simultaneously.
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2.2. S.C.R.I.M System for Pavement Adhesion Collection

S.C.R.I.M is a self-contained machine for the measurement of skid resistance under
wet road conditions (Figure 2). The equipment is mounted on the E.R.M.E.S. truck, with a
large capacity water tank. It is specifically designed to allow large lengths of road network
to be continuously tested by the Road Experimental Center of Anas S.p.A. The test wheel
is contained within a loading frame that is mounted mid-machine, between the front and
rear axles of the truck. As shown in Figure 2a. It is capable of maintaining a constant test
speed when conducting pavement adhesion measurements. Two S.C.R.I.M (Sideways-force
Coefficient Routine Investigation Machine) systems are installed near the rear wheels of
the E.R.M.E.S. vehicle (Figure 1b) to measure the adhesion coefficient of both wheel track
paths independently in one drive. The S.C.R.I.M. device uses the sideway force principle to
measure the skid resistance on both wheel paths: two freely rotating wheels, fitted with a
smooth rubber tire, are mounted in line with the nearside wheel track and with a 20° slip
angle to the travel direction of the vehicle. The width of the tire’s contact with the road
surface is 154 mm. When the test vehicle moves forward along the road section, the test
wheel is rotating, but slides in the forward direction due to the angular difference. The
slip angle causes adhesion between the tire and the pavement. Following the Italian Guide
Line—CNR Bulletin N. 147/1992 [46], the resulting force of the sideway force is recorded
at the test speed of 50 km/h. In this study, the Transversal Adhesion Coefficient (CAT) to
evaluate the pavement adhesion, which is expressed as the ratio between the tangential
force normal to the plane of the wheel Ft and the vertical load on the tire Fn. Figure 2b
describes the Ft and Fn collected. And the calculation of CAT is As shown in Equation (1).

CAT =
Ft

Fn
(1)

where Ft is the tangential force normal to the plane of the wheel, Fn is the vertical load
on the tire, the adhesion coefficient CAT is expressed as the ratio between Ft and Fn. In
general, The software inside the S.C.R.T.M. automatically returns the cat value every 10 m
or 1 m. In this study, the purpose is to perform matching verification and correlation
analysis between CAT values and texture index values. We parse out the original data and
perform more intensive extraction and calculation of CAT to irrelevant specific differences
in the pavement.

(a) (b)
Figure 2. S.C.R.I.M for pavement adhesion detection: (a) is the details of the S.C.R.I.M. system. on
E.R.M.E.S. instrumentation (Road Experimental Center—Anas S.p.A.). (b) shows the collection of the
resulting force of the S.C.R.I.M. tire that generates pavement adhesion index CAT.
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2.3. Road Scanner System for 3D Data Collection

3D laser scanners have been widely used to detect road surface characteristics in the
recent decades. As shown in Figure 3, a 3D laser scanner emits a fan-shaped laser beam
composed of many laser points onto the road surface at once. Based on the principle of
triangulation, each laser point can capture the height between the scanned point on the
road surface and the preset base surface by the CCD camera in the laser scanner. The
captured height h (Figure 3) is recorded as the point cloud value of the scanned road
surface point. A single scan can obtain a cross-sectional profile of the road surface, and
the range of the obtained profile depends on the mounting height of the sensor and the
number of laser points.

Figure 3. The principle of obtaining 3D point cloud of road surfaces. Through the laser triangulation
principle, 3D point clouds of road surface profiles can be obtained, facilitating the construction of
road surface profile diagrams, and thereby acquiring the 3D morphology of the road surface.

The Gocator series 3D laser sensors have been very popular in generating road detec-
tion systems in recent years for pavement 3D point cloud data collection. Incorporating
the success of the RoLine technology, the Gocator 2342 delivers high-density road profile
scanning for roughness measurement with superior ambient light handling. As explicated
in Figure 4 and Table 1. The road scanner system is integrated with two Gocator 2342 sen-
sors (Figure 4a). The sensor scans up to 5000 profiles in one second and generates 1280
3D points by one profile. The resolution in the X and Z directions is up to 0.095 mm and
0.015 mm, respectively. The field of view (FOV) is from 64 mm to 140 mm, the clearance
distance (CD) is 190 mm, and the measurement range (MR) is 210 mm. The description of
the FOV, MR, and CD is shown in Figure 4b. Based on these parameters, the number and
positions of sensors can be carefully planned according to the experimental objectives to
achieve a satisfactory detection range and accuracy.

Table 1. Gocator 2342 sensor parameter specifications.

Sensor Parameter Values

Scan Rate 15 ≤ 5000 Hz
Points per Profile 1280

Transverse Resolution (X) 0.095 mm–0.170 mm
Depth Resolution 0.015 mm–0.040 mm

Field of View (FOV) 64 mm–240 mm
Clearance Distance (CD) 190 mm

Measurement Range (MR) 210 mm
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(a) (b)
Figure 4. Road scanning system. (a) is the appearance of Gocator 2342 in road scanner, (b) shows the
definition of the detection parameters of the sensor.

In each road scanner system, two Gocator 2342 sensors are systematically assembled
to control detection accuracy and detection range. The layout of Gocator 2342 sensors in
the road scanner system is shown in Figure 5a. Two sensors are placed in one line at a
height of 245 mm and a transverse distance of 70 mm to generate the 154 mm detecting
field to accommodate the detecting field restricted by the tire-pavement contact area. Two
road scanner systems are implemented near two front wheels of the E.R.M.E.S. vehicle
(Figure 1b) to detect the 3D point cloud data corresponding to the wheel path area that
will be detected by S.C.R.I.M. As shown in Figure 5b, Within each pair of sensors, the 3D
point clouds acquired by two sensors are calibrated to each other to return a single union
profile of those generated individually by the sensors themselves.

(a)

(b)

Figure 5. Sensors layout and data collection within the road scanner. (a) shows the inner sensor
layout details of the road scanning system, and (b) is the profile capture within each pair of sensors.
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2.4. 3D Texture Data Collection and Processing
2.4.1. 3D Data Extraction and Pavement Reconstruction

Figure 6 shows the extraction details of 3D laser data and 3D reconstruction of the
road pavement surface. With the sensor layout in this study, the resolution of the transverse
direction (X) of the collected 3D data is fixed at 0.095 mm, and the resolution of detection
depth (Z) is 0.015 mm. And by fixing the detecting speed to 50 km/h, The resolution in the
longitudinal direction is 0.095 m (Figure 6a). Influenced by the detection environment, there
are certain missing values and outliers in the raw 3D data, which need to be pre-processed.
We removed the incorrect data by implementing an iterative closest point (ICP) algorithm.
The iterative closest point (ICP) algorithm, originally proposed by Besl and McKay [47], is
one of the most popular methods used for pre-processing 3D data sets [48]. We then put the
processed 3D data into the Digital Surf [49] to reconstruct the 3D surface of the pavement
texture surface, Figure 6b shows one of the reconstructed samples.

(a)

(b)

Figure 6. 3D data extraction and reconstruction of road pavement surface. (a) shows the extraction
resolution details of 3D data, and (b) is the reconstructed 3D surface of pavement texture.

2.4.2. Volume Parameters for Characterizing 3D Road Surface

In order to comprehensively consider the three-dimensional properties of road pave-
ment surface, we introduce the function-related volume parameters to characterize the
pavement surface texture. The function-related volume parameters [50], including the peak
material volume (Vmp), the core material volume (Vmc), the core void volume (Vvc), and the
dales void volume (Vvv), can characterize wear and rolling properties during a running-in
procedure, they are suitable for evaluating the road pavement surface texture evolution.

The material ratio (mr), as shown in Equation (2) and Figure 7, is the ratio, in percentage,
of the length of the bearing surface at any specified depth cutting by a horizontal plane in
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a profile [51]. mr simulates surface wear of a 3D pavement surface that provides a bearing
surface for vehicle tires. The value of the material ratio depends on the position of the cutting
plane. The deeper the cutting plane position, the larger the mr, indicating consideration of
a larger volume of material for engaging in contact with the road tire. As the cutting plane
moves down from the highest peak to the lowest valley of a profile, the material ratio will
increase along with the bearing surface and range up to 100%.

mr = 100%
d1 + d2 + . . . + dn

D
(2)

where d1, d2, and dn were the 1st, 2nd, and the n-th intersection lengths of the profile cut
by the cutting plane. D is the total length of the road surface profile.

Figure 7. The definition of material ratio. The deeper the cutting plane position, the larger the
material ratio.

As specified in UNI ISO EN 25178:2 [51], each surface can be characterized by a curve
that represents the heights at which the areal material ratio changes from 0% to 100%,
i.e., the “areal material ratio curve”. Another curve is important in the analysis of 3D
surfaces and is the “height density curve”, i.e., the curve that represents the density of
the points lying on the surface. Specifically. As shown in Figure 8, a single curve can be
formed to have information on both the areal material ratio curve and height density curve,
which is the cumulative height curve. The curve is formed by the accumulated material
distribution at different heights, which shows the ratio of the material as a function of the
height. Material ratio is the percentage of surface area above a given height. The cumulative
height curve makes it possible to visualize in a real way the distribution of the heights of
the peaks (peaks) and valleys (valleys) in the profile. The cumulative height curve is the
most appropriate tool to analyze the 3D functional characteristics of a surface as numerous
researches show [44].

Figure 8. The description of accumulative curve. This is a single curve that has information on both
the areal material ratio curve and height density curve. It is appropriate to analyze the 3D functional
characteristics of a surface.
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The description of functional volume parameters is shown in Figure 9. Volume param-
eters divide the surface texture into peak, core, and valley based on the area material ratio
curve. The mr1 and mr2 are specified as thresholds of the accumulated height to define the
peak and void of a surface texture [51]. Vvc (Vmc) is the difference between two void (material)
volume values calculated at different heights corresponding to mr1 (mr2), and Vmp (Vvv) is the
material (void) volume calculated at the height corresponding to mr1 (mr2). In this way, the
Vmp can be understood as the volume of material that interacts with the tire and represents
the material volume that is most likely to be removed by traffic polish. Therefore, we use the
Vmp as the evaluation metric to characterize the pavement 3D texture. The calculation of Vmp
is as shown in Equation (3). And we use the material ratios, 10%, and 80%, to determine mr1
and mr2 to define surface peak and valley.

Vmp = Vm(10%) (3)

where, Vm for a material ratio is calculated by integrating the volume enclosed above the
3D texture image and below the horizontal cutting plane at the height corresponding to mr.
For example, a Vm (10%) = 0.33 µm3/µm2 would indicate (note how the units µm3/µm2

reduce to µm) that a layer 0.45 µm thick of material over the measured cross section would
account for all the material from the highest peak to the 10% point on the bearing area curve.

Figure 9. The sketch of volume parameters. The values of volume parameters vary with the positions
of mr1 and mr2. In this study, the material ratios, 10%, and 80% are used to determine mr1 and mr2 to
define surface peak and valley.

The analysis and calculation of volume parameters are based on the Mountains Map,
which is a software used to analyze various types of surface topography and calculate
volume parameters [51]. The Mountains Map has been successfully used in marine, in-
dustrial, noise analysis, and other fields [49]. The calculated Vmp and CAT are analyzed in
correlation to further evaluate the road adhesion performance.

2.5. Data Transmit and Fusion of E.R.M.E.S System

The information obtained during the surveys with the E.R.M.E.S. are transmitted
together with a PC which allows the data to be reprocessed. During the detection, the
information is immediately recorded in the form of a binary file. With the help of the
software Ravcon 7.1, also called “Road Assessment Vehicle Data Converter”, we split each
piece of information in the form of different ASCII files, each of which returns information
about different geometric parameters such as the CAT, other ASCII files allow it to identify
information about GNSS coordinates or information about the temperature at which the
measurements of the quantities in the survey took place. Figure 10 shows the flow chart
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of data transmission and fusion of the E.R.M.E.S system. The data acquired by the lasers
are recorded on a PC, which receives the data from the laser profilers and in turn are
synchronized by an encoder signal. The GNSS coordinates the point cloud with the
CAT measurements.

Figure 10. The flow chart of data transmission and fusion of the E.R.M.E.S system. The data
acquired by the lasers are recorded on a PC, and the GNSS coordinates the point cloud with the CAT
measurements.

3. Experiments and Results
3.1. Field Experiments

The field experiments in this paper were carried out on a test road constructed by
ANAS, using the E.R.M.E.S vehicle. The experiment sketch is shown in Figure 11, the
test asphalt pavement is over 2 km and is divided into a series of 20-m investigation
segments. Each segment contains two barycenters that contact with the S.C.R.I.M tires.
Considering that the wheel track zone is frequently subjected to complex vehicle loads, and
the changes in texture topography are more obvious than in other areas of the road surface
thus facilitating investigation, the barycenters are located in the wheel track zone. 3D laser
data and the pavement adhesion data of each segment are collected in the same run. All the
data investigated in this study is from the investigation area, which is one of the segments
(Figure 11). In this segment, a total of 1600 samples are collected in the wheel track zone.
Consider the scanning properties of the 3D laser and the contact area between the road
and the tire. All the samples are in the size of 154 mm × 95 mm. The 154 mm matches
the S.C.R.I.M tire width, and the 95 mm is the distance of two adjacent laser profiles. The
CAT and Vmp of each sample are calculated to conduct the surface texture analysis for
pavement adhesion.

Traditional pavement adhesion evaluations directly apply the CAT values automat-
ically calculated by the SCRIM system (returns one CAT value per 10 m) to assess the
pavement, disregarding many surface texture details. Additionally, it is challenging to
correlate with pavement texture indicators as the volume parameter Vmp is only calculated
in every 95 mm. In this study, to carry out a homogeneous comparison with 3D laser data,
the CAT value returned by the instrument calculated as an average over 10 m was not used
for the comparison, but rather the raw values detected every 95 mm were extracted. The
calculation details are as shown in Figure 12.
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Figure 11. The detection sketch map of field experiments. The 2 km test road is divided into lots of
20-m segments. One of the test road segments is taken as an investigation area. The CAT and Vmp

data are collected in the same area at the same time.

Figure 12. The detection sketch map of field experiments. The 2 km test road is divided into lots of
20-m segments. One of the test road segments is taken as an investigation area. The CAT and Vmp

data are collected in the same area at the same time.

3.2. Results
3.2.1. Trend of CAT

In order to initially evaluate the representativeness of the adhesion performance of
the asphalt pavement texture in the investigation area, the trend of the CAT values of the
wheel tracks was analyzed. Figure 13 shows the trend of CAT values of the left and right
wheel tracks. It can be seen from the figure that the value of CAT changes with the change
of the test position, which directly indicates that the pavement adhesion performance is
different at different positions along the wheel track in the investigation area. And further
shows that, under the effects of vehicle load and the external environment during use. The
pavement texture in the wheel track has changed from a uniform state when it was newly
built to a heterogeneous state, which is more conducive to the study of the impact of texture
changes on pavement adhesion in this paper.
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(a)

(b)

Figure 13. Pavement adhesion varies with testing distance. (a) shows the trend of CAT in the right
wheel track zone, (b) shows the trend of CAT in the left wheel track zone. The CAT value changes as
the testing position changes.

3.2.2. Correlation between CAT and Vmp

We further correlated the pavement adhesion coefficient CAT and the pavement texture
index Vmp to preliminarily analyze the impact of the 3D topography characteristics of the
pavement texture on the pavement adhesion performance. According to the traditional
side force test method, the pavement is considered to have good adhesion performance
when the side force coefficient (SFC, ie, CAT in this paper) is greater than 0.45 [52]. On the
contrary, it is considered an insufficient skid-resistance quality when SFC is under 0.45.
In this study, the CAT values on both wheel track zones greater than 0.45 are selected to
correlate the pavement texture index Vmp. After the data that were in insufficient adhesion
were filtered out. The statistical significance of the left data was verified through mean and
standard deviation. Finally, a total of 1585 samples were compared. Figure 14 shows the
correlation analysis results of the left and right wheel tracks.

As can be seen from Figure 14, the correlation coefficients R2 between CAT and Vmp
are calculated. The R2 of the right and left wheel tracks are 0.6585 and 0.6275, respectively.
According to previous research on the correlation between road pavement texture and
pavement adhesion [53], the result of this study shows a high correlation, which means
that the volume parameter Vmp used in this study is a reliable index to characterize the
3D aspahlt pavement texture. By observing the correlation trend in the figure, we can
see that the CAT values on the left and right sides have a consistent change pattern. The
correlation coefficients R2 of CAT and Vmp on the left and right sides are similar (0.6585
and 0.6275), indicating that the road texture characteristics and adhesion performance are
hardly affected by the left and right wheel tracks. Moreover, when we further observe
the data distribution in the figure, we can find that the Vmp value that characterizes the
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road texture has different changing trends within different adhesion thresholds. When
the CAT value is between 0.45 and 0.55, most Vmp values are on or below the trend line.
When CAT values are greater than 0.55, most of the values are above the trend line. The
above analysis indicates that there is an estimation bias in the current correlation estimation
results between CAT and Vmp. Therefore, it is necessary to divide road adhesion into
different levels according to the CAT threshold. And further, build detailed prediction
models of road adhesion performance using road texture under different CAT thresholds.

(a)

(b)

Figure 14. Correlation between CAT and Vmp on the right and left wheel track zone, respectively.
(a) shows the correlation between CAT and Vmp on the right wheel track, (b) shows the correlation
between CAT and Vmp on the left wheel track.

4. Discussion
4.1. Sample Subdivision

To accurately explore the relationship between road adhesion and road texture, this
paper divides the CAT value into four levels according to the Italian Guide Line—CNR
Bulletin N. 147/1992 [46]. Table 2 shows the details of the sample subdivision. The four
levels are as follows: (1) When CAT < 0.35, the road surface is considered to have Mediocre
adhesion, which means that the condition of the road surface needs to be checked very fre-
quently to ensure driving safety. (2) When 0.35 < CAT < 0.45, the road surface is considered
to have moderate adhesion properties, which means that the condition of the road surface
needs to be checked frequently to ensure driving safety. (3) When 0.45 < CAT < 0.55, the
road surface is considered to have satisfactory adhesion performance and only regular
monitoring of the road surface is required. (4) When CAT > 0.55, the road surface is
considered to have good adhesion, which means the maintenance office can reduce road
surface monitoring and save costs. We divide the samples based on these CAT thresholds,
and each sample consists of a pair of values: CAT and Vmp. The number of samples in these
four levels is 491, 386, 276, and 432.
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Table 2. Sample subdivision details by CAT threshold.

Adhesion Level Judgment Operations Number of Samples

CAT < 0.35 Mediocre Very frequent checks 491
0.35 < CAT < 0.45 Moderate Frequent checks 386
0.45 < CAT < 0.55 Satisfactory Periodic surveillance 276

CAT > 0.55 Good Reduce surveillance 432

4.2. Pavement Adhesion Assessment

To verify the impact of sample division based on the CAT threshold on the prediction
of asphalt pavement adhesion performance based on pavement texture analysis, correlation
analysis of CAT and Vmp was performed on samples within each adhesion level. Figure 15
shows the results of the correlation analysis. The results show that when CAT < 0.35,
the correlation coefficient R2 is 0.6109, when 0.35 < CAT< 0.45, R2 of which is 0.6006,
and when 0.45 < CAT < 0.55, R2 of which is 0.6126. That is, when CAT < 0.55, the
corresponding correlation coefficients R2 of the three adhesion levels under this CAT
threshold are lower than that before dividing samples (R2 is 0.6585 and 0.6275), which
indicates that the correlation between CAT and Vmp was previously overestimated under
this CAT threshold. When CAT > 0.55, the correlation coefficient R2 of CAT and Vmp is
0.7265, which is significantly higher than that of the previous estimate, which indicates that
there was a significant underestimate of the correlation between CAT and Vmp at this CAT
threshold. All these results indicate that dividing samples according to the CAT threshold
can more accurately measure the impact of pavement texture on asphalt pavement adhesion
performance. In addition, from the above correlation analysis of the different adhesion
ranges, it is highlighted that the measurement is more reliable when the CAT value is
higher. That is, when the pavement has better performance, the distribution of road surface
texture is more uniform, and pavement offers greater adhesion therefore the correlation
between Vmp and CAT is higher.

(a)

(b)

Figure 15. Cont.
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(c)

(d)

Figure 15. Results of the correlation analysis of CAT and Vmp under different CAT thresholds.
(a) CAT < 0.35, adhesion in Mediocre levels. (b) 0.35 < CAT< 0.45, adhesion in Moderate level.
(c) 0.45 < CAT < 0.55, adhesion in Satisfactory level. (d) CAT > 0.55, adhesion in Good level.

In order to realize the asphalt pavement adhesion performance evaluation based on 3D
laser detection technology, this paper further builds a asphalt pavement adhesion prediction
model based on the samples classified by CAT threshold level and using the road texture
index Vmp. The prediction model and estimated parameters under each threshold level
are listed in Table 3. Through these prediction models, the pavement adhesion coefficient
CAT of the road surface can be predicted directly through the 3D texture surface of the
road surface constructed by 3D laser detection technology, achieving efficient non-contact
measurement of road pavement adhesion.

Table 3. Pavement adhesion prediction models of different adhesion levels.

Adhesion Level Prediction Models R2 Coeff. Person

CAT < 0.35 y = 0.0002x + 0.0074 0.6109 0.7816
0.35 < CAT < 0.45 y = 0.0007x − 0.0087 0.6006 0.7803
0.45 < CAT < 0.55 y = 0.0003x + 0.0076 0.6126 0.7827

CAT > 0.55 y = 0.0009x − 0.0268 0.7265 0.8523
Notes: x means CAT, y means Vmp.

5. Conclusions

Pavement adhesion plays a crucial role in driving safety and is closely related to the
condition of the pavement texture. To comprehensively consider the 3D characteristics of
the road surface texture in the pavement adhesion assessment, and improve the accuracy
and efficiency of the road asphalt adhesion assessment. We used the 3D laser technology to
continuously collect the high-resolution 3D point cloud data of asphalt pavement surface.
And then reconstruct the 3D topography of road surface texture using the collected point
cloud. Then we propose a 3D volume parameter Vmp based on the 3D topography to
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characterize the texture spatial characteristics. Primary analysis is conducted to validate the
proposed experiment and volume parameters, and sample subdivision is carried out based
on the CAT threshold. Finally, by analyzing the correlation between the proposed Vmp and
the road adhesion coefficient CAT, the refined sphalt pavement adhesion prediction models
based on volume parameters of the road texture were established. Based on the analyses
presented in the study, the following conclusions were reached:

• The proposed volume parameter Vmp can reliably characterize the asphalt pavement
texture. The correlation analysis between the volumetric parameter Vmp and the
pavement adhesion coefficient CAT demonstrates a satisfactory degree of correlation,
indicating the reliability of the proposed volumetric parameter in characterizing the
3D structure of texture;

• By grading asphalt pavement surfaces through CAT thresholds, the accuracy of road
surface texture characterization can be effectively improved, and the measurement is
more reliable when the CAT value is higher. Within different adhesion thresholds, the
correlation between pavement texture and pavement adhesion coefficient is different.
Conventional analysis methods may overlook such differences, thus reducing the accu-
racy of pavement adhesion assessment. Utilizing CAT threshold-based segmentation
can reduce this disparity, thereby enhancing accuracy;

• Utilization of 3D laser detection technology enables rapid prediction of asphalt pave-
ment adhesion coefficients and assessment of road skid resistance performance. Based
on CAT threshold segmentation, this paper proposes a refined model utilizing road
texture volume indicators to estimate asphalt pavement adhesion coefficients. This
suggests that in the future, road skid resistance performance can be rapidly and
non-invasively assessed through direct employment of road surface 3D laser detec-
tion technology.

Future developments: In this paper, when we calculate the 3D parameter Vmp of
the pavement texture, we only consider the top 10% of the material volume. The Vmp
value is closely related to this ratio, which will further affect the characterization of the
pavement texture and the accuracy and reliability of the road adhesion prediction. It is
unclear at which scale calculated Vmp is most beneficial for characterizing the road surface
and assessing road adhesion. In the future, we will further study the impact of different
ratios on pavement texture characterization and adhesion assessment. Moreover, more
volume parameters will be taken into account to fully characterize the relationship between
pavement adhesion and pavement texture.
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