Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Overall Workflow
2.4. Monthly NPP Estimates Based on the CASA Model
2.4.1. APAR Absorbed by Vegetation
2.4.2. Calculation of Light Utilization Efficiency
2.5. Validation of NPP Estimation
2.6. Time Series Analysis of NPP Decrease
2.6.1. Gradual Change Detection Using the Seasonal Mann–Kendall Test
2.6.2. Abrupt Changes Detection Based on the BFAST Algorithm
- (1)
- Decompose the NPP time series into three components and assume linearity in trends and moderate seasonality in observations yt at time t:
- (2)
- The above models can be written as standard linear regression models:
- (3)
- According to the established seasonal trend model, the structural changes of the time series were detected by MOSUM (moving sums of the residuals), and the calculation formula is
2.7. Statistical Analysis
2.7.1. Explanatory Variable
2.7.2. Random Forest Modeling
3. Results
3.1. Estimates of NPP for 2000–2019
3.2. Time Series Variation Characteristics of NPP
3.3. Influential Analysis of Spatiotemporal Variation of NPP
3.3.1. NPP Changes Caused by LULC Transition
3.3.2. Influential Analysis of NPP Abrupt Loss without LULC Transition
3.3.3. Influential Analysis of NPP Gradual Decline without LULC Transition
4. Discussion
4.1. Spatiotemporal Variations in NPP in Shandong Province
4.2. Factors Monotonically Diminishing NPP Variation
4.3. Factors Driving Vegetation NPP Abrupt Loss
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CASA | Carnegie–Ames–Stanford Approach; |
GLASS | Global LAnd Surface Satellite; |
NDVI | Normalized Difference Vegetation Index; |
EVI | Enhanced Vegetation Index; |
FPAR | Fraction of Absorbed Photosynthetically Active Radiation; |
LUE | Light Use Efficiency; |
APAR | Absorbed Photosynthetically Active Radiation; |
RMSE | Root Mean Squared Error; |
SMK Test | Seasonal Mann–Kendall Test; |
BFAST | Breaks For Additive Season and Trend; |
LUCC | Land Use and Land Cover Change; |
ANPP | Aboveground Net Primary Productivity; |
NTL | Nighttime Light. |
References
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Peng, L.; Liu, S.; Wang, Q. Spatio-Temporal Pattern of Net Primary Productivity in Hengduan Mountains Area, China: Impacts of Climate Change and Human Activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial Carbon Sinks in China and around the World and Their Contribution to Carbon Neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.; Elagib, N.A.; Ribbe, L.; Schneider, K. Spatio-Temporal Variations in Climate, Primary Productivity and Efficiency of Water and Carbon Use of the Land Cover Types in Sudan and Ethiopia. Sci. Total Environ. 2018, 624, 790–806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jun, Z.; Zhang, C.; Xiao, B.; Liu, L.; Cao, Y. Spatial and temporal variations of vegetation net primary productivity and its responses to climate change in Shandong Province from 2000 to 2015. Chin. J. Ecol. 2019. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Chen, P. Monthly NPP Dataset Covering China’s Terrestrial Ecosystems at North of 18°N (1985–2015). J. Glob. Chang. Data Discov. 2019, 3, 34–41. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Liu, D.; Dong, W. Satellite-based vegetation production models of terrestrial ecosystem: An overview. Adv. Earth Sci. 2014, 29, 541–550. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Liu, Y. Spatio-temporal differentiation and influencing factors of vegetation net primary productivity using GIS and CASA: A case study in Yuanyang County, Yunnan. Chin. J. Ecol. 2018, 37, 2148–2158. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 2003, 108, 2002JD002848. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Y.; Zhao, Q.; Zhang, L.; Zhu, C. The spatiotemporal changes of NPP and its driving mechanisms in China from 2001 to 2020. Ecol. Environ. Sci. 2022, 31, 2111–2123. [Google Scholar] [CrossRef]
- Lin, H.; Feng, Q.; Liang, T.; Ren, J. Modelling Global-Scale Potential Grassland Changes in Spatio-Temporal Patterns to Global Climate Change. Int. J. Sustain. Dev. World Ecol. 2013, 20, 83–96. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, P.; Yu, H.; Zhao, T.; Liu, S.; Yang, L.; He, Y.; Luo, Y.; Wang, X.; Dong, W.; et al. Effects of Climate Changes on the Pasture Productivity From 1961 to 2016 in Sichuan Yellow River Source, Qinghai-Tibet Plateau, China. Front. Ecol. Evol. 2022, 10, 908924. [Google Scholar] [CrossRef]
- Lin, S.; Hu, Z.; Wang, Y.; Chen, X.; He, B.; Song, Z.; Sun, S.; Wu, C.; Zheng, Y.; Xia, X.; et al. Underestimated Interannual Variability of Terrestrial Vegetation Production by Terrestrial Ecosystem Models. Glob. Biogeochem. Cycles 2023, 37, e2023GB007696. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Zhu, T.; Zhou, M.; Dou, T.; Liu, L.; Wu, X. Considering Time-Lag Effects Can Improve the Accuracy of NPP Simulation Using a Light Use Efficiency Model. J. Geogr. Sci. 2023, 33, 961–979. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the Impact of LUCC on NPP and Its Influencing Factors in the Yangtze River Basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Zhu, Z.; Zhang, H.; Zhang, Z.; Guo, X.; Bi, Y.; Sun, L. Remotely Sensed Estimation of Net Primary Productivity (NPP) and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China. Sustainability 2017, 9, 1213. [Google Scholar] [CrossRef]
- Fang, P.; Yan, N.; Wei, P.; Zhao, Y.; Zhang, X. Aboveground Biomass Mapping of Crops Supported by Improved CASA Model and Sentinel-2 Multispectral Imagery. Remote Sens. 2021, 13, 2755. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An Improved CASA Model for Estimating Winter Wheat Yield from Remote Sensing Images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef]
- Wu, C.; Chen, K.; E, C.; You, X.; He, D.; Hu, L.; Liu, B.; Wang, R.; Shi, Y.; Li, C.; et al. Improved CASA Model Based on Satellite Remote Sensing Data: Simulating Net Primary Productivity of Qinghai Lake Basin Alpine Grassland. Geosci. Model Dev. 2022, 15, 6919–6933. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, K.; Li, X. SCASA: A Spark-Based Parallel Approach for Net Primary Productivity Calculation with CASA Model. J. Circuits Syst. Comput. 2022, 31, 2250244. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Zhou, G.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L.; et al. Deriving a Light Use Efficiency Model from Eddy Covariance Flux Data for Predicting Daily Gross Primary Production across Biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, Q.; Liu, J.; Wang, J. Analysis of Net Primary Productivity of Terrestrial Vegetation on the Qinghai-Tibet Plateau, Based on MODIS Remote Sensing Data. Sci. China Earth Sci. 2012, 55, 1306–1312. [Google Scholar] [CrossRef]
- Yu, T.; Sun, R.; Xiao, Z.; Zhang, Q.; Liu, G.; Cui, T.; Wang, J. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data. Remote Sens. 2018, 10, 327. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Song, H.; Zeng, X. Determinants of Net Primary Productivity: Low-Carbon Development from the Perspective of Carbon Sequestration. Technol. Forecast. Soc. Chang. 2021, 172, 121006. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global Estimates of Evapotranspiration and Gross Primary Production Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yuan, W.; Doughty, R.; Yang, J.; Zhou, D.; Zhang, L.; Xiao, X. Evolution of Light Use Efficiency Models: Improvement, Uncertainties, and Implications. Agric. For. Meteorol. 2022, 317, 108905. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Chen, D.; Wei, Z.; Dai, L.; Li, X. Determining the Contributions of Urbanisation and Climate Change to NPP Variations over the Last Decade in the Yangtze River Delta, China. Sci. Total Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Donmez, C.; Berberoglu, S.; Curran, P.J. Modelling the Current and Future Spatial Distribution of NPP in a Mediterranean Watershed. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 336–345. [Google Scholar] [CrossRef]
- He, Y.; Peng, S.; Liu, Y.; Li, X.; Wang, K.; Ciais, P.; Arain, M.A.; Fang, Y.; Fisher, J.B.; Goll, D.; et al. Global Vegetation Biomass Production Efficiency Constrained by Models and Observations. Glob. Chang. Biol. 2020, 26, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.; Zhang, Z.; Tong, L.; Wang, Z.; Li, J. Grassland Dynamics in Responses to Climate Variation and Human Activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global Urban Expansion Offsets Climate-Driven Increases in Terrestrial Net Primary Productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland Changes and Adaptive Management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Wang, D.; Wang, X.; Wang, X. Biomass carbon stocks and economic value dynamics of forests in Shandong Province from 2004 to 2013. Acta Ecol. Sin. 2018, 38, 1739–1749. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Dong, D.; Wu, K.; Wang, A.; Qin, N.; Zhang, P. Accurately Lifting the Forest Quality of Shandong Province. For. Grassl. Resour. Res. 2017, S1, 47–52. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Peng, S. High-Spatial-Resolution Monthly Temperatures Dataset over China during 1901–2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Zhu, Z. Multi-Factors Calculation On The Temporal and Spacial Distribution of Solar Radiation. Acta Geogr. Sin. 1982, 37, 29–34. [Google Scholar]
- Wang, J.; Feng, J.; Yuan, A. Calcuation and Distributive Characteristics of Solar Radiation in Shandong Province. Meteorol. Sci. Technol. 2006, 34, 98–101. [Google Scholar] [CrossRef]
- Center For International Earth Science Information Network-CIESIN-Columbia University; Information Technology Outreach Services-ITOS-University of Georgia. Global Roads Open Access Data Set, Version 1 (gROADSv1); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2013. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A Harmonized Global Nighttime Light Dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef] [PubMed]
- Bright, E.A.; Coleman, P.R.; Dobson, J.E. LandScan: A Global Population Database for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–858. [Google Scholar]
- Li, G. Estimation of Chinese Terrestrial Net Primary Production Using LUE Model and MODIS Data. Ph.D. Thesis, The Graduate School of the Chinese Academy of Sciences, Beijing, China, 2004. [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of Maximum Light Use Efficiency for Some Typical Vegetation Types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Morrison, J.; Higginbottom, T.; Symeonakis, E.; Jones, M.; Omengo, F.; Walker, S.; Cain, B. Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST. Remote Sens. 2018, 10, 1075. [Google Scholar] [CrossRef]
- Bhatla, R.; Ghosh, S.; Verma, S.; Mall, R.K.; Gharde, G.R. Variability of Monsoon Over Homogeneous Regions of India Using Regional Climate Model and Impact on Crop Production. Agric. Res. 2019, 8, 331–346. [Google Scholar] [CrossRef]
- Fan, C.; Wang, Z.; Yang, X.; Luo, Y.; Xu, X.; Guo, B.; Li, Z. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data. Smart Agric. 2022, 4, 61–73. [Google Scholar]
- Liu, G.; Shao, Q.; Fan, J.; Ning, J.; Rong, K.; Huang, H.; Liu, S.; Zhang, X.; Niu, L.; Liu, J. Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years. Remote Sens. 2022, 14, 1634. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef]
- Gong, H.; Cao, L.; Duan, Y.; Jiao, F.; Xu, X.; Zhang, M.; Wang, K.; Liu, H. Multiple Effects of Climate Changes and Human Activities on NPP Increase in the Three-North Shelter Forest Program Area. For. Ecol. Manag. 2023, 529, 120732. [Google Scholar] [CrossRef]
- Yan, M.; Xue, M.; Zhang, L.; Tian, X.; Chen, B.; Dong, Y. A Decade’s Change in Vegetation Productivity and Its Response to Climate Change over Northeast China. Plants 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Yarong, L.; Minpeng, C. Farmers’ Perception on Combined Climatic and Market Risks and Their Adaptive Behaviors: A Case in Shandong Province of China. Environ. Dev. Sustain. 2021, 23, 13042–13061. [Google Scholar] [CrossRef]
- Xuan, W.; Rao, L. Spatiotemporal Dynamics of Net Primary Productivity and Its Influencing Factors in the Middle Reaches of the Yellow River from 2000 to 2020. Front. Plant Sci. 2023, 14, 1043807. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.L.; Sanders-DeMott, R.; Reinmann, A.B.; Sorensen, P.O.; Phillips, N.G.; Templer, P.H. Growing-season Warming and Winter Soil Freeze/Thaw Cycles Increase Transpiration in a Northern Hardwood Forest. Ecology 2020, 101, e03173. [Google Scholar] [CrossRef] [PubMed]
- Grossiord, C.; Bachofen, C.; Gisler, J.; Mas, E.; Vitasse, Y.; Didion-Gency, M. Warming May Extend Tree Growing Seasons and Compensate for Reduced Carbon Uptake during Dry Periods. J. Ecol. 2022, 110, 1575–1589. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change. Earth’s Future 2022, 10, e2022EF002681. [Google Scholar] [CrossRef]
- Nóia Júnior, R.D.S.; Asseng, S.; García-Vila, M.; Liu, K.; Stocca, V.; Dos Santos Vianna, M.; Weber, T.K.D.; Zhao, J.; Palosuo, T.; Harrison, M.T. A Call to Action for Global Research on the Implications of Waterlogging for Wheat Growth and Yield. Agric. Water Manag. 2023, 284, 108334. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Guo, Y.; Hou, X.; Dong, L. Winter Wheat Phenology Variation and Its Response to Climate Change in Shandong Province, China. Remote Sens. 2022, 14, 4482. [Google Scholar] [CrossRef]
- Crabtree, R.; Potter, C.; Mullen, R.; Sheldon, J.; Huang, S.; Harmsen, J.; Rodman, A.; Jean, C. A Modeling and Spatio-Temporal Analysis Framework for Monitoring Environmental Change Using NPP as an Ecosystem Indicator. Remote Sens. Environ. 2009, 113, 1486–1496. [Google Scholar] [CrossRef]
- Buma, B. Disturbance Interactions: Characterization, Prediction, and the Potential for Cascading Effects. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Prevalence of Multiple Forest Disturbances and Impact on Vegetation Regrowth from Interannual Landsat Time Series (1985–2015). Remote Sens. Environ. 2019, 233, 111403. [Google Scholar] [CrossRef]
- Chao, Z.; Zhang, P.; Wang, X.; Qian, J. Terrestrial net primary production and its spatio-temporal patterns in Shandong Province during 2001-2010. Pratacultural Sci. 2013, 30, 829–835. [Google Scholar]
- Tian, Y.; Guo, Y.; Zhang, P.; Wang, L.; Yang, Y.; Li, H. Relationship of regional net primary productivity and related meteorological factors. Pratacultural Sci. 2010, 27, 8–17. [Google Scholar]
- Li, H.; Zhang, A.; Hou, X. Response of Vegetation Net Primary Productivity to Land Cover Change from 2000 to 2014 in Shandong Province, China. J. Ludong Univ. Nat. Sci. Ed. 2019, 35, 157–163+192. [Google Scholar]
- Lu, Z.; Chen, P.; Yang, Y.; Zhang, S.; Zhang, C.; Zhu, H. Exploring Quantification and Analyzing Driving Force for Spatial and Temporal Differentiation Characteristics of Vegetation Net Primary Productivity in Shandong Province, China. Ecol. Indic. 2023, 153, 110471. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Shang, L. Spatial and temporal pattern of cultivated land productivity in Shandong Province from 2000 to 2015. J. China Agric. Univ. 2020, 25, 128–138. [Google Scholar]
Dataset | Data Name | Data Source * | Period | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|---|
Vegetation index | MOD13Q1 | NASA | 2000–2019 | 16-day | 250 m |
Land cover | GLC_FCS30 | AIRI | 2000–2019 | 5-year | 30 m |
MODIS NPP | MOD17A3HGF Version 6.1 | NASA | 2000–2019 | Yearly | 500 m |
GLASS NPP | NPP_MODIS_500m_V60 | UMD | 2000–2019 | 8-day | 500 m |
Meteorological observation | High spatial resolution monthly meteorological dataset for China | TPDC | 2000–2019 | Monthly | 1 km |
Solar duration | SURF_CLI_CHN_MUL_DAY V3.0 | CMDC | 2000–2019 | Daily | - |
Elevation | ASTER GDEMv3 | NESSDC | - | - | 30 m |
Road net | gROADSv1 | SEDAC | 2013 | - | - |
Nighttime light | Harmonized Global NTL Dataset | Scientific Data | 2019 | Annual | 1 km |
Population data | LandScan Global Population | LGPD | 2019 | Annual | 1 km |
Model | Explanatory Variable | Description |
---|---|---|
Abrupt loss | pre | Mean annual precipitation of two years before the loss year |
tmn | Minimum temperatures of two years before the loss year | |
tmx | Maximum temperatures of two years before the loss year | |
Δtmp | Trend of monthly temperature for 2000–2019 | |
Δpre | Trend of precipitation for 2000–2019 | |
ΔEVI | Trend of monthly EVI trends for 2000–2019 | |
Breaks_EVI_mean | Mean EVI of two years prior loss year | |
Breaks_EVI_cv | Coefficient of variation of EVI prior loss year | |
Breaks_EVI_acf | Auto-correlation function of EVI since 2000 to the loss year | |
Night light | Night light intensity in 2019 of a given pixel | |
People | The total population in 2019 of a given pixel | |
Road distance | The nearest distance to a road of a given pixel | |
Elevation | Elevation in meters | |
Slope | Slope in degree | |
Gradual decline | pre | Mean annual precipitation for 2000–2019 |
tmp | Annual accumulated temperature during the growing season | |
Δtmp | Trend of monthly temperature for 2000–2019 | |
Δpre | Trend of precipitation for 2000–2019 | |
ΔEVI | Trend of monthly EVI trends for 2000–2019 | |
EVI_cv | Coefficient of variation of monthly EVI for 2000–2019 | |
EVI_acf | Auto-correlation function of EVI for 2000–2019 | |
Night light | Night light intensity in 2019 of a given pixel | |
People | The total population in 2019 of a given pixel | |
Road distance | The nearest distance to a road of a given pixel | |
Elevation | Elevation in meters | |
Slope | Slope in degree |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, G.; Li, X.; Fang, L.; Peng, Y.; Zhang, C.; Yao, J.; Ren, S.; Chen, J.; Men, J.; Zhang, Q.; et al. Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model. Remote Sens. 2024, 16, 1966. https://doi.org/10.3390/rs16111966
Lv G, Li X, Fang L, Peng Y, Zhang C, Yao J, Ren S, Chen J, Men J, Zhang Q, et al. Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model. Remote Sensing. 2024; 16(11):1966. https://doi.org/10.3390/rs16111966
Chicago/Turabian StyleLv, Guangyu, Xuan Li, Lei Fang, Yanbo Peng, Chuanxing Zhang, Jianyu Yao, Shilong Ren, Jinyue Chen, Jilin Men, Qingzhu Zhang, and et al. 2024. "Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model" Remote Sensing 16, no. 11: 1966. https://doi.org/10.3390/rs16111966
APA StyleLv, G., Li, X., Fang, L., Peng, Y., Zhang, C., Yao, J., Ren, S., Chen, J., Men, J., Zhang, Q., Wang, G., & Wang, Q. (2024). Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model. Remote Sensing, 16(11), 1966. https://doi.org/10.3390/rs16111966