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Abstract: In addressing the challenges of quantitative precipitation estimation (QPE) using weather
radar, the importance of enhancing the rainfall estimates for applications such as flash flood forecast-
ing and hydropower generation management is recognized. This study employed dual-polarization
weather radar data to refine the traditional Z–R relationship, which often needs higher accuracy in
areas with complex meteorological phenomena. Utilizing tree-based machine learning algorithms,
such as random forest and gradient boosting, this research analyzed polarimetric variables to capture
the intricate patterns within the Z–R relationship. The results highlight machine learning’s potential
to improve the precision of precipitation estimation, especially under challenging weather conditions.
Integrating meteorological insights with advanced machine learning techniques is a remarkable
achievement toward a more precise and adaptable precipitation estimation method.

Keywords: machine learning; quantitative precipitation estimation; precipitation estimation;
meteorological radar; random forest; gradient boosting

1. Introduction

The quantitative precipitation estimation (QPE) method is a foundational pillar in
hydro-meteorological sciences, with far-reaching implications for energy generation, agri-
cultural planning, and environmental conservation. This study’s motivation arose from
Brazil’s hydroelectric heart, Western Paraná, underpinned by the Itaipu Binational Dam,
a global leader in hydroelectric energy output [1]. The complexities of weather forecasting
in this region not only have academic and economic significance but also are vital for the
strategic operation of hydroelectric reservoirs and for the protection of communities against
the unpredictable forces of nature [2,3].

The Z–R relationship [4], a cornerstone in radar meteorology for the conversion of
radar reflectivity (Z) into rainfall rates (R), has long been recognized for its broad appli-
cability, but it is also subject to various limitations [5,6]. Factors such as variability in the
raindrop size distribution, the presence of mixed-phase precipitation, radar signal attenu-
ation, calibration challenges, and physical obstructions contribute to these uncertainties,
which are particularly pronounced in the complex landscape of Western Paraná, Brazil.

These issues are common in various geographical settings, necessitating a novel
methodological approach to enhance the accuracy of rainfall estimation [4]. The Z–R
relationship is based on empirical correlations that vary geographically and temporally,
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influenced by the local climatic conditions, which underscores the need for adaptive
approaches that can adjust to specific meteorological conditions.

This research aimed to evaluate the applications of the Z–R relationship in a particular
environmental context and explore the potential of machine learning (ML) to improve
QPE. This study focused on tree-based machine learning models—random forest [7] and
gradient boosting [8]—to leverage their ability to model the nonlinear complexities of
precipitation data. While previous research has tested machine learning methods for
QPE in various parts of the world, including the Southern Andes of Ecuador [9], South
Korea [10], and Switzerland [11], none have yet employed a hybrid approach integrating
multiple machine learning models to enhance rainfall estimation.

In our academic pursuits, we have extensively utilized machine learning to achieve
progress in quantitative precipitation estimation (QPE). Previous studies have suggested
that machine learning can be effective in this field, but it is still relatively new, particularly
in the development of hybrid machine learning models. Rollenbeck et al. [12] showed that
machine learning can outperform empirical approaches in calibrating X-band radar for
extreme weather events in a region of complex precipitation in North Peru, highlighting
the potential of advanced algorithms in such scenarios.

This research explored the application of machine learning in meteorology to obtain
more accurate precipitation estimates in a region where the weather patterns are closely
linked with hydroelectric power generation. Our study analyzed the performances of
two models, random forest and gradient boosting, in both classification and regression
scenarios. We aimed to create a more resilient and accurate meteorological practice, which
could have implications beyond Western Paraná.

This article is structured to guide the reader through the research process. The analysis
begins with an in-depth examination of the dataset, which forms the basis of the hybrid
machine learning approach for QPE (Section 2). This is followed by an explanation of the
selected machine learning models, the data transformation procedures, and the bench-
marks for performance evaluation (Section 3). An assessment of the current QPE methods
establishes the context for a detailed analysis of the proposed hybrid model’s effectiveness,
calibration, and configuration (Section 3.1). This article then discusses the practical appli-
cation of the model, its adaptability to operational demands, and its validation against
real-world precipitation events (Section 3.2). Finally, this article concludes by synthesizing
the findings, discussing their implications, and considering the potential of the hybrid
approach within the broader context of QPE advancements (Section 4).

2. Materials and Methods

The research methodology can be categorized into four phases: data collection, data
preprocessing, feature engineering, model development, and model evaluation.

2.1. Data Collection

Paraná is one of the five most developed states in Brazil, with a strong economy that
is centered around agriculture and industry. In addition, it has the second-highest energy
potential in the country.

In the Paraná region, which encompasses six micro-regions and their hydroelectric
plants, there is a need for increased monitoring due to various critical factors. These factors
include the region’s significant climate variability, the potential impact on hydroelectric
plant operations, and the importance of accurate weather forecasts for water resource
management and natural disaster prevention.

To address these challenges, a primary dataset was derived from a dual-polarization
weather radar system located in Cascavel, Paraná, Brazil. Installed in 2014, this radar system
captures atmospheric data with high granularity, providing comprehensive representations
of precipitation events over several years.

Figure 1 illustrates the study area and the network of 36 rain gauges, which com-
plements the radar data. The rain gauge network features automatic tipping bucket
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mechanisms with a sensitivity greater than 0.1 mm. The EEC S-band CAS radar magnetron
is equipped with an 8.5 m parabolic antenna, offering an over 45.0 dB gain and a half-power
beam width of 0.95 degrees. It supports both linear horizontal and vertical polarization,
with an angular positioning accuracy of 0.05 degrees. The radar’s scanning speed can reach
up to 10 rpm, and it includes a magnetron transmitter with peak power of 850 kW. It uses
a single receiver, with a typical minimum discernible signal of −114 dBm and a linear
dynamic range of up to 105 dB.

Figure 1. Map of South America with an inset presenting our study site. In the study site inset,
the red circle defines the location of the weather radar, and the gray circle, its surveillance area. Also
depicted in the study site are the rain gauges, presented as blue triangles.

Table 1 presents the spatial and temporal resolutions of the radar and rain gauge
data, both in their original and transformed forms. Initially, the radar data feature a
spatial resolution of 1° in azimuth by 250 m in range at a single elevation, with a temporal
resolution of 5 min. These data are then reprocessed in the database to a different format
by redefining the range resolution as a ’bin gate’ to better understand the precipitation
patterns over different distances. This transformation also adjusts the temporal resolution
to 15 min for consistency in analysis.

Similarly, the rain gauge data, which originally use the latitude and longitude for
spatial resolution and have a 15 min temporal resolution, are converted into a format
compatible with the radar data, using azimuth and range coordinates, while maintaining
the exact temporal resolution. The binning process of the radar data allows for a more
nuanced interpretation of the spatial variability in the precipitation, aligning them with the
rain gauge data for a comprehensive analysis.

Table 1. Native and transformed spatial and temporal resolutions of the products included in the
gauge–radar database.

Original Resolution Database Resolution

Spatial Temporal Spatial Temporal

Radar 1◦ × 250 m × 1
elevation 5 min Azimuth, Range 15 min

Rain Gauge Lat, Lon 15 min Azimuth, Range 15 min

This research examined the Z–R relationships used in the operational environment
in Paraná, Brazil (Figure 2). The relationships chosen for comparison were derived from
the methodologies of Marshall and Palmer [4], Calheiros [13], and NEXRAD [14], which
are operationally viable within the regional context. While other coefficients, such as
those proposed by Vulpiani et al. [15], are available, this study prioritized the operational
applicability of the chosen Z–R relationships. These relationships were specifically selected
because they have been extensively tested and are commonly used in operational settings
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in research, ensuring a practical and targeted analysis. This selection allows for a coherent
evaluation of the Z–R relationship’s performance in real-world weather radar applications.

Figure 2. Z–R relationships used for operational purposes in the context of Paraná state, depicting
various methodologies. The dashed blue line represents the stratiform precipitation relationship
by [4], the red line illustrates the convective precipitation relationship [14], and the green line depicts
the convective approach by [13]. The x-axis represents the precipitation rate in millimeters per hour
(mm/h), and the y-axis represents the reflectivity factor in decibels relative to Z (dBZ). An increase in
precipitation rate entails an increase in the reflectivity factor. Adapted from [16].

2.2. Data Preprocessing

In this study, we considered the distribution of the precipitation over the Western
Paraná region from 2018 to 2022. Our dataset predominantly comprised events with no
precipitation, with almost 94% of the data showing precipitation levels below 0.1 mm. Due
to this imbalance, we chose to focus on precipitation events exceeding 0.2 mm per 15 min,
which aligns with the calibration settings of the rain gauges used. These gauges were
optimized to accurately detect minimal yet significant precipitation events, ensuring an
effective analysis.

We created a distribution graph of the precipitation data between 2018 and 2022 that
focuses on rain events exceeding 0.2 mm (Figure 3). This graph displays the amount of
precipitation in millimeters on a logarithmic scale. The analysis shows that the majority of
the data cluster between 0.2 and 10 mm per 15 min, with a significant peak in the range of
5 to 10 mm. There is also a noticeable decrease in the frequency of data for rainfall volumes
exceeding 10 mm. Only a tiny fraction, approximately 0.02%, of the data correspond
to precipitation events that exceed 30 mm. This refined focus on specific precipitation
ranges allowed for a more targeted and accurate analysis of the data, which is essential
in understanding and predicting rainfall patterns in the context of weather forecasting,
climate studies, and urban planning.

We ensured the integrity and reliability of the meteorological data by comprehensively
addressing several critical aspects during the data preprocessing phase. This phase included
the following key steps:
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Figure 3. The distribution of the number of events of precipitation data accumulated in 15 min
intervals after data cleaning in the period of 2018–2022. Values below 0.2 mm/15 min were not
considered. Based on [11].

• Distance Filtering: We refined the dataset for an accurate analysis by applying filters
to remove data from the radar’s blind spot and areas beyond its reliable range.

• Handling Missing Data: We implemented techniques to address missing values in key
variables, such as reflectivity, ensuring the dataset’s completeness.

• Polarimetric Variable Selection: The meticulous selection and filtering of crucial polari-
metric variables were conducted to enhance the quality of the data. Variables such as
ZDR, Kdp, and ρhv were carefully chosen based on their importance in distinguishing
meteorological phenomena, as described in [17]. The thresholds defined for these
variables were as follows:

– For ρhv, a threshold of ≥0.5 identifies cloud data, whereas values up to 0.99
indicate high linear polarization associated with precipitation.

– The threshold for ZDR was set at −8.0, crucial for selecting rain data due to high
horizontal diffraction.

– Similarly, a threshold of −8.0 for Kdp identifies rain data related to differential
polarization diffraction.

– For snow data selection, a Kdp threshold of −15.0 was used, owing to the low
differential polarization diffraction.

These thresholds are instrumental in ensuring precise discrimination between different
meteorological conditions.

• Consistency Check Between Reflectivity and Precipitation: A thorough validation
ensured consistency between the radar reflectivity measurements and rain gauge data.

These preprocessing steps were pivotal in preparing the radar and rain gauge data
for subsequent machine learning model training and validation. The cleaned dataset
significantly improved the accuracy of our precipitation estimation models by facilitating
more reliable and detailed meteorological analyses.

2.3. Feature Engineering

Feature engineering plays a critical role in enhancing the performance of machine
learning models in meteorological applications, particularly in precipitation estimation
using radar data. The process involves the meticulous selection and preprocessing of the
variables to ensure their relevance and effectiveness in the predictive models.
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In the training and evaluation of our models, we carefully selected the variables
based on their relevance to the collected data and the objectives of our study. The primary
variables included the horizontal reflectivity (DBZh), differential reflectivity (ZDR), specific
differential phase (Kdp), and co-polar correlation coefficient (RhoHV), all of which are
measured by the radar system. Additionally, we incorporated the altitude and distance from
the radar as critical features in our machine learning models. These additions were crucial
in enhancing the accuracy of our quantitative precipitation estimates, allowing our models
to account for variations in elevation and radar beam dispersal over different distances.

Table 2 presents a clear and visual description of the variables selected for the model.
These variables were chosen because they notably impacted the model’s accuracy in pre-
dicting precipitation events. To make these variables comparable and improve the precision
of the predictions, they were preprocessed. This conversion from their original units, such
as decibels (dBZ) for mm6m−3, to more relevant units, such as millimeters of precipitation
over a 15 min interval, was necessary.

Table 2. The features used in the machine learning model for radar rainfall retrieval.

Feature Name Description Units

Alt Beam height from radar meters

Distance Distance of rain gauge from
radar km

DBZh
Reflectivity factor at

horizontal mm6m−3

ZDR Differential reflectivity dB
Kdp Specific differential phase ◦km−1

RhoHV
Co-polar correlation

coefficient -

For a complete understanding, Table 3 shows the input variables utilized for the
precipitation estimation model from the radar and station data.

Table 3. The input variables for quantitative precipitation estimation (QPE) from the radar and
station data.

Azimuth Range Time Elevation Sweep DBZH DBZV KDP . . .

52 144,750 1 January 2018 10:15:00 0.5 0.0 1.22 1.47 0.05 . . .
161 83,000 1 January 2018 10:15:00 0.5 0.0 4.11 1.01 0.5 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

The dataset was divided into 2018 and 2021 data for training (70%), validation (30%),
and testing (year of 2022). The feature engineering process, including variable selection
and preprocessing, proved crucial in enhancing the model’s precision and reliability in
predicting the precipitation patterns.

2.4. Model Development

As part of our research, we designed a model to improve quantitative precipitation
estimation (QPE) using machine learning techniques, specifically the random forest (RF)
and gradient boosting (GB) methods. These techniques were chosen for their exceptional
performance in classification and regression tasks, which are crucial for accurate precip-
itation prediction. The RF technique combines the predictions of multiple decision trees
(denoted as (denoted as Ti(y)) ) by either voting or averaging:

f (y) =
1
N

N

∑
i=1

Ti(y) (1)

where f (y) denotes the random forest outcome, and N represents the number of trees.
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Gradient boosting is an ensemble technique that builds a series of models in a sequential
manner, with each subsequent model aiming to correct the errors made by its predecessors.
Specifically, GB refines the predictions by focusing on the errors of prior iterations:

f (y) =
n

∑
i=1

αihi(y) (2)

where f (y) is the composite model’s prediction for input y, n is the iteration count, αi is
the weight for iteration i’s model hi(y), and hi(y) is the prediction of the weak learner at
iteration i.

Our methodology comprised two primary stages: classification and regression. Ini-
tially, we distinguished between ‘rain’ and ‘no rain’ events using thresholds based on the
precipitation values. Subsequently, we employed regression to estimate the precipitation
intensity in the ‘rain’ data, using the same machine learning techniques. This dual ap-
proach, which combined RF’s ensemble method and GB’s error-minimizing capability,
ensured an all-inclusive and accurate QPE model, effectively leveraging the strengths of
both techniques in handling complex meteorological data.

The classification stage in our methodology employs the RF and GB techniques to effec-
tively distinguish between ‘rain’ and ‘no rain’ events. This distinction is crucial, as it allows
our model to identify operational patterns that signal rain events above the 0.2 mm/15 min
threshold, ensuring that only data representing quantifiable rain enter the regression stage.
This process not only enhances the accuracy of our rainfall estimation but also optimizes
the computational efficiency by focusing on relevant events. These methodological steps
are depicted in Figure 4, which illustrates the model application workflow.

Figure 4. A diagram of the machine learning model’s workflow. It presents the data flow and the
hybrid model. The classifier is used to verify whether there is rain. If so, the regressor is used to
estimate the amount. Finally, the model’s performance is measured through metrics such as the mean
absolute error (MAE) and root mean square error (RMSE).

We selected key variables for model training and evaluation, including radar-measured
factors such as reflectivity (DBZh ), differential reflectivity (ZDR), the specific differential
phase (Kdp ), and the co-polar correlation coefficient (RhoHV).

2.5. Model Evaluation

To evaluate the model’s performance comprehensively, we compared its estimated
precipitation rates with the actual values from the test dataset. Additionally, we compared
the model’s predictions with the theoretical Z–R model.
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During the validation process, ground-based meteorological station data were used to
compare the model’s forecasts with actual observations. This enabled a detailed analysis to
identify any discrepancies. To determine the accuracy of the regression model, statistical
metrics such as the root mean square error (RMSE), mean absolute error (MAE), and Kling–
Gupta efficiency (KGE) were used [18,19]. The mean squared error (MSE), which is defined
in Equation (3), measures the average of the squared differences between the forecast and
actual values and provides a residue variance metric:

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (3)

where yi denotes the forecast value of y, and ŷ signifies the mean of y.
The RMSE is a metric that consolidates the forecast errors into a single predictive

power score. It is calculated by taking the square root of the MSE (Equation (4)). When
extrapolating the precipitation estimates across the Paraná grid, the RMSE is particularly
sensitive to larger magnitude errors, such as potential outliers that may result from the
extrapolation process.

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (4)

The mean absolute error (MAE) is a commonly used metric in data analysis that
calculates the average of the absolute differences between the predicted and actual values
in a dataset. The metric is widely utilized due to its simple interpretation and compatibility
with the prediction target’s scale. Equation (5) is used to calculate the MAE:

MAE =
1
n

n

∑
i=1

|yi − xi| (5)

where yi symbolizes the forecast value of y, xi is the observed value of x, and n represents
the total number of data points.

The last metric used to evaluate the performance of the regression model was the
Kling–Gupta efficiency (KGE) metric [18–20]. This metric is obtained by Equation (6),
with its parameters r, β, and γ calculated through Equations (7)–(9), respectively. This
metric quantifies the degree of overlap between the observed and forecast time series by
examining their correlations, mean values, and standard deviations, thereby providing
a comprehensive analysis of the regression model’s performance. One key advantage of
using the KGE metric over other metrics is its global applicability and effectiveness in
diverse hydrological contexts.

KGE′ = 1 −
√
(r − 1)2 + (β − 1)2 + (γ − 1)2

(6)

r =
∑n

i=1(yi − y)(ŷi − ŷ)√
∑n

i=1(yi − y)2
√

∑n
i=1(ŷi − ŷ)2 (7)

β =
µŷ

µy (8)

γ =
CVŷ

CVy
=

σŷ/µŷ

σy/µy
(9)
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With regard to measuring the performance of regression models in predicting precipi-
tation rates, it is important to use certain metrics to ensure an accurate evaluation. By taking
a holistic approach and adopting these metrics, we can assess the model’s accuracy against
the observed data with precision.

To evaluate the performance of classification models, it is customary to employ confu-
sion matrices and metrics such as accuracy, recall, and precision. In our hybrid methodology,
which amalgamates elements of both classification and regression, it is imperative to apply
these performance metrics to the classifier component to ensure the overall efficacy of the
model. A confusion matrix (shown in Table 4) is a useful tool for displaying classification
results in matrix format. The rows represent the actual classes, while the columns repre-
sent the predicted classes. The matrix contains true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) values.

Table 4. The confusion matrix.

Predicted Value

Positive Negative

Positive TP PF
Negative FN TN

Accuracy (Equation (10)) is a general metric indicating the total percentage of correct
predictions (both positive and negative) of the model, calculated using the following for-
mula:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Although widely used, the accuracy can be misleading when imbalanced classes tend
to favor the dominant class.

Other important metrics include the recall and precision, defined, respectively, as follows:

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall, also known as sensitivity, is a metric that measures how well a model can
correctly identify positive cases among all true positive cases. In simpler terms, it shows
the proficiency of the model in detecting positive cases and reducing the number of false
negatives. This metric is particularly important when failing to identify a positive case
can lead to severe consequences, such as diagnosing a disease. For instance, in a test for a
severe illness, it is crucial to have high recall to ensure that most patients with the disease
are detected. Equation (11) represents the recall.

Equation (12) calculates the precision of a model. The precision measures the propor-
tion of correct positive predictions. It is an essential metric used to evaluate the quality of
a model’s positive predictions. If a model has high precision, it means that a significant
number of its positive classifications are correct. This is crucial in cases where a false
positive can have severe consequences, such as spam filtering. For example, high precision
in an email filtering system is desirable to prevent legitimate emails from being mistakenly
marked as spam.

It is essential to balance the precision and recall in certain situations. In cases where
false positives can have serious consequences, the precision cannot be ignored entirely.
Therefore, the decision to use relevant metrics will depend on the context of the application
and the impact of classification errors.

In this work, it was crucial to prioritize the recall. In the classification that we adopted,
it is essential to identify as many positive cases as possible, even if this leads to an increase
in false positives. The consequences of failing to recognize truly positive cases can be
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severe. Failure to alert an at-risk population may lead to injuries or even deaths during
natural disasters.

3. Results and Discussion

The ML models developed in this research focused on the task of precipitation estima-
tion. Thus, for the evaluation of the models’ capabilities, we compared their estimations
against observed data obtained from a collocated gauge–radar dataset. This approach
aimed to address the challenge of categorizing meteorological events, such as rain and no
rain, while concurrently estimating the intensity of the precipitation when present.

The classification step helps to categorize meteorological events as “rain” or “no rain”.
Once the data have been classified as “rain”, the regression step is used to accurately esti-
mate the precipitation amount. This is essential for various applications, such as weather
forecasting, climate analysis, water resource management, and urban planning. Combin-
ing classification and regression methods provides a more in-depth and comprehensive
meteorological analysis, offering valuable insights into the precipitation and its intensity.

Tuning the hyperparameters in machine learning models, such as setting ‘n_estimators’
to 100 for RF and 500 for GB, optimizes the performance, and it enabled us to achieve more
accurate results in this study. These values were selected based on evaluations using cross-
validation to balance the model’s complexity and generalization. This section will explore
how the combination of these methods can lead to significant outcomes in understanding
and predicting precipitation conditions.

Analyzing the results in Table 5, we can observe the performances of the RF and
GB classifiers. Both algorithms demonstrated remarkable performances in the task of
classifying meteorological events. During the validation phase, they achieved high accuracy,
with values of 0.90 for both, indicating the ability of these models to classify conditions
such as “rain” or “no rain” accurately.

Table 5. The results obtained in the classification task for the validation and test datasets.

Classifier

Algorithm Accuracy Recall Precision

Validation Test Validation Test Validation Test

Random Forest 0.90 0.82 0.98 0.99 0.85 0.74
Gradient Boosting 0.90 0.83 0.97 0.98 0.84 0.76

The models’ effectiveness was evaluated using the recall metric, which measured
their ability to correctly identify rain events. The classifiers performed exceptionally well
during the validation phase, with recall values approaching 1.0. This result indicates the
low occurrence of false negatives, meaning that very few instances of rain were erroneously
classified as “no rain”. This outcome emphasizes the accuracy of the classifiers in correctly
identifying and categorizing rain events.

The precision, which measured the proportion of true positives relative to the total pre-
dicted positives, also showed significant results, with values of 0.85 for RF and 0.84 for GB
in the validation phase, suggesting that most of the models’ rain predictions were correct.

The results in the test phase, although slightly lower than during validation, were still
satisfactory, with both classifiers maintaining good performance in terms of accuracy, recall,
and precision. This consistency between the validation and test phases suggests that the
models can generalize well to new data.

In Table 6, we examine the RF and GB regressors’ performances in estimating the
precipitation intensity. The results highlight the efficacy of these models in quantitative
estimation. The RMSE and MAE are standard metrics for the evaluation of the quality of
predictions. In both metrics, the regressors achieved good performances.
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Table 6. The results obtained in the regression task for the validation and test datasets (mm/15 min).

Regressor

Algorithm RMSE MAE

Validation Test Validation Test

Random Forest 1.58 mm 0.94 mm 1.07 mm 0.44 mm
Gradient Boosting 1.56 mm 0.71 mm 0.73 mm 0.48 mm

During the validation phase, RF registered an RMSE of 1.58 mm and an MAE of
1.07 mm, while GB recorded an RMSE of 1.56 mm and an MAE of 0.73 mm. These values
indicate that the regressors’ predictions were very close to the actual values, with relatively
low average errors. The performances in the test phase were also excellent, with both
regressors maintaining low values for the RMSE and MAE.

The results confirm that the hybrid approach effectively classifies meteorological
events and estimates the precipitation intensity. The coordinated combination of these
two steps provides a comprehensive and precise view of the weather conditions, essential
for various practical applications. The consistency of the results between the validation
and test phases demonstrates that these models can generalize well to new data, further
emphasizing their usefulness in real-world scenarios.

In Table 7, we present a comparative analysis of the performance of the hybrid model
in relation to theoretical Z–R relations and the three Z–R relations of the meteorological
radar (DSD [13], Marshall–Palmer [4], and Nexrad [14]). The table displays the RMSE,
MAE, and KGE metrics for the validation and test phases.

Table 7. The results obtained using the two algorithms for the validation and test datasets
(mm/15 min).

Classifier + Regressor/Comparison with Z-R Relation

RMSE MAE KGE

Validation Test Validation Test Validation Test

RFRF 1.00 mm 0.82 mm 0.41 mm 0.34 mm 0.62 0.80
GBGB 1.30 mm 0.70 mm 0.35 mm 0.23 mm 0.80 0.90
RFGB 1.40 mm 1.30 mm 0.62 mm 0.69 mm 0.22 0.39
GBRF 1.00 mm 0.88 mm 0.41 mm 0.42 mm 0.62 0.79
DSD 1.40 mm 1.60 mm 0.69 mm 0.72 mm 0.50 0.75

Marshall–Palmer 1.50 mm 1.70 mm 0.74 mm 0.77 mm 0.49 0.73
Nexrad 1.60 mm 1.60 mm 0.74 mm 0.71 mm 0.50 0.75
Oracle 1.10 mm 1.20 mm 0.53 mm 0.56 mm 0.60 0.78

RF—Random Forest; GB—Gradient Boosting; DSD—Disdrometer.

We observed remarkable results when comparing the hybrid model with the esti-
mated theoretical Z–R relations. For both phases, validation and testing, the random
forest–random forest (RFRF) model achieved RMSEs of only 1.00 mm and 0.82 mm, re-
spectively, indicating that the quantitative predictions of the model were very close to
the actual values. The MAEs were also low, with values of 0.41 mm and 0.34 mm in the
validation and test phases. Moreover, the KGE coefficient demonstrated good agreement
between the predictions and observations, with values of 0.62 and 0.80 for the validation
and test phases.

The results for the gradient boosting–gradient boosting (GBGB) model are also con-
sistent, with RMSEs of 1.30 mm and 0.70 mm, MAEs of 0.35 mm and 0.23 mm, and KGE
values of 0.80 and 0.90 for the validation and test, respectively. These results confirm the
ability of the hybrid model methodology to accurately estimate the precipitation intensity.

However, when evaluating different combinations of the classifiers and regressors,
such as random forest–gradient boosting (RFGB) and gradient boosting–random forest
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(GBRF), we observed variations in performance, highlighting the importance of select-
ing the algorithms appropriately. We also compared the performances of these mod-
els with the Z–R relations of the meteorological radar—DSD [13], Marshall–Palmer [4],
and Nexrad [14]—noting that the hybrid approach surpassed these in terms of accuracy.

We also highlight the performance of the Oracle (OC) method, which combines the
three Z–R methods and chooses the closest to the observed value. The Oracle method
served as a benchmark in our analysis, providing an idealized scenario where the best-
performing Z–R relation was selected for each event. This approach allowed us to gauge
the potential upper limit of accuracy achievable by dynamically adapting the Z–R relations
based on real-time observations. This model achieved good results, with RMSEs of 1.10 mm
and 1.20 mm, MAEs of 0.53 mm and 0.56 mm, and KGE values of 0.60 and 0.78 for the
validation and test, respectively.

Figure 5 presents graphs of the test dataset, providing a clearer visualization of the
performances of the different linear regression models and the coefficient of determination
Equation (13), which represents the proportion of data variation explained by the model.
In this analysis, we focused on the models that are highlighted in Table 7: RFRF, GBGB,
and Oracle.

R2 = 1 − ∑(y − ŷ)2

∑(y − ȳ)2 (13)

Figure 5. Scatter plots comparing the observed and predicted (estimated) rainfall from various
models on the test dataset, expressed in mm per 15 min. Each panel represents a different model,
denoted by codes such as RFRF or GBGB, among others, at the top of each plot. The red lines indicate
the line of perfect agreement (y = x), while the black dots represent the actual data points. The metrics
include the coefficient of determination (R²), mean absolute error (MAE), root mean square error
(RMSE), and Kling–Gupta efficiency (KGE), providing a quantitative view of each model’s accuracy.

When observing the linear regression figures, it is evident that these three models
demonstrate remarkable performances compared to the others. The regression lines fitted
for RFRF, GBGB, and Oracle are very close to the data points, suggesting a considerable
ability to estimate the precipitation intensity.

However, to determine which of the three models can be identified as the best, it is
essential to consider the evaluation metrics presented in Table 7, where the RMSE indicates
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how close the predictions are to the actual values, with lower values indicating the better
fit of the model to the data.

Figure 6 illustrates the correlation between the observed data and the predictions
generated by the models. The graph displays points (a) to (h) that identify cases where
the precipitation was notably underestimated. The color variations in the graph indicate
critical areas: red identifies where filters should be applied to exclude anomalous data or
outliers, and blue shows where the results are considered reliable without the need for
additional filtering.

Figure 6. Analysis of the prediction accuracy for rainfall events above 5 mm observed per 15 min,
using two machine learning models: Random Forest–Random Forest and Gradient Boosting–Gradient
Boosting. Panels (a,c) show data points accepted by the filters, where the predictions closely aligned
with the observations are depicted in red. Panels (b,d) depict data points rejected by the filters, where
predictions that significantly diverged from the observations are shown in blue. The solid black
line represents the accuracy of the prediction, and the dashed lines show the extent of deviation
that is acceptable. Each letter from a to h corresponds to specific outlier points detailed in the text,
highlighting the necessity of applying filters to improve the model performance.

The data suggest that 80.79% of the values with low correlations require filtering,
indicating that filters are an effective tool for improving the accuracy of predictions. Of par-
ticular interest is the observation indicated by points (a) and (e) of 29.6 mm. This observation
shows a significant discrepancy in the data processed by the ML models. This observation
underlines the importance of points with lower correlations to identify possible failures or
limitations in the used models.

Table 8 compares the precipitation estimates of the RFRF and GBGB models with the
actual measurements. The analysis focuses on the underestimated events, as illustrated
in Figure 6. Notably, points (a) and (e), corresponding to the Pinhao station, reveal a
significant disparity between the estimates of 0.65 mm (RFRF) and 0.78 mm (GBGB) against
the observed value of 29.6 mm.
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Table 8. High values not estimated by the machine learning model.

Random Forest–Random Forest

Observed mm Estimated mm Station Distance DBZH RHOHV ZDR KDP

∆t − 1 ∆t ∆t − 1 ∆t

a 0.0 29.6 0.00 0.65 Pinhao 193 28.63 0.97 0.37 0.20
b 4.8 24.0 3.00 0.00 Salto_Caxias 71 13.67 0.96 0.70 0.00
c 2.4 20.6 2.58 1.25 Laranjeiras 138 29.84 0.98 0.86 0.37
d 0.0 20.0 0.58 1.06 Loanda 219 30.23 0.94 1.32 0.13

Gradient Boosting–Gradient Boosting

Observed mm Estimated mm Station Distance DBZH RHOHV ZDR KDP

∆t − 1 ∆t ∆t − 1 ∆t

e 0.0 29.6 0.00 0.78 Pinhao 193 28.63 0.97 0.37 0.20
f 4.8 24.0 4.00 0.00 Pinhao 71 13.67 0.96 0.70 0.00
g 0.0 20.0 0.58 0.52 Loanda 219 30.23 0.94 1.32 0.13
h 0.0 19.2 0.00 0.64 Umuarama 126 28.98 0.99 0.10 0.22

This case illustrates the complexity of precipitation estimation and highlights the
influence of factors such as the distance between the meteorological station and the radar.
The distance of 193 km between the Pinhao station and the radar affects the accuracy of
the reflectivity reading. For this point, the DBZh value of 28.63 dBZ suggests possible
distortions caused by radar beam scattering and atmospheric variations at great distances.
Furthermore, interpreting this value of 28.63 dBZ using different methods of calculating the
precipitation rate (different Z–R relationships) reveals a significant discrepancy compared
to the observed value. The calculated rates are as follows:

• Using Marshall–Palmer [4], 1948—0.56 mm/15 min;
• Using Nexrad [14]—0.47 mm/15 min;
• Using DSD [13]—0.53 mm/15 min.

These lower values suggest that the observed precipitation rate may be overesti-
mated, indicating a possible error at the Pinhao station. The high linear polarization
(RHOHV = 0.97) and the differential polarization diffraction values (KDP = 0.20 and
ZDR = 0.37) point to complex meteorological conditions that the models may not have
adequately interpreted. The complex nature of these polarimetric parameters, as dis-
cussed regarding the selection of the polarimetric variables, suggests that specific aspects
of the meteorological phenomena were beyond the estimation capacity of the machine
learning models.

Table 8 presents a comparative analysis between the recorded data and the model
estimates. Taking the case of Pinhao as an example, we observe a notable discrepancy
between the observed data and the estimates. In the hour before the event, a precipitation
volume of 0.0 mm was recorded, corroborated by the model estimate of 0.00 mm. However,
a considerable precipitation event was observed in the subsequent hour, reaching 29.6 mm.
This amount contrasts significantly with the model estimate of only 0.65 mm.

This discrepancy could be attributed to potential reading errors at the meteorological
station, possibly caused by technical failures. The fact that no amount of rain was measured
immediately before a significant rainfall event is a possible indicator of an instrument
malfunction. Alternatively, it may indicate an inherent limitation of the model in accurately
predicting intense rain events, particularly in scenarios where previous readings suggest
low levels or the absence of precipitation. This observation highlights the need to refine the
estimation models, seeking the better representation and capture of the temporal dynamics
of intense rain events.
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3.1. Rain Intensity Analysis

We next consider a model analysis regarding different rain types, from the lightest rain
to the heaviest rain, to evaluate the accuracy of the algorithms in differentiating between
various rainfall intensities.

Table 9 presents the accuracy percentages for the RFRF and GBGB algorithms across
different rainfall intensities, including no rain, light rain, moderate rain, and heavy rain
scenarios. The results from both the validation and testing phases are represented as
precision values.

Table 9. The results regarding the percentages of light and heavy rain for the Random Forest–Random
Forest (RFRF) and Gradient Boosting–Gradient Boosting (GBGB) algorithms.

Rain Intensity Analysis

RFRF GBGB

Validation Test Validation Test

No Rain (0 to 0.2 mm/15 min.) 83% 64% 84% 70%
Light Rain (>0.2 to 2 mm/15 min.) 25% 44% 78% 93%

Moderate Rain (>2 to 5 mm/15 min.) 91% 97% 88% 96%
Heavy Rain (>5 mm/15 min.) 53% 75% 76% 93%

Under moderate rain conditions (intensity greater than 2 mm/15 min and up to
5 mm/15 min), both algorithms exhibited high accuracy, with RF achieving up to 97% pre-
cision in the testing phase and GB also demonstrating robust performance, which indicates
the effectiveness of these models in correctly identifying and classifying moderate rain events,
a crucial aspect of accurate meteorological nowcasting and water resource management.

However, when faced with heavy rain events (intensity greater than 5 mm/15 min),
a significant variation in performance was observed. While GB maintained high precision,
indicating its robustness and adaptability under extreme precipitation conditions, RF
showed a decrease in precision. This difference underscores the importance of selecting
the appropriate algorithm for the modeling of intense rain events, highlighting GB as a
valuable tool for practical applications where the accurate identification of heavy rainfall
is essential.

These results highlight the sensitivity of the RFRF and GBGB algorithms to the rainfall
intensity, with a particular focus on moderate and heavy rain. The superior performance of
GB under these conditions suggests its applicability in scenarios where distinguishing be-
tween different precipitation levels is crucial for informed decision making in meteorology
and water resource management. This analysis reinforces the need for tailored algorithm
selection and data preprocessing strategies to enhance the estimation and classification of
intense precipitation events.

3.2. Comparison of Images from Different Precipitation Estimation Methodologies

This section presents a comparative analysis of the model outputs and theoretical
Z–R relationships, emphasizing the application of Radial Basis Function Interpolation
(RBF) [21] for data transformation. A series of images are showcased to illustrate the models’
performance in replicating the radar reflectivity and estimating the precipitation rates.

Figure 7 displays images representing the model outputs for 11 October 2022, at 11:00
UTC. On this date, significant rainfall was experienced in the western region of Paraná,
which was covered by the Cascavel radar. The figure comprises several sub-figures, with the
first depicting the radar reflectivity, while the subsequent images show the precipitation
rates over 15 min intervals.
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Figure 7. A comparison of the radar reflectivity and estimated precipitation rates across multiple
algorithms and theoretical Z–R relationships on 11 October 2022, at 11:00 UTC. Panel (a) displays
the radar reflectivity map with values ranging from −20 to 60 dBZ, indicating the intensity of the
radar echo. Panels (b–h) show the precipitation rates predicted by various models (RFRF, GBGB,
RFGB, GBRF, DSD Calheiros, MP, NEXRAD) across the same geographic region, measured in mm
per 15 min. These maps provide insights into how the different algorithms interpret reflectivity data
to estimate precipitation.

Notably, the RFRF (Figure 7b) and GBGB (Figure 7c) models exhibit alignment with
the radar reflectivity field, indicating their precision in capturing the observed precipitation
system’s characteristics. The visual representations in Figure 7 are invaluable in evaluating
the models’ capability to reproduce the actual weather conditions, particularly under heavy
rainfall scenarios.

The transformation of the station data to the radar grid was achieved using RBF
interpolation for 117 stations. It is crucial to highlight that the employed RBF interpolation
produced a smooth and efficient surface (Figure 7), although the parameter selection and
overfitting potential are critical considerations in ensuring the method’s accuracy.

The comparison between the station-obtained data values and those derived from the
radar images (as illustrated in Figure 8) reveals a tendency for overestimation within both
metrics. Specifically, the machine learning models RFRF (Figure 8a) and GBGB (Figure 8b)
exhibit this overestimation, closely followed by the OC_Sub (Oracle) model (Figure 8c).
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sub = subtraction

Figure 8. A comparison and subtractive analysis of the precipitation rate estimates from different
stations and models on 22 October 2022, at 11:30 UTC. Panels (a–f) illustrate the differences in
precipitation rate (mm per 15 min) as estimated by algorithms RFRF_sub, GBGB_sub, OC_sub,
DSD_sub, MP_sub, and NEXRAD_sub, respectively. These maps highlight areas of significant
discrepancy (in yellow and green) against the background of minimal or no discrepancy (in purple),
showing how each model’s prediction varies from the observed station data. The color scale represents
the magnitude of the discrepancy, providing a visual comparison of the model accuracy across
the region.

Our employed methodology relies on point-based interpolation to generate a 500 m
resolution grid. In the northwest region, for example, where interpolated rain gauge data
are unavailable, all estimation methods demonstrate overestimation. Thus, it is expected
that an increase in the number of rain gauges in the region would reduce this overestimation,
by providing more data points for the interpolation method.

Additionally, this overestimation is more pronounced for regions distant from the
radar. As the radar beam travels from the radar, its distance from the planetary surface
increases due to the Earth’s curvature. This, in turn, affects the radar measurements.
Adjustments are made for the radar beam height, relevant for regions farther from the radar,
and further analysis will be conducted that is focused on improving these adjustments.

To improve future investigations, it would be useful to incorporate additional predic-
tive variables such as the temperature, humidity, and atmospheric pressure into the models.
This extension would enable a more detailed and comprehensive analysis of the weather
conditions, resulting in more precise precipitation estimates. Additionally, it is crucial to
train the models with more data points around the radar station.

Figures 9 and 10 display the algorithm outcomes and theoretical Z–R relationships
for the weather events of 12 July 2023, at 22:30 UTC and 2 September 2023, at 13:00 UTC,
respectively. These instances confirm the earlier discussed overestimation trend seen for
the machine learning data for the event on 11 October 2022, at 11:00 UTC.
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Figure 9. A comparison of the radar reflectivity and estimated precipitation rates across multiple
algorithms and theoretical Z–R relationships on 12 July 2023, at 22:30 UTC. Panel (a) displays the
radar reflectivity map with values ranging from −20 to 60 dBZ, indicating the intensity of the radar
echo. Panels (b–h) show the precipitation rates predicted by various models (RFRF, GBGB, RFGB,
GBRF, DSD Calheiros, MP, NEXRAD) across the same geographic region, measured in mm per
15 min. These maps provide insights into how the different algorithms interpret reflectivity data to
estimate precipitation.

Figure 10. A comparison and subtractive analysis of the precipitation rate estimates from different
stations and models on 12 July 2023, at 22:30 UTC. Panels (a–f) illustrate the differences in the
precipitation rate (mm per 15 min) as estimated by algorithms RFRF_sub, GBGB_sub, OC_sub,
DSD_sub, MP_sub, and NEXRAD_sub, respectively. These maps highlight areas of significant
discrepancy (in yellow and green) against the background of minimal or no discrepancy (in purple),
showing how each model’s prediction varies from the observed station data. The color scale represents
the magnitude of the discrepancy, providing a visual comparison of the model accuracy across
the region.
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4. Conclusions

This research aimed to enhance precipitation estimation by integrating radar and
rain gauge data through machine learning. The results provide a compelling affirma-
tive response to the research questions, demonstrating significant improvements in the
estimation accuracy.

A robust model was developed, amalgamating data from multiple sources and employ-
ing a hybrid approach combining classification and regression techniques. This methodol-
ogy proved particularly effective, yielding robust quantitative estimates. It performed well
even on datasets with a high proportion of missing values.

The success of the models was highly dependent on the data quality and the volume
of the data used. Gradient boosting was more robust than random forest when tested with
various precipitation scenarios. The machine learning models outperformed the traditional
meteorological standards, indicating their promising potential in the meteorological domain.

A sensitivity analysis was conducted across different rainfall intensities, which pro-
vided valuable insights into the models’ adaptability to diverse meteorological conditions
and pointed out promising areas for further research and enhancement.

Evaluating the models’ performance across different geographic regions could yield
insights into their adaptability and generalizability in diverse scenarios. Furthermore,
the deployment of advanced neural network models such as convolutional neural networks
(CNNs) [22,23] could be explored to capture more complex spatial and temporal patterns
in the data, offering a deeper, more integrated approach to precipitation estimation.

This study highlights the potential of machine learning models in estimating precipita-
tion. It also paves the way for future research into more advanced techniques and diverse
scenarios. The outcomes of this work carry tangible implications for both academia and
practical applications, as it advances the accuracy of meteorological nowcasting. The prac-
tical applications of these models could exert a significant impact on society, particularly in
improving the precision of meteorological products. Such progress is crucial for effective
natural disaster management and water resource optimization, thereby contributing to the
well-being and safety of communities.
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Abbreviations

CNNs Convolutional Neural Networks
GB Gradient Boosting
GBGB Gradient Boosting–Gradient Boosting
GBRF Gradient Boosting–Random Forest
KGE Kling–Gupta Efficiency
ML Machine Learning
MAE Mean Absolute Error
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OC Oracle
QPE Quantitative Precipitation Estimation
RBF Radial Basis Function Interpolation
RF Random Forest
RFRF Random Forest–Random Forest
RFGB Random Forest–Gradient Boosting
RMSE Root Mean Square Error
Z–R Z–R Relationship (Z—Reflectivity; R—Rainfall Rate)
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