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Abstract: The recently deployed Surface Water and Ocean Topography (SWOT) mission for the first
time has observed the ocean surface at a spatial resolution of 1 km, thus giving an opportunity to
directly monitor submesoscale sea surface height (SSH) variations that have a typical magnitude of
a few centimeters. This progress comes at the expense of the necessity to take into account numerous
uncertainties in calibration of the quality-controlled altimeter data. Of particular importance is the
proper filtering of spatially correlated errors caused by the uncertainties in geometry and orientation
of the on-board interferometer. These “systematic” errors dominate the SWOT error budget and are
likely to have a notable signature in the SSH products available to the oceanographic community. In
this study, we explore the utility of the block-circulant (BC) approximation of the SWOT precision
matrix developed by the Jet Propulsion Laboratory for assessment of a mission’s accuracy, including
the possible impact of the systematic errors on the assimilation of the wide-swath altimeter data into
numerical models. It is found that BC approximation of the precision matrix has sufficient (90–99%)
accuracy for a wide range of significant wave heights of the ocean surface, and, therefore, could
potentially serve as an efficient preconditioner for data assimilation problems involving altimetry
observations by space-borne interferometers. An extensive set of variational data assimilation (DA)
experiments demonstrates that BC approximation provides more accurate SSH retrievals compared
to approximations, assuming a spatially uncorrelated observation error field as is currently adopted
in operational DA systems.

Keywords: sea surface height; swath altimetry; Surface Water and Ocean Topography (SWOT); error
covariance; data assimilation

1. Introduction

The Surface Water and Ocean Topography (SWOT [1–3]), the Coastal and Ocean
Measurement with Precise and Innovative Radar Altimeter (COMPIRA [4]), and the
Guanlan [5] missions were designed to deliver high-resolution maps of ocean surface
topography using radar interferometry. The SWOT satellite was launched on 16 December
2022, initially into a fast (1-day repeat cycle) sampling orbit for calibration, which later (on
21 July 2023) transitioned to an operational (science) orbit having a longer (21-day) repeat
cycle. The COMPIRA and Guanlan missions (currently in the development stages) will
complement SWOT observations on, respectively, 10-day and 14-day repeat orbits, yielding
approximately 2 km and 1 km spatial resolutions.

SWOT observations are already available to the oceanographic community [6] in the
form of carefully calibrated products, with numerous error fields and biases removed
from the data [7]. Examination of residual error statistics indicates that systematic errors
associated with the uncertainties in geometry and orientation of the on-board interferometer
provide the largest contribution to the error budget. These errors may exceed 1 m in
magnitude and appear to be well-described by the respective component of the SWOT
error covariance model developed in the Jet Propulsion Laboratory [8]. This model has
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been extensively used by the oceanographic community to assess the anticipated added
value of the mission to ocean science in general [9,10] and to ocean data assimilation in
particular [11–13].

After the launch of the SWOT mission and arrival of the real data, the error covariance
model was updated [14], and the first SSH products from the science orbit were delivered [15].
Further improvement of the data products are anticipated by the SWOT project team, so
currently released products may be superseded by reprocessed ones obtained by applying
more sophisticated methods of error filtering (e.g., [16–18]).

From the viewpoint of data assimilation, estimates of observation errors are a necessary
prerequisite for correct weighting against the modeling errors. To the best of our knowledge,
the latest available residual error of SWOT ocean products is assumed to be spatially
uncorrelated with a root mean square (RMS) variance ranging between 1 cm and 4 cm
(Tables 2 and 3 in [7]). As a consequence, assimilation of SWOT data is currently being
done under simplified (and, possibly, underestimated) assumptions on the structure of
the residual errors in the SWOT products. For these reasons, the SWOT project team also
provides users with the raw data [19], giving them the opportunity for customized error
filtering and residual error covariance modeling.

In this paper, we explore the utility of the JPL error covariance model for assimilating
SWOT data into numerical models. The study is motivated by several issues. First, since
systematic errors (associated with imperfect knowledge of roll, phase, baseline dilation,
and timing) provide the dominant contribution to the SWOT error budget [7,14], signatures
of their cross-swath spatial patterns are likely to remain in the residual error fields and
could possibly be compatible in magnitude (1–2 cm2) to the otherwise diagonal structure of
the error covariance matrix. Second, the large-scale along-swath harmonics of systematic
errors can be fairly well-represented by a deterministic model (STOP21 [7]) and then
removed from the data, while the along-swath shorter scales are more uncertain and may
cause a weak anisotropy of residual errors in the cross-swath direction. Finally, the JPL
model of systematic errors [14] is formulated in terms of along-swath power spectra (i.e.,
restricted to covariances diagonalizable by a discrete Fourier transform), thus providing
high computational efficiency in the multiplication of a vector by the covariance matrix
and/or its inverse (i.e., the precision matrix).

This paper is organized as follows. In the next section, we briefly outline the role
of precision matrices in operational DA systems and the structure of the SWOT error
covariance matrix R developed by JPL, and we derive its approximate factorization
as well as the related factorization of the precision matrix, R−1. The methodology of
numerical testing of these approximations via 2DVAR observation system simulation
experiments (OSSEs) is outlined in Section 3. In Section 4, we present the results of the
experiments, analyzing dependence of the assimilation skill and computational cost on
the background errors and sea surface roughness quantified by significant wave height
(SWH). Special emphasis is placed on using the block-circulant (BC) approximation of R−1

as a preconditioner for solving the DA system equations in observation space. The findings
are summarized and discussed in Section 5.

2. Approximations of the SWOT Error Covariance
2.1. Precision of Observations in the Data Assimilation Systems

The majority of operational DA systems blend the numerical model output (the
background field, xb) with observations, d, by computing the analysis, xa, as the best linear
unbiased estimate of the system state:

xa − xb ≡ δx = argmin
δx

[
δxTB−1δx + (Hδx − δd)TR−1(Hδx − δd)

]
, (1)

where B−1 and R−1 are, respectively, the precision matrices of the background state and
observations, δd = d − H(xb) is the innovation (model–data misfit), H is the linearized
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observation operator, and T denotes transposition. The cost function J within the square
brackets of (1) is minimized by an iterative algorithm requiring computation of the gradient

∇δx J = 2
[
B−1δx + HTR−1(Hδx − δd)

]
. (2)

In operational DA systems, the dimensions of the precision matrices in Equations (1) and (2)
often exceed 107–108 for B and 105–106 for R, making iterative optimization computationally
challenging and highly dependent on the efficiency of the code simulating the action of the
background precision matrix on a state vector. To reduce the burden of high dimensionality,
DA systems are often reformulated in the dual (observation space) form

xa = xb + BHT
(

HBHT + R
)−1

δd, (3)

seeking then the projection of δx onto the range of B (e.g., [20,21]). The optimal projection
in Equation (3) is obtained by iteratively solving the system (HTBH + R)y = δd and, as
a consequence, efficient preconditioners are required for faster convergence. A straightforward
way to do this is to renormalize innovations δd by the respective RMS error variances
δd −→ R−1/2δd and rewrite Equation (3) in terms of correlations [22]:

xa = xb + VCH̃T
(H̃CH̃T

+ I)−1Gδd; H̃ = GHV , (4)

where V , C, and I are, respectively, the background error variance, correlation, and identity
matrices, and G is the factorization of the precision matrix R−1 = GTG. In effect, GTG is
being used as a split preconditioner (see [23], §9.2.1) Alternatively, the precision matrix R−1

can also be used as a left preconditioner to iteratively solve the system of linear equations
on the right hand side (RHS) of (3):

(R−1HBHT + I)y = R−1δd. (5)

Equations (1), (2), (4), and (5) emphasize the importance of efficiently representing
the observation precision matrix and its factorization in data assimilation. Currently,
operational DA systems employ the assumption of spatially uncorrelated observation
errors (diagonal R), which yields a computationally cheap implementation of both R and
its inverse. However, with the recent advent of wide-swath interferometry such as SWOT,
the validity of this assumption could be questioned due to the substantial contribution of
errors correlated with the SSH field observed at the centimeter level of accuracy. Therefore,
in recent years, considerable efforts have been made to find numerically efficient algorithms
for approximating the action of R−1 and/or G on the innovation vector (e.g., [24–27]).

2.2. SWOT Error Covariance Model

The error covariance matrix R [9] developed at JPL for the accuracy assessment of
the SWOT data has three major constituents, K, Rs, and Ra, associated, respectively, with
the intrinsic noise of the Ka-band Radar Interferometer (KaRIn), with uncertainties in its
geometry and orientation, and with the lack of information on the state of the atmosphere
beneath the satellite:

R = K + Rs + Ra. (6)

The matrix K in Equation (6) is diagonal and has full rank, whereas the other two
matrices are positive semi-definite and may represent significant error correlation in both
the across- and along-swath directions. It is necessary to note that the JPL error covariance
code was designed for simulating SWOT error fields and, therefore, provides the factorized

form of R = T̂
T

T̂, where T̂ = [
√

K
√

Rs
√

Ra]T contains non-negative symmetric square
roots of the terms in the RHS of Equation (6).

In the following, the along-swath and across-swath directions will be denoted,
respectively, by x and y, and matrices operating in these directions will be labeled accordingly.
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The respective SSH observation grid points will be enumerated by indices 1 ≤ i ≤ nx and
1 ≤ j ≤ ny. In contrast to our previous studies [25,28] focused on the approximation
of the SWOT precision matrix at submesoscale wavelengths below 100 km, here we
consider scale-independent approximations of R−1 and G based on their block-circulant
representation. In addition, since the residual atmospheric error Ra is several times smaller
than Rs in magnitude [29,30], in this study, we neglect its contribution to R.

In accordance with the JPL model, the systematic component of the residual error field
is represented by the Kronecker product ⊗ of the error covariance matrices in across- and
along-swath directions as follows:

R = K + ∑
k

F−1
x Sk

xFx ⊗ Rk
y. (7)

Here, Rk
y are the rank-one covariance matrices associated with four across-swath

uncertainty patterns enumerated by k = 1, ..., 4 (namely, roll, phase, dilation, and timing),
F is the along-swath Fourier transform, and Sk

x = diagi{Sk
i } are diagonal matrices with the

respective power spectra values on their diagonals.

2.3. Block-Circulant Approximation

In [25,28], it has been shown that R−1 and its symmetric square root R−1/2 could be
well-approximated by sparse block-diagonal matrices if the target SSH features are at the
submesoscale and are characterized by flat spectra at spatial frequencies above 0.01 km−1.
This approximation is suitable for use in multi-scale DA methods (e.g., [31,32]) at the second
stage, after mesoscale features have already been assimilated.

Inspection of Equation (7) also shows that the structure of the SWOT error covariance
matrix could be quite close to block-circulant if |Rs| ≫ |K| or if the diagonal elements of K
slowly vary in the along-swath direction, i.e.,

K ≈ Ix ⊗ Ky, (8)

where Ky accounts only for the across-swath variability of the SWH and the KaRIn
noise (Figure 5 in [8]). Validity of such an approximation follows from the fact that the
along-swath components of Rs are diagonalizable by the Fourier transform (and, therefore,
Rs has a block-circulant structure). Thus,

R ≈ Ix ⊗ Ky + ∑
k

F−1
x Sk

xFx ⊗ Rk
y = (F−1

x ⊗ Iy)(Ix ⊗ Ky + ∑
k

Sk
x ⊗ Rk

y)(Fx ⊗ Iy) =

= (F−1
x ⊗ Iy) diagi(Ky + ∑

k
Sk

i Rk
y)(Fx ⊗ Iy) (9)

has nearly block-circulant structure if condition (8) is satisfied with a reasonable degree
of accuracy.

The diagonal elements of K depend non-linearly on the distance of the SSH grid cell
from nadir (i.e., across the swath) and on local SWH values, which can vary considerably
along the swath (Figure 1, upper panel). However, the non-linearity of the SWH projection
on the KaRIn noise error variance (Figure 5 of [8]) dumps spatial variations of diag(K) in
such a way that even a transition from calm (SWH∼1 m) conditions to stormy (SWH∼5 m)
conditions along the swath (Figure 1) results only in a moderate (10–20%) deviation of K
from the block-diagonal pattern described by Equation (8) [28]. Furthermore, estimation of
the BC deviation parameter from Equation (7),

εbc =
|R(K)− R(Ix ⊗ Ky)|

|R(K)| , (10)
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yields a εbc-variation range of 10−3–10−4 for typical oceanic conditions, indicating that
Equation (9) may provide an accurate approximation for the precision matrix and its
square root.

Inversion of the BC representation (9) of R can be done efficiently [33] by inverting (in
parallel) ny diagonal blocks and then applying the result to the Fourier image of the swath
followed by the inverse Fourier transform.

Furthermore, multiplication of a vector by R−1 can be substantially simplified by
exploiting the fact that Rk

x are rank-one matrices whose range is spanned by the cross-track
modes wk

y of the systematic error variation: Rk
y = wk

y(wk
y)

T. Introducing the notation
W = [w1, ..., w4] ∈ Rny×4 and Si = diagk(S

k
x) ∈ R4×4, the RHS of Equation (9) can be

rewritten in the form

R ≈ R̂ ≡ (F−1
x ⊗ Iy) diagi(Ky + WSiWT)(Fx ⊗ Iy) = (F−1

x ⊗ K1/2
y ) diagi(Iy + ZiZT

i )(Fx ⊗ K1/2
y ), (11)

where Zi = K−1/2
y W S1/2

i ∈ Rny×4 are rescaled versions of the across-swath uncertainty
mode matrix W. As a consequence, blockwise inversions in R̂ can be executed in parallel
using the Woodbury formula for inverting low-rank perturbations ZiZT

i of the identity Iy
in the cross-swath direction:

R−1 ≈ R̂
−1 ≡ (F−1

x ⊗ K−1/2
y ) diagi(Iy − Zi(I4 + ZT

i Zi)
−1ZT

i )(Fx ⊗ K−1/2
y ). (12)

Figure 1. An example of a SWH map at the SWOT swath (upper panel, in meters), and the map of the
KaRIn noise ratio diag(K∗/K)1/2, where K∗ is the KaRIn noise variance distribution when the SWH
shown in the upper panel is averaged along the swath, thus satisfying the block-circulant condition.

Using representation (12), it is possible to factorize R̂
−1

= GTG in order to normalize
SSH innovations (see Appendix A):

G = diagi

Iy − Ui

I4 − diagk

 1√
1 + (σk

i )
2

UT
i

(Fx ⊗ K−1/2
y ), (13)

where ny × 4 matrices Ui have orthonormal columns, satisfying the relationships
ZiZT

i = UiΣ2
i UT

i , and Σi = diagk(σ
i
k) are 4 × 4 matrices containing the respective

singular values.
Finally, we note that since both R and its BC approximation R̂ are symmetric, symmetry

is preserved for their inverses, and the number of independent ny × ny blocks in the

structure of R̂ and R̂
−1

decreases from nx for a general BC matrix to the integer part
of (nx + 2)/2, thus reducing the computational cost of algorithms operating with BC
approximations of the covariance and precision matrices.
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The accuracy of BC approximations (12) and (13) was tested in a set of numerical
experiments with a special focus on the possibility of using Equation (12) as a preconditioner (5)
for assimilating SWOT data in observation space DA systems.

3. Testing the BC Approximation

Evaluation of BC performance was done via the OSSE technique similar to the
one used in [28] for assessment of the block-diagonal approximation: ensembles of 2D
variational (2DVAR) DA experiments have been made by randomly perturbing “true” SSH
distributions to simulate background states and observations with prescribed perturbation
statistics. Misfits between the “true” background states and those retrieved from the
DA runs as well as the computational cost of the retrievals with BC approximation were
then compared with the retrievals obtained using a simplified (uncorrelated) and exact
observational error statistics.

3.1. Ocean Simulation

To simulate the “true” ocean, we used a 4-month output of the Navy Coastal Ocean Model
(NCOM [34]) east of Greenland. The model was run at 1 km resolution in June–September
2019 in the region of the East Greenland Current, nested within a coarser (4 km) configuration
that was used to study the impact of freshwater runoff from the Greenland ice sheet on the
local coastal circulation [35]. Apart from the runoff, the solution was forced by atmospheric
fluxes of heat, freshwater, and momentum from the Navy Global Environmental Model
(NAVGEM) [36]. To explore the dependence of BC approximation quality on the background
current, three 128 km wide and 512 km long model snapshots with various RMS magnitudes
(5, 7.5, and 10 cm) of the SSH variability were extracted from the NCOM simulation. More
details on the model setting, including a regional map with model snapshots (an example
is also given in Section 3.2), can be found in [28].

3.2. Simulation of Error Statistics

In the 2DVAR experiments, both modeling (background) and observation errors were
represented by random realizations of the Gaussian 2D fields with zero mean and prescribed
non-diagonal covariance matrices. The background error covariance was assumed to be
isotropic, while the observation (SWOT) error covariance was anisotropic and defined
by Equation (7).

3.2.1. Observation Errors

Recent releases of SWOT high-level ocean products [15] are the result of elimination
of systematic errors contributing to the error budget of the observed SSH fields arising
from various sources. Although the magnitude of these errors has been decimated by
sophisticated data-driven calibration algorithms [7], the SWOT team also provides low-level
(raw) products [19], which gives the community an opportunity to customize and improve
the calibration of SSH observations [37,38].

Of particular importance are the errors driven by variations in the geometry and
orientation of the on-board interferometer. These errors provide the major contribution
to the error budget and can be as large as 1 m in magnitude at along-swath scales of
thousands of kilometers [38]. Although their deterministic part is well-described by the
STOP21 model, relatively small residuals (∼1 cm in magnitude) may still remain in the
high-level products due to uncertainties in modeling transitions through the orbit eclipses
and/or random components from the gyrometer [7]. Statistics of these residual errors are
described by the second term in the RHS of (7) and mostly affect submesoscale oceanic
variability at scales below 50 km.

To estimate the magnitude of the residual errors, we analyzed the high-frequency
component of the SWOT data release [15] for the period between 1 April and 27 June 2023.
These data were obtained during the 1-day repeat orbit, extracted at the calibration site
west of California [12] and filtered using a high-pass Gaussian kernel with a half-width
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of 4 km (left panel in Figure 2). The respective across- and along-swath spectra (right
panel in Figure 2) were normalized and averaged over the 88 daily snapshots. Figure 2
indicates the presence of these residual errors in the form of across-swath linear patterns of
approximately 1–2 cm in magnitude causing the displacement of the along-swath spectral
maximum toward higher frequencies.

Figure 2. Left : High-pass filtered SSH map (centimeters) obtained by SWOT on 16 May 2023 west
of California. Right: Normalized by the total energy along- and across-swath spectra averaged in
April–June 2023 over both halves of the swath segments shown in the left panel.

The obtained estimate of a systematic error magnitude of 1 cm roughly corresponds to
the 1000 km long-wave cutoff of the along-swath error power spectra Sk

x in Equation (7),
suggesting that numerical experimentation with a 500 km long swath segment would
be quite adequate for the purpose of simulating the residual error fields in testing the
BC approximation.

3.2.2. Background Errors

The background fields xb simulating uncertain “model forecasts” were specified by
imposing the background noise δxb on the true solutions xt, extracted from the model run
described in Section 3.1:

xb = xt + δxb ≡ xt + VC1/2n, (14)

where n is a realization of the 2D Gaussian random field with zero mean and unit variance,
V = νvtI is a diagonal matrix of spatially homogeneous standard deviations from the true
fields caused by the model (background) errors, and vt is the RMS variation of the true
field. The coefficient ν controlling the magnitude of the background errors was varied in
the course of the experiments. Similar to the SWOT observation errors, the model errors
were assumed to be Gaussian, with a correlation matrix proportional to

C ∝ exp(∆/2a2), (15)

where ∆ is the discretized Laplacian operator with Neumann boundary conditions at the
swath edges, and a is the decorrelation scale, which was then also varied in the course
of the experiments. The kernel (15) with a = 4 km was also used to filter SWOT data in
Figure 2.

Similar to [28], the OSSEs were conducted on a rectangular 128 × 512 km grid at 2 km
resolution (Figure 3). The “true” states used in [28] (an example is shown in Figure 3a)
were interpolated on that grid to generate the ensemble of random realizations of the
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background error fields (Figure 3b) using Equation (14). Simulated SWOT error fields
(Figure 3c) were collocated with the grid points of the background states.

Figure 3. (a) True SSH field xt (NCOM output on 20 July 2019) used in the assimilation experiments;
(b) random realizations of the simulated background field; (c) SWOT observation error field.

3.3. Methodology of the OSSEs

The utility of the BC approximation was assessed by averaging the computation
times and retrieval skills of the ensembles of 2DVAR DA runs performed with the exact
SWOT error covariance model (7), using its block-circulant and diagonal approximations.
Each ensemble had 100 members obtained by perturbing a single true state by random
observations with zero mean and covariance as described in the previous section. Each
ensemble was characterized by a fixed set of parameters, quantifying the statistics of
the perturbations: the decorrelation scale (a = 4, 6, 10, 16) km and magnitude (ν = 0.1,
0.2, 0.4, 0.8) of the background error covariance. The third parameter was the SWH
magnitude, controlling the contribution K of KaRIn noise to the SWOT error covariance in
Equation (7). We used three realistic SWH patterns in the Greenland Sea corresponding
to stormy conditions (spatially averaged SWH wxy = 3 m), intermediate conditions
(wxy = 2 m), and calm conditions (wxy = 1 m). The RMS spatial variation of SWH for these
states, which defines the BC approximation accuracy, was, respectively, 1.1 m (upper panel
in Figure 1), 0.3 m, and 0.1 m. The respective approximation errors of these SWH fields by
their along-swath averages wx were 18%, 2%, and 0.6%.

Varying the parameters a, ν, and w(x, y) as mentioned above yields 4×4×3 = 48 ensembles
for each of the three true states. Since each 2DVAR DA experiment was run 3 times with
exact, diagonal, and BC approximation of R, the total number of the DA experiments was
48 × 9 = 432. Results of these experiments were assessed in two aspects: computational
cost and the retrieval skill of the true states.

The retrieval skills were quantified using the error reduction ratios as follows:

Rij =
⟨|δxb + δxi|⟩
⟨|δxb + δxj|⟩

; rij =
⟨δxb + δxi⟩
⟨δxb + δxj⟩

. (16)

Here, δxb = xb − xt is the background error, angular brackets denote the ensemble
averages, an overline denotes the standard deviation of a field in horizontal, while indices
i, j = 0, 1, 2 enumerate increments obtained using the exact (1) and diagonal (2) models
of the SWOT error covariance, respectively. For the error reduction ratio with respect
to the background state, the index j is set to zero, implying that the increment δx0 = 0
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(i.e., the skill was assessed with respect to the background error, without assimilation).
Figure 4 shows a background ensemble member obtained by contaminating the true state
in Figure 3a with the background noise (Figure 3b) and the result of 2DVAR assimilation of
simulated SWOT observations.

Figure 4. (a) A random realization of the background field in Figure 3a with a = 10 km and ν = 0.4;
and (b) the result of its analysis using simulated SWOT observations with SWH = 2 m.

The computational cost was specified as the ensemble average of the CPU time
τ required by the preconditioned conjugate gradient solver of (HBHT + R)y = δd in
Equation (3). We considered two cases in representing R: with and without the second term
in Equation (7). The first case was solved with the diagonal preconditioner K−1, whereas in
the second case, the BC approximation of the SWOT precision matrix (Equation (12)) was
used (Equation (5)).

A limited number of experiments have been done with the factorized version (4) of the
analysis equation adopted by the operational system of the Naval Research Laboratory [22].
The computational efficiency e of the BC approximation was quantified by the ratio of the
ensemble-averaged CPU times required for the analyses using the exact (Equation (7)) and
diagonal (Rk

y = 0 in Equation (7)) representations of the SWOT error covariance:

e = ⟨τdiag⟩/⟨τexact⟩. (17)

In the 2DVAR runs with the exact representation of the SWOT error statistics, the BC
preconditioner (12) was used.

4. Results
4.1. Retrieval Skill

Approximation (12) of the precision matrix provides an efficient preconditioner for
solving Equation (5) with the spatially correlated model of the SWOT error covariance. In
experiments comparing the retrieval skill R12 (Equation (16)) of the exact and diagonal
representations of the SWOT error covariance, the solutions to the preconditioned analysis
Equation (5) were equivalent to solving

R̂
−1

(HBHT + R) = R̂
−1

δd for the BC preconditioner and (18)

K−1 HBHT + I = K−1δd for the diagonal preconditioner, (19)

where the ensembles of innovations δd = d − H(xb) were specified by sampling the
background states xb and observations d = Hxt + R1/2n from the Gaussian distributions
defined by Equations (14) and (15) and the SWOT covariance model (7).

Since statistics of δd for the diagonal approximation of the SWOT error covariance
were not consistent with the analysis of Equation (19), the retrieval skill in the diagonal case
was significantly lower than in the case when the exact spatially correlated error covariance
was used in the analysis equation (Figure 5).



Remote Sens. 2024, 16, 1954 10 of 16

The advantage of using the spatially correlated error model was observed over the
entire range of parameters characterizing statistics of the background and observation error
fields. Results of these computations are summarized in Figure 6.

Figure 5. Analysis error fields obtained for an ensemble member with the exact (a) and diagonal (b) repre-
sentations of the observation error covariance matrices. The ensemble corresponds to the true state
in Figure 3a, with the set of parameters characterized by the background error decorrelation scale
a = 10 km, noise level relative to the true state ν = 0.4, and KaRIn noise error variance generated by
surface waves under stormy conditions (SWH = 3 ± 1.1 m). RMS values of both fields are shown.

Figure 6. Dependence of the retrieval skill r12 (Equation (16)) on the background noise level ν and
significant wave height w for two decorrelation scales.

It is interesting that the retrieval skill is insensitive to the SWH magnitude, which
defines the relative contribution of the systematic error modes to the observation error
statistics. This can be partly explained by the fact that these modes mostly contribute to
the scales of variability exceeding 10 km that are efficiently penalized by the background
term, which dominates the analysis error budget at ν > 0.2. It is noteworthy that
dependence on SWH becomes more significant at ν = 0.1, when observation and
background errors become comparable in magnitude. However, since the range of
ν in most of the practical applications is 0.3–0.8, the impact of the SWH on the retrieval
skill could be considered negligible.

Figure 6 also shows that using a spatially correlated error model becomes less
advantageous with the increasing magnitude and decorrelation scale of the background
SSH field. This conclusion can be explained by the growing dominance of the background
error modes in the analysis equation. In the limiting case of very large background errors
|B| ≫ |R|, the retrieval skill r12 becomes indistinguishable from 1 at ν = 1.1 for a = 16 km
and ν = 1.3 for a = 6 km.

Spatial variation of the retrieval skill R12 (Figure 7) further quantifies the utility of
taking correlations of systematic errors into account. First, with the increasing decorrelation
scale of background errors, information from relatively accurate SWOT SSH observations
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is able to leak into the nadir gap, unobservable by the KaRIn interferometer, thus providing
a certain increase in skill in this area (cf. Figure 7a,b). At the same time, increase in the
background error level ν widens the red area within the gap in Figure 7a,c,d, indicating
that the advantage of taking the correlated errors into account is gradually lost as the
uncertainty of the background field becomes the dominant factor in the 2DVAR analysis.

The patterns in Figure 7 also give a certain insight into the accuracy of the BC
approximation. All the R12 shown were obtained by averaging over the 2DVAR DA
ensembles with the stormy SWH shown in Figure 1. In this case, the preconditioner

matrix R̂
−1

(Equation (5)) has the largest deviation from the exact one. Regarding this, it is
necessary to note that, despite the minuscule value of εbc = 0.0031 for the SWH pattern in
Figure 1, the respective approximation error of the preconditioning matrix

εi
bc =

|R−1(K)− R̂
−1|

|R−1(K)|
(20)

was 0.19, significantly reducing the convergence rate (Section 4.2). Nevertheless, it only
slightly affected the retrieval skill, visible by its minuscule reduction in the right part of
Figure 7a–c, which was caused by stronger inhomogeneity of the SWH field and, therefore,
by larger BC approximation errors.

In summary, Figures 6 and 7 demonstrate that the consideration of spatial correlations
of the SWOT systematic residual errors in DA systems can be justified only when the
background errors do not exceed 8–10 cm (ν < 1). This upper limit on the magnitude of
B also depends on the decorrelation scale of the background errors and could be relaxed
to some extent in regions dominated by submesoscale dynamics with a < 5 km. In
these regions, r12 decays at a substantially slower rate (black lines in Figure 6). Further
quantification of this threshold can be made if we consider the various aspects of the
computational cost required for the computing the spatial correlations.

Figure 7. Spatial distributions of the retrieval skill R12 (Equation (16)) at various levels of background
noise ν for two decorrelation scales under stormy (SWH = 3 m, upper panel in Figure 1) conditions:
(a) ν = 0.1, a = 16 km; (b) ν = 0.2, a = 6 km; (c) ν = 0.4, a = 16 km; (d) ν = 0.8, a = 16 km. The
horizontal mean values r12 of the distributions are shown.
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4.2. Computational Efficiency

In assessing the computational cost of solving the analysis in Equation (18), we
compared the total CPU time required by the preconditioned conjugate gradient (PCG)
solver with a diagonal preconditioner, K−1, and a BC preconditioner, R̂. Other solvers
for symmetric positive definite systems were also tested but did not show any substantial
difference with PCG.

The value of the quantification parameter e in Equation (17) is basically controlled
by two factors: the CPU time T required by multiplication of a vector by HBHT, which
grows quadratically with the decorrelation scale a, and the number of iterations n required
for convergence, which grows roughly proportionally to the square root of the condition
number of the preconditioned system matrix P(HBHT + R) [23], §6.11.3 (using either

P = K−1 or P = R̂
−1

in Equation (12)). As a consequence,

e ∝
T + τR + τK

T + τR + τR̂
· n(K)

n(R̂)
=

1 + ϵ(K)

1 + ϵ(R̂)
· n(K)

n(R̂)
, (21)

where ϵ(P) is the computational cost of the preconditioner relative to the cost of multiplication
by the system matrix HBHT + R. In the explored range of background error parameters
a and ν, the values of ϵ(K) and ϵ(R̂) changed in the ranges between (0.001–0.015) and
(0.05–0.7), respectively, with the smaller values corresponding to the larger background
decorrelation scale a = 16 km. The ratio of the number of iterations followed an opposite
variation between 4.8 and 1.4, with the smaller values corresponding to larger values of a,
ν, and w. In particular, dependence on w contributed to the increase in n(R̂) significantly
for stormy conditions with w = 3 ± 1.1 m, when the BC approximation to R−1 had the
largest error εbc = 0.19. In the typical (w = 2 ± 0.2 m) and calm (w = 1 ± 0.1 m) situations,
the value of εbc was much smaller (0.03 and 0.011, respectively) and did not affect the rate
of convergence.

Figure 8 summarizes the results of these experiments. It is remarkable that, in contrast
to the skill curves in Figure 6, the larger background scale has a visible advantage relative
to the smaller one. This is due to the fact that, for a = 6 km, ϵ(R̂) becomes larger,
while the numerator remains close to 1 due to the extremely low cost τK of the diagonal
preconditioner. This significantly reduces the first fraction in the RHS of Equation (21),
whereas the ratio of iteration numbers is not large enough to compensate for that reduction
to the same extent as in the case of a = 16 km. With the growth in the background noise,
the black lines in Figure 8 dip below the threshold value of 1 at ν = 0.4, making the BC
preconditioner less computationally efficient than the diagonal one. However, it still keeps
its superior skill in retrieving the true state at a significantly better (2 times) level (Figure 6).
It is noteworthy that such situations (large background errors at small scales) are unlikely in
the open ocean, because both modeling [39] and the latest SWOT observations [3] indicate
that the SSH spectrum falls steeply with the wavenumber so that respective background
errors should barely exceed 5 cm at scales below 5 km.

At larger scales (blue curves in Figure 8), the computational efficiency is better for the
BC preconditioner up to the background noise level of 0.8, with the exception of stormy
conditions at ν = 0.8, where the solid blue line goes slightly below the threshold value.
This favorable property is due to the relatively small magnitude of ϵ(R̂) caused by the large
cost τ(HBHT + R) of computing the action of the system matrix on a vector. Consequently,
the first fraction in the RHS of Equation (21) becomes close enough to 1 to be compensated
by 15–30% fewer iterations n(R̂) of the BC preconditioner at a large ν in the second fraction.
For smaller background noise values, the advantage of the BC preconditioner at large scales
was even more prominent (up to 5 times at ν = 0.1) due to the smaller contribution of
HBHT to the system matrix.
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Figure 8. Dependence of the computational cost parameter e = ⟨τdiag⟩/⟨τexact⟩ (Equation (17)) on the
background noise level ν and significant wave height w for two decorrelation scales.

Figure 8 also shows the minor role of sea surface roughness (controlled by SWH) in
the computational efficiency of the BC preconditioners: for strongly inhomogeneous SWH
distributions along the swath (typical for stormy conditions), the value of e degrades by
approximately 10–20% over the entire range of the background noise levels. When the
SWH spatial variability along the swath is relatively small (less than 10% of the mean
value), the reduction in the computational efficiency is negligible, as it barely exceeds the
confidence limits of averaging over the ensembles of experiments.

We also conducted a number of experiments with the renormalized version (4) of the
analysis equation. This approach is implemented in the operational DA system of the Naval
Research Laboratory for the case of uncorrelated observation errors [22]. The purpose of
these experiments was to explore the possibility of extending the system to allow processing
spatially correlated observations via a factorized version of the BC preconditioner (13). The
retrieval skill was found to be almost identical to the one displayed in Figure 6; however,
the computational efficiency was 10–15% worse, primarily because of the necessity to
perform two multiplications (by G and GT) of a vector on every iteration.

5. Summary and Discussion

Arrival of early data from the SWOT mission has shown that the SSH variability
observed by the satellite exceeds mission requirements in the submesoscale band at
wavelengths below 25 km (Figure 1 in [3]). Special attention in SWOT calibration has
focused on removing systematic errors caused by the uncertainties in the geometry and
orientation of the on-board interferometer, which provides the largest contribution to
the SWOT error budget [7]. Although the spatial structure of these error fields can be
accurately described by STOP21 software and error covariance models developed by JPL,
high-frequency along-swath components may still be present at the centimeter level in the
calibrated products. It is therefore useful to investigate the utility of employing a spatially
correlated model [14] in operational data assimilation algorithms that had been developed
previously under the assumption of spatially uncorrelated observations.

In this study, we exploited the near-block-circulant structure of the SWOT covariance
model and investigated the retrieval skill of the BC approximation to the SWOT precision
matrix using simulated SSH patterns the East Greenland Sea at 1 km resolution. In contrast
to the previous study [28] that had focused on the performance of the block-diagonal
approximation of the SWOT precision matrix (which is mostly valid at the submesoscale),
the BC approximation introduced here provides significantly better accuracy over a wider
range of scales, limited from above only by the length of the analyzed swath segment. The
retrieval skill of the BC approximation was assessed through the ensembles of 2DVAR
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assimilation experiments with variable error statistics of simulated SWOT observations
and background states.

Results of the study are summarized as follows. The correlated SWOT errors significantly
affect the analysis if the background noise does not exceed the magnitude of the background
state for a wide range of sea surface roughness values. Similar to the block-diagonal
approximation, the BC approximation is more efficient for typical (SWH∼1–2 m) surface
roughness with moderate (10–20%) SWH variation along the swath. In contrast to BD,
the BC approximation is weakly sensitive to SWH variation and remains valid under
stormy conditions (Figure 1), providing better analysis as compared to an uncorrelated
error model even at large background noise levels. This favorable feature of the BC
approximation emerges because it is more general. The BD approximation is scale-selective
and mostly valid for retrieving submesoscale features of SSH variability characterized by
the flat error spectra at wavelengths below 50 km. The BC approximation, being free from
this constraint, is also less sensitive to errors introduced by the spatial variations in the
magnitude surface waves. In that respect, using the BC approximation of the precision
matrix as a preconditioner persistently yields assimilation accuracy identical to the accuracy
delivered by the exact JPL error covariance model with a diagonal preconditioner. This
accuracy is, however, achieved at significantly (1.3–3 times, Figure 8) lower computational
cost than what is observed with a diagonal preconditioner.

The BC approximation can be developed further to include environmental contributions
Ra in Equation (6). This could be accomplished by exploiting the block-circulant structure
of the 2D Fourier transform Fxy = Fx ⊗ Fy in conjunction with separable types of the
error spectra Sa(kx, ky), such as isotropic power spectra Sa ∝ diag exp[α(k2

x + k2
y)] = diag

exp(αk2
x)⊗ diag exp(αk2

y), often used in large-scale atmospheric modeling.
The proposed approach can be instrumental for SSH products based entirely on

satellite observations. In such applications, a (low-resolution) background state in the cost
function could be derived from an image provided by traditional nadir altimeter(s) and then
synthesized with higher resolution SWOT data using the described variational approach.

Evidently, the analysis presented here is based on OSSEs with idealized error statistics,
employing Gaussian fields with covariances that are diagonalizable by the discrete Fourier
transform. The ultimate test will be the forecast skill assessment of an operational system
upgraded to handle spatially correlated SSH errors at 1 km resolution. This is the subject of
our forthcoming research.
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Appendix A. Factorization of the BC Approximation of the Precision Matrix

Assume that diagonal blocks in Equation (11) have the form

Iy + ZiZT
i = Iy + UiΣ2

i UT
i = (Iy + QiQ

T
i )

2. (A1)

This would allow the factorization

R = GTG = (FT
x ⊗ K1/2

y )
[
diagi(Iy + QiQ

T
i )

][
diagi(Iy + QiQ

T
i )

]
(Fx ⊗ K1/2

y ). (A2)

Rearranging the RHS of Equation (A1) yields UiΣ2
i UT

i = Qi(2I4 + QT
i Qi)Q

T
i , so,

without loss of generality, we can assume that Qi = UiDi for some Di ∈ R4×4 that satisfies

Σ2
i = 2DiDT

i + (DiDT
i )

2. (A3)

This condition is consistent with Di (and, hence, DiDT
i ) being diagonal, although non-diagonal

solutions are possible as well. Taking DiDT
i = D2

i = diagk(ϖ
k
i ) and choosing positive roots

of (ϖk
i )

2 + 2ϖk
i − (σk

i )
2 = 0 (cf. Equation (A3)), we obtain

D2
i = diagk

(√
1 + (σk

i )
2 − 1

)
(A4)

to arrive at a factorization of R = PTP with

P = diagi

(
Iy + UiD2

i UT
i

)
(Fx ⊗ K1/2

y ). (A5)

Applying the Woodbury formula (I + UD2UT)−1 = I − U(I + D−2)−1UT to invert
the diagonal blocks in Equation (A5), then substituting into Equation (A5), we finally obtain
Equation (13):

G = diagi

{
Iy − Ui

[
I4 − diagk

(
1 + (σk

i )
2
)−1/2

]
UT

i

}
(Fx ⊗ K−1/2

y ). (A6)
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