Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling
Abstract
:1. Introduction
2. Methods and Data
2.1. In Situ Data
2.2. Remote Sensing Imagery
2.2.1. Satellite
2.2.2. Aircraft
2.2.3. UAV
2.3. Data Calibration and Transformation
2.3.1. Calibration Approach
2.3.2. Calibration Computation
2.4. Model: Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
3. Results
3.1. ELC Results–Aircraft Imagery
3.2. Bio-Optical Property Distributions (APS Results)
3.3. ELC Results–UAV Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gould, R.W.; Anderson, S.; Lewis, M.D.; Miller, W.D.; Shulman, I.; Smith, G.B.; Smith, T.A.; Wang, D.W.; Wijesekera, H.W. Assessing the Impact of Tides and Atmospheric Fronts on Submesoscale Physical and Bio-Optical Distributions near a Coastal Convergence Zone. Remote Sens. 2020, 12, 553. [Google Scholar] [CrossRef]
- Martinolich, P.M. Automated Processing System User’s Guide Version 6.12.0; Naval Research Laboratory: Washington, DC, USA, 2019. [Google Scholar]
- Baith, K.; Lindsay, R.; Fu, G.; McClain, C.R. Data analysis system developed for ocean color satellite sensors. Eos Trans. Am. Geophys. Union 2001, 82, 202. [Google Scholar] [CrossRef]
- Zhou, L.; Divakarla, M.; Liu, X.; Layns, A.; Goldberg, M. An Overview of the Science Performances and Calibration/Validation of Joint Polar Satellite System Operational Products. Remote Sens. 2019, 11, 698. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Kitch, T. NOAA Center for Operational Oceanographic Products and Services. 2018. Available online: https://oceanservice.noaa.gov/annualreport/2018/coops.html (accessed on 22 May 2024).
- Minor, E.C.; James, E.; Austin, J.A.; Nelson, V.; Lusk, R.; Mopper, K. A preliminary examination of an in situ dual dye approach to measuring light fluxes in lotic systems. Limnol. Oceanogr. Methods 2013, 11, 631–642. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Manley, P.V.; Erwin, S.O.; Bulliner, E.A. An Experimental Evaluation of the Feasibility of Inferring Concentrations of a Visible Tracer Dye from Remotely Sensed Data in Turbid Rivers. Remote Sens. 2019, 12, 57. [Google Scholar] [CrossRef]
- Savelyev, I.; Miller, W.D.; Sletten, M.; Smith, G.B.; Savidge, D.K.; Frick, G.; Menk, S.; Moore, T.; De Paolo, T.; Terrill, E.J.; et al. Airborne Remote Sensing of the Upper Ocean Turbulence during CASPER-East. Remote Sens. 2018, 10, 1224. [Google Scholar] [CrossRef]
- Jarosz, E.; Wijesekera, H.W.; Teague, W.J.; Fribance, D.B.; Moline, M.A. Observations on stratified flow over a bank at low Froude numbers. J. Geophys. Res. Ocean. 2014, 119, 6403–6421. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.P.; Steward, R.G.; Hooker, S.; Mobley, C.D.; et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation; NASA/TM-2003-21621/Rev-Vol III; Goddard Space Flight Space Center: Greenbelt, MD, USA, 2003. [Google Scholar] [CrossRef]
- Gould, R.W.; Arnone, R.A.; Sydor, M. Absorption, Scattering, and, Remote-Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorith. J. Coast. Res. 2001, 17, 328–341. [Google Scholar]
- Röttgers, R.; McKee, D.; Woźniak, S.B. Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters. Methods Oceanogr. 2013, 7, 21–39. [Google Scholar] [CrossRef]
- WETLabs. ac Meter Protocol Document, ac Meter Protocl (acprot); Revision Q 20 April 2011; WET Labs, Inc.: St. Philomath, OR, USA, 2011. [Google Scholar]
- Zaneveld, J.R.V.; James, C.K.; Casey, C.M. Scattering error correction of reflection-tube absorption meters. In Proceedings of the SPIE, Bergen, Norway, 13–15 June 1994; Volume 2258, pp. 44–55. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Senthilnath, J.; Wu, W.; Zhang, X.; Zeng, Z.; Huang, H. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, 11, 978. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager. Remote. Sens. 2017, 9, 642. [Google Scholar] [CrossRef]
- Roberts, D.A.; Yamaguchi, Y.; Lyon, R.J.P. Calibration of Airborne Imaging Spectrometer Data to Percent Reflectance Using Field Spectral Measurements. In Proceedings of the 19th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 21–25 October 1985. [Google Scholar]
- Davis, C.O.; Bowles, J.; Leathers, R.A.; Korwan, D.; Downes, T.V.; Snyder, W.A.; Rhea, W.J.; Chen, W.; Fisher, J.; Bissett, W.P. Ocean PHILLS hyperspectral imager: Design, characterization, and calibration. Opt. Express 2002, 10, 210–221. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef] [PubMed]
- Franz, B.A.; Bailey, S.W.; Werdell, P.J.; McClain, C.R. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Appl. Opt. 2007, 46, 5068–5082. [Google Scholar] [CrossRef]
- Bailey, S.W.; Hooker, S.B.; Antoine, D.; Franz, B.A.; Werdell, P.J. Sources and assumptions for the vicarious calibration of ocean color satellite observations. Appl. Opt. 2008, 47, 2035–2045. [Google Scholar] [CrossRef]
- Pierce, B. Viewing Geometry Module. University of Wisconsin-Madison. 2022. Available online: https://svn.ssec.wisc.edu/repos/cloud_team_cr/trunk/viewing_geometry_module.f90 (accessed on 22 May 2024).
- NOAA National Geophysical Data Center. 2001: U.S. Coastal Relief Model Vol.4—Central Gulf of Mexico; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2001. [Google Scholar] [CrossRef]
- Shulman, I.; Penta, B.; Richman, J.; Jacobs, G.; Anderson, S.; Sakalaukus, P. Impact of submesoscale processes on dynamics of phytoplankton filaments. J. Geophys. Res. Ocean. 2015, 120, 2050–2062. [Google Scholar] [CrossRef]
Spectral Range (nm) | Number of Bands | FWHM (nm) | Pixels (Row × Col) | Altitude (km) | Resolution (Meter) |
---|---|---|---|---|---|
410, 443, 486, 551, 671, 745, 862 | 7 | 20 nm excluding 745 and 862 nm | 400 × 800 | 829 | 750 |
Spectral Range (nm) | Number of Bands | FWHM (nm) | Pixels | Framerate (Hz) | FOV (°) | Bit Depth | Altitude (Meter) | Resolution (Meter) |
---|---|---|---|---|---|---|---|---|
319–1000 | 136 | 5.0 | 1360 | 40 | 48 | 12 | 2000 | 1 |
Spectral Range (nm) | Number of Bands | FWHM (nm) | Pixels | Framerate (Hz) | Bit Depth | Altitude (Meter) | Resolution (Centimeter) |
---|---|---|---|---|---|---|---|
400–1000 | 340 | 6.0 | 1024 | 250 | 12 | 40 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, M.D.; Cayula, S.; Gould, R.W., Jr.; Miller, W.D.; Shulman, I.; Smith, G.B.; Smith, T.A.; Wang, D.; Wijesekera, H. Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling. Remote Sens. 2024, 16, 1965. https://doi.org/10.3390/rs16111965
Lewis MD, Cayula S, Gould RW Jr., Miller WD, Shulman I, Smith GB, Smith TA, Wang D, Wijesekera H. Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling. Remote Sensing. 2024; 16(11):1965. https://doi.org/10.3390/rs16111965
Chicago/Turabian StyleLewis, Mark David, Stephanie Cayula, Richard W. Gould, Jr., William David Miller, Igor Shulman, Geoffrey B. Smith, Travis A. Smith, David Wang, and Hemantha Wijesekera. 2024. "Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling" Remote Sensing 16, no. 11: 1965. https://doi.org/10.3390/rs16111965
APA StyleLewis, M. D., Cayula, S., Gould, R. W., Jr., Miller, W. D., Shulman, I., Smith, G. B., Smith, T. A., Wang, D., & Wijesekera, H. (2024). Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling. Remote Sensing, 16(11), 1965. https://doi.org/10.3390/rs16111965