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Abstract: The rapid and accurate extraction of water information from satellite imagery has been a
crucial topic in remote sensing applications and has important value in water resources management,
water environment monitoring, and disaster emergency management. Although the OLI-2 sensor
onboard Landsat-9 is similar to the well-known OLI onboard Landsat-8, there were significant
differences in the average absolute percentage change in the bands for water detection. Additionally,
the performance of Landsat-9 in water body extraction is yet to be fully understood. Therefore, it is
crucial to conduct comparative studies to evaluate the water extraction performance of Landsat-9
with Landsat-8. In this study, we analyze the performance of simultaneous Landsat-8 and Landsat-
9 data for water body extraction based on eight common water indices (Normalized Difference
Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), Augmented
Normalized Difference Water Index (ANDWI), Water Index 2015 (WI2015), tasseled cap wetness
index (TCW), Automated Water Extraction Index for scenes with shadows (AWEIsh) and without
shadows (AWEInsh) and Multi-Band Water Index (MBWI)) to extract water bodies in seven study
sites worldwide. The Otsu algorithm is utilized to automatically determine the optimal segmentation
threshold for water body extraction. The results showed that (1) Landsat-9 satellite data can be
used for water body extraction effectively, with results consistent with those from Landsat-8. The
eight selected water indices in this study are applicable to both Landsat-8 and Landsat-9 satellites.
(2) The NDWI index shows a larger variability in accuracy compared to other indices when used on
Landsat-8 and Landsat-9 imagery. Therefore, additional caution should be exercised when using the
NDWI for water body analysis with both Landsat-8 and Landsat-9 satellites simultaneously. (3) For
Landsat-8 and Landsat-9 imagery, ratio-based water indices tend to have more omission errors, while
difference-based indices are more prone to commission errors. Overall, ratio-based indices exhibit
greater variability in overall accuracy, whereas difference-based indices demonstrate lower sensitivity
to variations in the study area, showing smaller overall accuracy fluctuations and higher robustness.
This study can provide necessary references for the selection of water indices based on the newest
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Landsat-9 data. The results are crucial for guiding the combined use of Landsat-8 and Landsat-9 for
global surface water mapping and understanding its long-term changes.

Keywords: water extraction; water index; Landsat-8 OLI; Landsat-9 OLI-2; remote sensing;
comparative analysis

1. Introduction

Surface water, a vital component of Earth’s environmental system, plays a signifi-
cant role in supporting human productivity and providing immense environmental and
ecological benefits [1,2]. However, the rapid and substantial fluctuations in these water
bodies, driven by climatic change and human activities, have led to a series of detrimental
water-related phenomena, including water scarcity, flooding, and pollution [3–7]. The
importance of accurately identifying the dynamic changes in water bodies is undisputed.
Correspondingly, it has emerged as an enduring research hotspot over recent decades [8,9].
This research theme not only aids in understanding and predicting the impacts of water
body changes on the environment and society but also provides a framework for more
effective management and protection of our water resources [10,11]. Therefore, it is of great
significance to continue delving into this topic to better understand and manage global
water resources.

Remote sensing technology offers a powerful tool for the large-scale, long-term mon-
itoring of water bodies [1,12]. Its advantages include rapid, wide-area, and periodic
imaging capabilities, which are invaluable for tracking dynamic changes in water bodies
over time [13]. Several multispectral satellites have been extensively used for water body
extraction. These include the Landsat series, MODIS, Sentinel-2, and Chinese Gaofen
series [1,14–17]. These satellites provide rich spectral information, broad swath coverage,
and short revisit periods, making them ideal for mapping large-scale surface water. Among
these, the Landsat series satellites, launched by the United States for civilian land resource
monitoring, has played a pivotal role in water body remote sensing research [18]. Their
extensive temporal coverage, dating back to 1972 with the launch of Landsat-1 (also known
as ERTS-1), have provided invaluable data for studying long-term changes in water bod-
ies [19,20]. The latest addition to this series, Landsat-9, was launched in September 2021 as
the successor to Landsat-8. The Operational Land Imager-2 (OLI-2) onboard Landsat-9 is
largely identical to the Landsat-8 onboard OLI, offering calibrated imagery covering the
solar-reflected wavelengths [21,22]. However, the performance of Landsat-9 in water body
extraction is yet to be fully understood. Therefore, it is crucial to conduct comparative
studies to evaluate the water extraction performance of Landsat-9 with its predecessor.

There exists a broad spectrum of methodologies designed for water body extraction
based on medium-resolution optical satellite imagery [23,24]. These include pixel-level
classification methods such as single-band thresholding segmentation, multi-band spec-
tral relationship analysis, water index methods, and supervised classification methods
(including popular machine learning and deep learning techniques) [10,25]. Object-level
classification methods, such as object-based image analysis, are also employed [26]. Among
these, the water index method stands out due to its simplicity and ease of use, making it a
popular choice for large-scale or long-term water body extraction [27]. The water index
method is grounded in the analysis of spectral characteristics of water bodies. It involves
the selection of spectral bands closely associated with water body identification [28,29].
Through simple mathematical operations and the application of appropriate thresholds,
this method facilitates the extraction of water body information. This approach leverages
the unique spectral signatures of water bodies to distinguish them from other features in a
landscape, providing a straightforward and effective means of water body extraction [30].
A variety of prominent water indices have been developed, including Normalized Dif-
ference Water Index (NDWI) [31], Modification of Normalized Difference Water Index
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(MNDWI) [32], Automated Water Extraction Index (AWEI) [28], Multi-Band Water Index
(MBWI) [33], Water Index 2015 (WI2015) [34], Augmented Normalized Difference Water
Index (ANDWI) [35] and Tasseled Cap Transformation (TCT) [36]. Existed publications
have demonstrated their exceptional performance in water body extraction [1,5,16,37,38].
At present, whether at regional, national, or global scales, water body identification and
mapping are inseparable from remote sensing water index methods. However, these indices
were developed based on various existing remote sensing data, such as Landsat MSS, TM,
ETM+, and OLI and other multi-spectral remotely sensed imagery. Therefore, it is crucial
to analyze their applicability to new sensors, i.e., the OLI-2 sensor onboard Landsat-9.

The launch of the Landsat-9 satellite marks the start of a new era for the Landsat series.
Compared to the Operational Land Imager (OLI) on Landsat-8, the OLI-2 on Landsat-9,
while similar in terms of band configuration to its predecessor, has seen improvements in
spectral response characterization and radiometric resolution [21,22]. Since the launch of
Landsat-9, there have been some cross-comparisons of data from Landsat-8 and Landsat-9.
Xu et al. [39] found that the surface reflectance data from Landsat-8 and Landsat-9 are
almost consistent. However, there were significant differences in the average absolute
percentage change in the bands for water detection [40,41]. It remains uncertain whether
this deviation will be amplified in the calculation of water indices. This underscores the
need for further research to fully understand the implications of these differences for water
body extraction using Landsat-9 data. Consequently, it is urgent to conduct a systematic
analysis of the performance of water body extraction based on Landsat-9 satellite imagery
and a global comparison with the currently most widely used satellite in the Landsat series,
i.e., Landsat-8. Our research aims to evaluate the differences between Landsat-9 and its
predecessors, particularly in terms of water body extraction. This is crucial for assessing
whether Landsat-9 can succeed Landsat-8 in continuing Earth observations, sensing global
water resource dynamics, and supporting the achievement of sustainable development
goals (SDGs).

Specifically, this study aims to compare the performance of multiple water indices for
water extraction based on Landsat-8 and Landsat-9 datasets. Based on almost simultaneous
Landsat-8 and Landsat-9 data, we employed eight common water indices to extract water
bodies in seven study sites worldwide and further analyzed the application of water indices
based on Landsat-9. This study aims to answer the following questions: (1) Are water
indices applicable to Landsat-8 also applicable to Landsat-9? (2) Are there any differences
in water extraction performance between Landsat-9 and Landsat-8? (3) Are Landsat-9
better in water extraction compared to Landsat-8? These results can guide our exploration
of the capabilities and potential of the new Landsat-9 satellite in the field of remote sensing
for water body extraction.

2. Study Areas and Data Source
2.1. Study Area

To ensure a rigorous and representative comparative analysis, the variations in remote
sensing image acquisition times, elevation, climate, terrain, vegetation cover types, and
geological features were carefully considered. A total of seven test sites (Mille Lacs Lake,
Lake Nipissing, the Tongling section of the Yangtze River, Lianhuan Lake, Sai Lake, Liangzi
Lake, and Lake Wivenhoe) were selected (Figure 1). Various sites can enhance the diversity
of the water body dataset and enable a robust validation of water index applications across
varying geographical contexts.
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Figure 1. Overview of all selected test sites. (a) Locations of the seven test sites, (b) Mille Lacs
Lake, (c) Lake Nipissing region, (d) Tongling section of Yangtze River, (e) Lianhuan Lake, (f) Sai
Lake, (g) Liangzi Lake, and (h) Lake Wivenhoe. All satellite maps are produced via Landsat-9 data
(standard true color composite).

Geographically, the selected areas span Asia, North America, and Oceania. Morpho-
logically, the aquatic landscapes at these sites comprise a mixture of small ponds encircled
by larger lakes, rivers of linear or irregular shapes, human-made reservoirs, and water
channels in coastal zones. For the climatic features, these sites extend from coastal to inland
settings, each characterized by unique climatic conditions, as detailed in Table 1.

Table 1. Description of the seven test sites in this study.

No. Names Country Climate Water Type Major Background Noise

1 Mille Lacs Lake The United States
of America

Temperate
continental climate Lake Vegetation

2 Lake Nipissing Canada Temperate
continental climate Lake Vegetation and Artificial building

3 Tongling section of
Yangtze River China Temperate

monsoon climate River
Paddy field and Mountain

shadow
Wetland

4 Lianhuan Lake China Temperate
monsoon climate Lake cluster Wetland

5 Sai Lake China Temperate
monsoon climate River and Lake Artificial building

6 Liangzi Lake China Temperate
monsoon climate Lake Artificial building

7 Lake Wivenhoe Australia
Subtropical

monsoon and
humid climate

Artificial reservoir Mountain shadow and Artificial
building

2.2. Remote Sensing Data

In this study, data were utilized from both Landsat-8 OLI and Landsat-9 OLI-2 satellites.
To minimize inter-dataset discrepancies and ensure accuracy in the extraction of aquatic
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information, it is crucial to acquire remote sensing images from both sensors, captured
over the same area one day apart. Although Landsat-9 and Landsat-8 have an 8d temporal
misalignment, making exact date-over-date comparisons infeasible, images from adjacent
paths overlap within approximately 24 h. This overlap allows for the acquisition of nearly
concurrent images. Accordingly, a total of fourteen sets of images from both Landsat-9
and Landsat-8, captured over the same scene and within a 24 h interval, were collected
(Table 2).

Table 2. Summary of the employed Landsat-8 OLI and Landsat-9 OLI-2 imagery and corresponding
reference data in this study.

No. Test Site Path/Row Acquisition Date Data Source

1 Mille Lacs Lake
028/028 2022/08/31 Landsat-8 Collection 2 Level-2
027/028 2022/09/01 Landsat-9 Collection 2 Level-2

2 Lake Nipissing
019/028 2023/09/04 Landsat-8 Collection 2 Level-2
018 /028 2023/09/05 Landsat-9 Collection 2 Level-2

3 Tongling section of Yangtze River
120/039 2022/11/08 Landsat-8 Collection 2 Level-2
121/038 2022/11/07 Landsat-9 Collection 2 Level-2

4 Lianhuan Lake
120/027 2022/11/08 Landsat-8 Collection 2 Level-2
119/028 2022/11/09 Landsat-9 Collection 2 Level-2

5 Sai Lake
122/039 2022/08/18 Landsat-8 Collection 2 Level-2
121/040 2022/08/19 Landsat-9 Collection 2 Level-2

6 Liangzi Lake
123/039 2022/05/05 Landsat-8 Collection 2 Level-2
122/039 2022/05/06 Landsat-9 Collection 2 Level-2

7 Lake Wivenhoe
089/079 2022/10/29 Landsat-8 Collection 2 Level-2
090/079 2022/10/28 Landsat-9 Collection 2 Level-2

All data were collected from the Google Earth Engine (GEE) platform (https://
developers.google.cn/earth-engine (accessed on 12 May 2024)). The remote sensing image
data primarily consisted of Tier 1 Level 2 Science Products (L2SP), which have undergone
rigorous geometric correction based on ground control points, radiometric and atmospheric
corrections, and solar zenith angle adjustments. These products feature a spatial resolution
of 30 m. They can provide surface reflectance data that are ready for subsequent processing.
More details of the employed data can be found at https://developers.google.cn/earth-
engine/datasets/catalog/landsat (accessed on 12 May 2024). To further enhance image
quality, the study employed image selection criteria on the GEE platform, prioritizing
images with less than 20% cloud cover for subsequent analysis. After careful investigations,
all the acquisition dates of employed satellite imagery were sunny clear-sky days, with no
obvious precipitation in the previous and subsequent days. It is noted that the selection of
imagery is a trade-off between the overlapping acquisition date and imagery quality.

3. Methodology
3.1. Water Index

In this study, various water indices were employed to enhance water body information
for subsequent water extraction. To evaluate the applicability of these indices, the study
categorized various water indices and selected representative ones to assess extraction accu-
racy and analyze the mechanisms influencing their performance. The effective extraction of
water body information was facilitated by binarizing the index images via the appropriate
threshold. This study incorporated eight water indices, including the commonly utilized
Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water
Index (MNDWI), Augmented Normalized Difference Water Index (ANDWI), Water Index
2015 (WI2015), tasseled cap wetness index (TCW), automated water extraction index for
scenes with shadows (AWEIsh) and without shadows (AWEInsh), and Multi-Band Water

https://developers.google.cn/earth-engine
https://developers.google.cn/earth-engine
https://developers.google.cn/earth-engine/datasets/catalog/landsat
https://developers.google.cn/earth-engine/datasets/catalog/landsat
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Index (MBWI). The aim was to explore the differences in effectiveness and practicality of
extracting surface water body information using Landsat-8 and Landsat-9 imagery. De-
tailed methodologies for calculating each water index, along with their respective sensor
bases, are presented in Table 3.

Table 3. Basic information of the employed water indices in this study.

Type Water Index Equation Sensor Reference

Ratio-
based

NDWI (Green − NIR)/(Green + NIR) MSS [31]
MNDWI (Green − SWIR1)/(Green + SWIR1) TM [32]

ANDWI (Blue + Green + Red − NIR − SWIR1 − SWIR2)/
(Blue + Green + Red + NIR + SWIR1 + SWIR2)

ETM+/OLI [35]

Difference-
based

WI2015
1.7204 + 171 × Green + 3 × Red − 70 × NIR − 45 ×

SWIR1 − 71 × SWIR2 TM/ETM+/OLI [34]

TCW 0.1446 × Blue + 0.1761 × Green + 0.3322 × Red + 0.3396 ×
NIR − 0.6210 × SWIR1 − 0.4186 × SWIR2 − 3.3828 TM/ETM+ [36]

AWEIsh Blue + 2.5 × Green − 1.5 × (NIR + SWIR1)− 0.25 × SWIR2 TM [28]
AWEInsh 4 × (Green − SWIR1)− (0.25 × NIR + 2.75 × SWIR2) TM [28]

MBWI (2 × Green)− Red − NIR − SWIR1 − SWIR2 OLI [33]

Note: Blue, Green, Red, NIR, SWIR1, and SWIR2 represent the surface reflectance of blue band, green band, red
band, near-infrared band, and shortwave infrared band-1 and -2 in Landsat-8 and Landsat-9 imagery, respectively.
MSS, TM, ETM+, and OLI represent the Landsat Multispectral Scanner, Thematic Mapper, Enhanced Thematic
Mapper Plus, and Operational Land Imager (OLI) data, respectively.

3.2. Threshold Determination

The water body index can effectively enhance the class separability between water
and non-water classes. On this basis, selecting an appropriate threshold to achieve the
best possible separation effects is also the key to water mapping [13]. Consequently, a
series of multi-modal density slicing methods were developed, such as Otsu, K-Means,
Inter-modes, Maximum Entropy, Median, Concavity, Percentile, Inter-means, and Iterative
Self-organizing Data Analysis (ISODATA) [42,43]. Among them, the Otsu algorithm is
a typical adaptive thresholding technique for image segmentation, commonly used to
convert grayscale images into binary images [44]. The fundamental advantage of the Otsu
method lies in its ability to automatically select a threshold that divides the image into
foreground and background, minimizing within-class variance and maximizing between-
class variance.

The Otsu method is good at determining the best threshold automatically in a straight-
forward and effective way, which is particularly valuable in images with varying lighting
conditions or contrast levels [45]. Compared to traditional methods that require manual
threshold setting, the Otsu method significantly reduces subjectivity and the complexity
of experimental operations [13]. In other words, this specific method is featured with
satisfactory slicing effect and high efficiency. Although other advanced methods are also
employed for threshold determination in water mapping, the Otsu method allows for
keeping accuracy without sacrificing efficiency [12,46].

The application of Otsu’s method is suitable for the binarization of remote sensing
water indices under bimodal distribution conditions [47]. Remote sensing images typically
contain complex geographical and environmental information, with clear distinctions in
gray levels between water and non-water regions in water index images [13]. The Otsu
method effectively isolates water regions from these complex datasets by automatically
identifying the optimal threshold based on the image’s statistical characteristics [25,48].
This capability is crucial for enhancing the accuracy and efficiency of water body extraction,
especially in large-scale or automated water monitoring projects, thereby significantly
improving processing speed and the reliability of results.
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3.3. Accuracy Assessment

To comprehensively evaluate the classification accuracy of water indices, this study
utilizes four key metrics: Overall Accuracy (OA), User Accuracy (UA), Producer Accuracy
(PA), and the Kappa coefficient [49]. In addition, the Matthew Correlation coefficient (MCC)
is also used for evaluating the extraction performance, which is particularly suited for
unbalanced binary distributions [50]. MCC values range between −1 and 1, where a value
of 1 represents a perfect classifier, whereas a value of 0 describes a classifier making random
guesses [51]. These parameters are employed to analyze interpretative discrepancies across
different test sites and to identify the spatial distribution of error-prone pixels.

In this study, validation data for the water and non-water samples were obtained
through the visual interpretation of employed Landsat-8 and Landsat-9 imagery. For
samples that are challenging to distinguish on 30 m Landsat imagery, we utilize high-
resolution Google Earth and Chinese MapWorld imagery (<1 m) from similar time periods
to assist in their identification. The satellite imagery utilized in this study was acquired
during periods of sunny, clear skies, with no significant precipitation or flooding events.
Moreover, the water extents in the seven test sites exhibited relative stability, showing
minimum pixel changes over a short temporal span of 1 d, even in transitional areas. This
consistency underscores the reliability of the data for accurate analysis and interpretation.

Additionally, these data were also used for extracting “pure” pixel samples from
the same locations in both Landsat-8 and Landsat-9 imagery to provide a reference for
the spectral differences between the two sets of images. Commonly, the ground area
corresponding to a “pure” pixel contains only a single object (land cover type), and then
the recorded information by this pixel (30 × 30 m corresponding to the pixel size of a
30 m-Landsat image) is the spectral characteristic of the pure object [33,52]. In this study,
these points were randomly generated from the map and then manually confirmed to
ensure the stable distribution of land cover types, including shadows, water, vegetation,
and soil. The corresponding spectral features were used for analyzing the differences
between both satellite images.

4. Results
4.1. Effects of Different Water Indices

To enhance the comparative analysis of the extraction performance of various water
indices utilizing Landsat-9 OLI-2 data, this study systematically selected eight water
indices. The effects of these indices were evaluated through a multi-dimensional framework,
examining image discrepancies, correlations, and difference metrics.

4.1.1. Comparison of Different Water Indices in Landsat-9

Focusing on the Tongling section of the Yangtze River region, a total of eight water
maps were generated (Figure 2). The visual analysis of the results from these water indices
reveals that each index effectively enhances the contrast between aquatic and non-aquatic
areas, clearly delineating the distribution of water bodies within the watershed.

The ratio-based indices NDWI, ANDWI, and MNDWI, as depicted in Figure 2b–d,
exhibit significant and uniform distinctions between land and water areas, with NDWI
showing the greatest difference (−0.827–0.983), resulting in a range of 1.810. In contrast,
ANDWI shows a somewhat narrower range (ranging from −0.890 to 0.857), a difference of
1.747. The corresponding difference-based indices retain a considerable amount of surface
detail, which is characteristic of these indices. Due to the inherent nature of difference-
based indices, we did not conduct a comparative analysis of the highest and lowest values
here. However, visually, the difference-based indices slightly lag behind the ratio-based
indices, as they do not as effectively suppress information related to water fields. Overall,
all eight water body indices we employed were capable of supporting subsequent analyses
for water body extraction.
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Figure 2. Satellite map (standard true color composite) and various water indices map based on
Landsat-9 in Tongling section of Yangtze River region.

4.1.2. Differences of Seven Water Indices in Landsat-8 and Landsat-9

To better evaluate the differences between the water indices derived from Landsat-8
and Landsat-9 data, we examined the differences of index images (Landsat-8 scene minus
Landsat-9 scene) from both satellites, focusing on the Lake Wivenhoe as illustrated in
Figure 3. The differences are calculated by subtracting the index values derived from
Landsat-8 data from those obtained using Landsat-9 data. In the water areas, differences
are predominantly positive, indicating that the water indices calculated from Landsat-8
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generally yield higher values than those from Landsat-9. For the terrestrial areas, the ratio-
based indices (Figure 3a–c) tend to approach zero, indicating the minimal discrepancies
between both datasets.
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In the non-water areas, difference-based indices typically exhibit negative values,
indicating that water indices calculated from Landsat-8 are generally lower than those
derived from Landsat-9. As shown in Figure 3c, the difference in values between the two
imagery indices of AWEIsh is smaller compared to other indices. In Figure 3, it is obvious
that most water regions appear lighter or near white, reflecting minimal disparities. The
difference plot for AWEIsh shows a maximum value of 0.509 and a minimum value of
−0.477, with a total range of 0.986. Similar trends of small disparities in AWEIsh index
values are observed in other study areas, as detailed in Figures S1–S5.

However, the test site of Mille Lacs Lake (Figure 4) displays opposite characteristics
to Lake Wivenhoe, with water indices predominantly showing negative differences. In
non-water areas, the ratio-based water indices in both test sites tend to approach zero,
while the difference-based indices display positive values, indicating that the majority
of water index values calculated from Landsat-8 are greater than those from Landsat-9.
More difference maps are shown in Figures S1–S5. These above results indicate that the
performance of various water indices varies with geographical regions; however, there
remains a strong consistency between Landsat-8 and Landsat-9 data across these areas.
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4.1.3. Correlation among Various Water Indices

Based on the GEE platform, a total of 3000 data points were randomly selected for
extracting the water index values in each pair of Landsat-8 and Landsat-9 imagery. Sub-
sequently, a correlation analysis was conducted on the water indices calculated from two
scenes within the Lake Wivenhoe area (Figure 5). Overall, both sets of data demonstrate
high correlations across all eight indices, with R2 values exceeding 0.990 for each. Notably,
the highest correlations were observed in MBWI, TCW, and WI2015, all reaching an R2 of
0.998, while the lowest was in NDWI (R2 = 0.990). The graphical representation shows that
the 3000 data points for all water body indices are predominantly positioned at the extremes
of the fitted line. However, the distribution of ratio-based indices, especially NDWI, is more
pronounced, with data points distinctly clustered at the extremes (Figure 5a). In contrast,
TCW points are more densely concentrated at one end, associated with non-water body
points. The R2 values for MNDWI, NDWI, ANDWI, and AWEInsh are 0.995, 0.990, 0.991,
and 0.994, respectively, indicating a slightly lower correlation compared to other indices.
The additional correlation results are shown in Figures S6–S11.

4.2. Separation of the Water Index

To assess the impact of spectral band differences on water extraction, the separability
of water index values was analyzed within the Lake Wivenhoe region (Figure 6). The
relationships between the indices and the corresponding spectral bands were also ana-
lyzed. Generally, there is consistency in the separability of water indices derived from
both Landsat-8 and Landsat-9 data, with indices such as NDWI demonstrating identical
reflectance distributions in the Green and NIR bands across both satellite images. However,
indices like AWEInsh, AWEIsh, and WI2015 show no distinct separation gaps, leading
to significant uncertainty in their segmentation thresholds. Conversely, indices such as
NDWI, MNDWI, MBWI, and ANDWI display clear gaps near zero, facilitating their direct
application for water body segmentation across the entire study area based on established
thresholds. As illustrated in Figure 6, the division of water bodies using NDWI and
MNDWI is predominantly determined by the greater reflectance values in the Green band
compared to the NIR and SWIR1 bands. In the other test sites, the separations of the water
index are similar (Figures S12–S17).
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imagery in Lake Wivenhoe.

For the threshold, histograms were generated using Lake Wivenhoe as a case study
(Figure 7). Eight different water indices were utilized, all designed to suppress the dif-
ferences in surface reflectance between water and non-water bodies, resulting in more
concentrated pixel values ranging from −1 to 1 for indices like NDWI. These indices am-
plify the distinction between water and non-water areas. Typically, the histogram of a water
index image displays two peaks, with the right peak representing water areas, as seen in
the WI2015 index image, and the left peak representing non-water areas.

As shown in Figure 7, it is evident that although some water peaks are quite low
due to the small proportion of water in the study area, both Landsat-8 and Landsat-9
exhibit similar morphologies, with most images showing a bimodal distribution. This
characteristic makes it straightforward to distinctly differentiate between the index values
of water and non-water bodies. The ratio-based indices, such as NDWI, MNDWI, and
ANDWI, feature a large separation between the two peaks, where water (right peak) and
non-water (left peak) are far apart and do not overlap. This clear separation facilitates the
setting of thresholds for water body segmentation. Conversely, the difference-based indices
like AWEInsh and MBWI (Figure 7g,h) show a shorter distance between peaks, resulting in
minimal separation.

In this specific test site, the thresholds for ratio-based water indices differ significantly
between Landsat-8 and Landsat-9 imagery (Figure 7a–c). For example, the Otsu threshold
for the NDWI index is 0.005 on Landsat-8 images and −0.095 on Landsat-9 images, a
difference of 0.100. In contrast, the thresholds for difference-based indices show smaller
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discrepancies; the MBWI index has an Otsu threshold of −0.285 on Landsat-8 images and
−0.275 on Landsat-9 images, with a minimal difference of 0.010.
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Figure 7. Comparison of the applicability of different water body index thresholds based on Landsat-8
and Landsat-9 imagery in Lake Wivenhoe. (a) NDWI, (b) MNDWI, (c) ANDWI, (d) WI2015, (e) TCW,
(f) AWEIsh, (g) AWEInsh, and (h) MBWI.

Overall, the histograms of the index images from Landsat-8 and Landsat-9 are con-
sistent (Figure 7 and Figures S18–S23). The ratio-based indices, being greater than 0,
demonstrate a distinct difference in the crest of the water peak between the two satellite
images; hence, the threshold for ratio-based indices exhibits more variability between
Landsat-8 and Landsat-9 imagery.

4.3. Comparison of Water Body Extraction

To evaluate the extraction performance of different water indices, three test sites featur-
ing complex water body boundaries, large watersheds, and rivers of varying morphologies
were selected. Overall, the eight water indices successfully captured the distribution of
water bodies within each test site.

An analysis of the Lake Wivenhoe region using Landsat-9 imagery serves as a case
study. Figure 8 illustrates that the primary areas of omission occur with the ratio-based
indices NDWI, MNDWI, and ANDWI (Figure 8a–c), which tend to miss finer water bodies.
In contrast, AWEInsh (Figure 8g) demonstrates the least amount of omission in capturing
fine water bodies. The main misclassifications in the difference-based indices AWEInsh,
MBWI, and TCW are related to mountain shadows and buildings. AWEInsh (Figure 8g)
shows the highest misidentification of building shadows as water bodies, whereas WI2015
(Figure 8d) is less prone to this error. TCW (Figure 8e) tends to misclassify mountain
shadows the most, whereas WI2015 (Figure 8d) effectively minimizes such errors.

The Mille Lacs Lake area shares similarities with the Lake Wivenhoe region in its
inclusion of omissions in fine stream areas. In terms of ratio-based indices, NDWI, MNDWI,
and ANDWI lack precision in identifying the boundaries of water bodies, resulting in more
frequent omissions at the edges of smaller water areas (Figure 9a–c).
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Figure 9. Spatial differences in water index extraction capacity in the Mille Lacs Lake region based on
Landsat-9 imagery.

In the Tongling section of the Yangtze River region, disturbances from paddy fields
and mountain shadows are prevalent, leading to high rates of misclassification across all
eight water indices (Figure 10). TCW and MBWI (Figure 10e,h) show less effectiveness in
suppressing mountain shadows and building shadows, often misidentifying these features
as bodies of water. WI2015, AWEIsh, and AWEInsh exhibit fewer errors with mountain
shadows but tend to misclassify building shadows as water more frequently. In the other
test sites, similar results were also observed (Figures S24−S27).
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To compare the accuracy of different water indices using Landsat-8 and Landsat-9
imagery, an analysis was performed focusing on the extraction accuracies and Kappa
and MCC statistics for each index. The results, summarized in Table 4, demonstrate the
consistency of extraction accuracies between Landsat-8 and Landsat-9, with the largest
discrepancy observed in the PA of the NDWI index within Lake Nipissing, showing a
difference of −0.279. In contrast, the smallest gaps (close to 0) in PA were detected in the
Mille Lacs Lake (MBWI), Lake Wivenhoe (TCW and MBWI), Liangzi Lake (TCW), Sai Lake
(AWEIsh), and Lianhuan Lake (TCW and AWEIsh). Among all MCC results, the largest
difference was observed in the NDWI of Mille Lacs Lake (−0.101); however, the smallest
difference (close to 0) is the MBWI of Mille Lacs Lake, the AWEIsh of Lake Nipissing and
WI2015 of the Tongling section of the Yangtze River, indicating the perfect classifiers for
water detection.

Among the indices, the NDWI index exhibited the greatest variability in accuracy
differences, with several test sites showing a precision difference greater than 0.15 (in
absolute value) between Landsat-8 and Landsat-9 data. For instance, the Kappa difference
in the Mille Lacs Lake region reached −0.170, and the UA difference in Lake Nipissing was
0.156. The PA difference in Lianhuan Lake reached 0.151, and in Nipissing reached −0.279.
The largest MCC difference of the NDWI reaches −0.101, and the smallest difference
(−0.018) was observed in the Tongling section of the Yangtze River. The accuracy differences
for all other indices across Landsat-8 and Landsat-9 data were below 0.1 (in absolute value),
suggesting more attention should be given to the use of the NDWI index when applying
Landsat-8 and Landsat-9 imagery concurrently.
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Table 4. Accuracy metrics of water mapping based on the Landsat-8 OLI and Landsat-9 OLI-2 data. (Note: red font represents the negative value).

Site
Landsat-9 Landsat-8 Minus Landsat-9

NDWI MNDWI ANDWI WI2015 TCW AWEIsh AWEInsh MBWI NDWI MNDWI ANDWI WI2015 TCW AWEIsh AWEInsh MBWI

Mille Lacs Lake

Kappa 0.574 0.364 0.437 0.822 0.843 0.820 0.780 0.838 −0.170 0.055 −0.089 0.015 −0.006 0.001 0.011 0.000
OA 0.825 0.660 0.718 0.937 0.944 0.937 0.924 0.942 −0.132 0.048 −0.073 0.005 −0.002 0.000 0.005 0.000
PA 0.834 0.561 0.645 0.980 0.986 0.986 0.986 0.980 −0.226 0.074 −0.108 0.003 −0.003 −0.003 0.011 0.000
UA 0.925 0.976 0.970 0.939 0.942 0.933 0.918 0.945 0.048 −0.012 0.011 0.003 0.000 0.003 −0.002 0.000

MCC 0.583 0.454 0.505 0.826 0.847 0.826 0.790 0.840 −0.101 0.034 −0.060 0.014 −0.007 −0.000 0.017 0.000

Lake Nipissing

Kappa 0.362 0.344 0.310 0.580 0.581 0.561 0.519 0.581 −0.129 0.071 0.041 −0.011 −0.020 0.000 −0.016 −0.016
OA 0.675 0.658 0.639 0.791 0.791 0.782 0.763 0.791 −0.078 0.039 0.024 −0.006 −0.010 0.000 −0.007 −0.008
PA 0.545 0.381 0.334 0.793 0.789 0.797 0.820 0.782 −0.279 0.069 0.066 −0.007 −0.024 −0.004 0.019 −0.006
UA 0.784 0.957 0.981 0.813 0.816 0.797 0.758 0.820 0.156 0.011 −0.045 −0.004 −0.001 0.003 −0.017 −0.008

MCC 0.382 0.439 0.421 0.581 0.581 0.561 0.521 0.582 −0.040 0.060 0.015 −0.011 −0.019 0.000 −0.013 −0.016

Tongling section
of Yangtze River

Kappa 0.731 0.701 0.706 0.674 0.618 0.667 0.607 0.609 −0.030 −0.007 −0.023 0.002 −0.020 −0.014 −0.038 −0.014
OA 0.867 0.851 0.854 0.836 0.806 0.832 0.801 0.801 −0.014 −0.003 −0.011 0.001 −0.010 −0.007 −0.019 −0.007
PA 0.804 0.827 0.814 0.918 0.954 0.922 0.914 0.960 −0.070 −0.006 −0.031 −0.009 −0.015 −0.011 0.008 −0.019
UA 0.903 0.852 0.867 0.775 0.723 0.768 0.731 0.715 0.038 −0.001 0.004 0.006 −0.006 −0.005 −0.026 −0.001

MCC 0.735 0.701 0.707 0.685 0.647 0.679 0.624 0.642 −0.018 −0.006 −0.021 −0.000 −0.022 −0.015 −0.030 −0.019

Lianhuan Lake

Kappa 0.823 0.835 0.838 0.832 0.757 0.844 0.844 0.772 0.061 0.003 0.011 0.018 0.015 0.014 0.003 0.017
OA 0.912 0.918 0.919 0.916 0.878 0.922 0.922 0.886 0.030 0.001 0.006 0.009 0.008 0.007 0.001 0.008
PA 0.834 0.863 0.857 0.968 0.974 0.971 0.968 0.974 0.151 0.009 0.023 0.003 0.000 0.000 0.009 0.003
UA 0.986 0.967 0.977 0.876 0.817 0.883 0.885 0.827 −0.080 −0.006 −0.012 0.012 0.010 0.012 −0.003 0.011

MCC 0.833 0.840 0.844 0.837 0.771 0.848 0.847 0.784 0.055 0.002 0.009 0.016 0.013 0.013 0.004 0.016

Sai Lake

Kappa 0.668 0.681 0.674 0.715 0.726 0.670 0.580 0.735 −0.016 0.020 0.022 −0.012 −0.018 0.006 0.012 −0.034
OA 0.831 0.838 0.834 0.859 0.864 0.838 0.797 0.868 −0.007 0.010 0.012 −0.006 −0.008 0.002 0.005 −0.016
PA 0.743 0.744 0.736 0.844 0.841 0.848 0.872 0.834 0.004 0.020 0.030 −0.009 0.007 0.000 −0.008 0.004
UA 0.951 0.963 0.965 0.903 0.914 0.865 0.793 0.927 −0.020 −0.001 −0.009 −0.004 −0.020 0.004 0.011 −0.032

MCC 0.689 0.704 0.699 0.717 0.729 0.671 0.584 0.740 −0.020 0.016 0.015 −0.012 −0.019 0.005 0.010 −0.037

Liangzi Lake

Kappa 0.863 0.885 0.888 0.782 0.732 0.770 0.736 0.767 0.025 −0.041 −0.029 −0.019 0.022 −0.010 0.032 −0.013
OA 0.933 0.943 0.945 0.890 0.864 0.884 0.866 0.882 0.012 −0.020 −0.015 −0.010 0.011 −0.005 0.017 −0.007
PA 0.874 0.936 0.914 0.988 0.986 0.986 0.988 0.984 0.046 0.017 0.026 −0.009 0.000 −0.007 −0.017 −0.002
UA 0.972 0.936 0.959 0.806 0.771 0.798 0.772 0.797 −0.018 −0.055 −0.053 −0.009 0.015 −0.003 0.033 −0.009

MCC 0.866 0.885 0.889 0.798 0.755 0.787 0.759 0.784 0.022 −0.038 −0.029 −0.019 0.018 −0.011 0.022 −0.012

Lake Wivenhoe

Kappa 0.808 0.798 0.795 0.857 0.860 0.836 0.802 0.866 −0.043 −0.056 −0.053 −0.003 −0.006 −0.002 −0.026 −0.012
OA 0.909 0.905 0.904 0.930 0.932 0.920 0.902 0.935 −0.019 −0.025 −0.024 −0.001 −0.003 −0.002 −0.013 −0.006
PA 0.793 0.718 0.775 0.929 0.929 0.929 0.954 0.921 −0.050 −0.061 −0.057 −0.004 0.000 0.007 −0.015 0.000
UA 0.987 0.99 0.991 0.906 0.909 0.884 0.834 0.921 0.003 −0.001 −0.001 0.000 −0.006 −0.008 −0.015 −0.013

MCC 0.821 0.813 0.810 0.857 0.860 0.837 0.808 0.866 −0.036 −0.047 −0.044 −0.003 −0.006 −0.002 −0.027 −0.012
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The analysis shows that within the same test site, the PA for ratio-based indices was
lower than that for difference-based indices. For example, in the Sai Lake region on Landsat-
9 imagery, the PA for the three ratio-based indices (NDWI, MNDWI, and ANDWI) were
0.743, 0.744, and 0.736, respectively, while the PA for the other difference-based indices
were all above 0.800. Similar patterns were observed in other sites on both datasets, where
the PA for ratio-based indices was consistently lower than that for difference-based indices,
and omissions were more frequent in ratio-based indices. In general, the results of OA and
MCC are similar and complemental.

Furthermore, the UA for ratio-based indices was higher than that for difference-based
indices within the test sites. For instance, in the Liangzi Lake region on Landsat-9 imagery,
the UA for the three ratio-based indices (NDWI, MNDWI, and ANDWI) were 0.972, 0.936,
and 0.959, respectively, whereas the UA for the other difference-based indices were all
below 0.900. Accuracy results on both datasets in other sites showed the same trend
(Table 4), where the UA for ratio-based indices was greater than the PA for difference-based
indices, and the difference-based indices had a higher rate of misclassification compared to
ratio-based indices.

5. Discussion
5.1. Performance and Effectiveness of Various Water Indices

The computation of remote sensing indices for water body detection is straightforward,
eliminating the need for intricate training processes. This simplicity facilitates the rapid
extraction of water body information over large areas, making it an essential technique for
global and regional assessments of water distribution and area estimation. Despite a trend
towards more complex water body indices, existing studies suggest that more elaborate
indices do not always outperform their simpler counterparts [27]. In our research, we
utilized eight different water indices for water extraction.

NDWI effectively minimizes the influence of non-aquatic elements like vegetation and
soil, proving particularly effective for large lakes and reservoirs. However, it still includes
substantial interference when applied to urban water bodies [29]. MNDWI, building upon
the NDWI approach, uses the Landsat TM short-wave infrared band (TM5) instead of
the near-infrared band (TM4). This modification enhances the index’s ability to reduce
the impacts of soil and buildings, thereby improving the removal of shadows from urban
structures [32]. AWEI, including its variants AWEInsh and AWEIsh, is formulated based on
TM image data. AWEI aims to maximally separate aquatic from non-aquatic pixels through
band subtraction and the application of varying coefficients. Validation has shown that
AWEI achieves higher accuracy in water extraction than MNDWI [28]. Building on WI2006,
the WI2015 introduces a new extraction algorithm based on linear discriminant analysis
(LDA), employing the LDA classification (LDAC) to determine optimal coefficients for
segregating training area classes, thereby enhancing classification precision [35]. The MBWI
mitigates the effects of mountain shadows and dark building pixels while also lessening
seasonal variations caused by changes in solar conditions [33]. The TCT, an empirical
orthogonal transformation introduced by Kauth et al. [53] during studies on crop growth
stages, effectively extracts water information through its wetness component (i.e., TCW),
as utilized in our research.

Figure 11 displays the precision statistics across eight water indices at various test
sites. Under differing surface water environmental conditions, the OA fluctuations of the
NDWI, MNDWI, and ANDWI indices are notably larger compared to the other indices,
highlighting the superior robustness of AWEInsh, AWEIsh, WI2015, TCW, and MBWI in
water body extraction, which can be mutually confirmed with MCC results. Generally,
the results of OA and MCC are similar. Analyzing PA results, the ratio-based indices
(NDWI, MNDWI, and ANDWI) exhibit greater variability and generally lower mean values
compared to the difference-based indices, resulting in a higher incidence of omission errors,
as depicted in Figures 8–10. Conversely, UA analysis shows that ratio-based indices have
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higher mean values, indicating fewer commission errors, while difference-based indices
exhibit lower mean values and, thus, more commission errors.
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As shown in Figures 11 and 12 across various study areas, the NDWI index performs
less effectively in water body extraction compared to AWEIsh. AWEIsh demonstrates
superior capability in identifying small water bodies within images, outperforming NDWI,
which tends to misclassify water body edges as non-water, leading to increased omission
errors and impacting overall accuracy. According to our findings, the water extraction
accuracy based on Landsat-8 and Landsat-9 imagery is consistent. The related results
suggest that the subtle differences between the two sensors do not lead to significant
variations in accuracy. Consequently, we can confidently utilize data from both sensors in
tandem for water body mapping across various temporal and spatial scales.

Through systematic analysis and comparison of various water body indices applied
to Landsat-8 and Landsat-9 imagery, the results demonstrated the distinct advantages
and limitations inherent to both ratio-based and difference-based indices. Our results
confirm that ratio-based indices like NDWI, MNDWI, and ANDWI exhibit significant
variability in accuracy, especially in complex urban and boundary water body scenarios.
They offer stable performance across diverse environments and satellites due to their ability
to mitigate the effects of clouds and shadows without the need for coefficients. On the
other hand, difference-based indices such as AWEIsh, WI2015, TCW, and MBWI, despite
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their empirical coefficients and potential for variability, have shown higher robustness in
extracting water bodies, particularly in challenging conditions where the precision and
minimization of omission and commission errors are critical.
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Figure 12. Comparison of spectral response curves between Landsat-8 OLI and Landsat-9 OLI-
2. Spectral response functions obtained from https://landsat.gsfc.nasa.gov/satellites/landsat-8/
spacecraft-instruments/ (last accessed on 12 May 2024) and https://landsat.gsfc.nasa.gov/satellites/
landsat-9/landsat-9-instruments (last accessed on 12 May 2024), respectively.

5.2. Spectral Response and Reflectance of Landsat-8 and Landsat-9 Data

Landsat-9 is the latest addition to the Landsat satellite series, continuing the mission
of Earth observation established by its predecessors. Moreover, one of its significant roles
is to work in tandem with Landsat-8 to halve the Earth observation cycle from 16 d to
8 d [21,39]. This necessitates a high degree of consistency in the imagery data between
Landsat-9 and Landsat-8 to ensure the results from both are strictly comparable [54]. The
primary distinctions between them stem from differences in spectral reflectance attributed
to their spectral response functions [21].

Regarding the remote sensors, there are some disparities in the spectral band ranges of
the Landsat-8 OLI and Landsat-9 OLI-2 (Table 5). For instance, the bands used to calculate
NDWI, the Green and NIR bands, have wavelengths of 525–600 nm and 845–885 nm for
Landsat 8 OLI, compared to 533–590 nm and 851–879 nm for Landsat 9 OLI-2, respectively.
Additionally, there are differences in reflectance in the SWIR bands. This is because
they share similar spectral response functions with some differences (Figure 12). The
spectral response peaks for SWIR2, SWIR1, NIR, Green, and Red bands on Landsat-9
OLI-2 are higher than those on Landsat-8 OLI, suggesting that OLI-2 is more sensitive to
these wavelengths.

Another critical metric for assessing the performance of remote sensing instruments
is the signal-to-noise ratio (SNR) [54]. Under typical radiation conditions, the SNR of
data transmitted by OLI-2 on Landsat-9 is improved by 25%, offering higher radiometric
precision in observing the Earth’s surface. Landsat-9’s OLI-2 downlink transmits all 14-bit
data produced by the spacecraft’s electronic equipment to Earth, providing images with
greater bit depth and redundancy [41,55].

https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/
https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/
https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-instruments
https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-instruments
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Table 5. The basic specifications for the spectral characteristics and spatial resolution of OLI and
OLI-2 sensors.

Band Acronym Spatial
Resolution

Landsat-8 OLI Landsat-9 OLI2

Spectral Range Band Center Spectral Range Band Center

Coastal aerosol B1 30 m 433–453 443 435–451 443
Blue (B) B2 30 m 450–515 483 452–512 482

Green (G) B3 30 m 525–600 561 533–590 562
Red (R) B4 30 m 630–680 655 636–673 655

Near-infrared (NIR) B5 30 m 845–885 865 851–879 866
Shortwave infrared 1

(SWIR1) B6 30 m 1560–1660 1610 1566–1651 1610

Shortwave infrared 2
(SWIR2) B7 30 m 2100–2300 2200 2107–2294 2201

Panchromatic B8 15 m 500–680 591 503–676 590
Cirrus B9 30 m 1360–1390 1373 1363–1384 1374

Reflectance serves as the data foundation for distinguishing different land cover types.
The varying chemical compositions, physical structures, and surface states influence the
capacities for reflecting, absorbing, and transmitting electromagnetic waves. In this study,
we selected “pure” pixel samples from the same locations in both Landsat-8 and Landsat-9
imagery to provide a reference for the spectral differences between the two sets of images.
These “pure” pixels with a size of 30 × 30 m were obtained from seven test sites covered
by Landsat-8 and Landsat-9 imagery. Figure 13 displayed the typical “pure” pixels in the
Landsat scene. They encompass all the challenging factors of identifying surface water:
mountain shadows, urban areas (buildings), vegetation, and bare soil.
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Figure 13. Spatial distribution of “pure” pixels in Landsat scene (standard true color composite) in
Tongling section of Yangtze River. The number in (a) is the image id, and the number in (b) is the scene
that corresponds to each image, where id (1–7) represent water, id (8–9) represent building, id (10–11)
represent vegetation, id (12–13) represent bare soil, and id (14–15) represent mountain shadows.
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Utilizing remote sensing imagery, high-resolution Google Earth images, and the
Chinese MapWorld database, a total of 1768 pure pixel samples were selected. Regardless
of the land cover type, certain discrepancies exist in the reflectance of pure land cover
pixels across the six spectral bands between Landsat-8 and Landsat-9 data (Figure 14).
Notably, the reflectance of the NIR band exhibits a significant difference between Landsat-8
OLI and Landsat-9 OLI-2, impacting the construction of various water indices. Except
for the MNDWI index, which does not utilize the NIR band, all others in this study
incorporated this specific band in their formulation. The comparative analysis revealed a
smaller discrepancy in water body extraction accuracy between Landsat-8 and Landsat-9
for the MNDWI index compared to others, likely due to the exclusion of the NIR band.
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5.3. Uncertainty and Perspective

Some existed studies analyzed the differences between Landsat-8 and Landsat-9
satellite data, and the results suggest that Landsat 9 closely resembles Landsat 8 in various
aspects and has similar reflected wavelengths and find suitability for both satellite datasets
for water detection [21,56]. The significant differences in the average absolute percentage
change in the bands may affect the water detections. However, whether the deviation in
the calculation of water indices affects the mapping performances is still unclear. Therefore,
we conducted a comparative analysis of the performance in water body extraction between
Landsat-8 and Landsat-9 satellite data in this study. Our research, leveraging eight distinct
water indices, aimed to extract water bodies at seven sites globally from Landsat-8 and
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Landsat-9. That is the main academic contribution and novelty of this study. The findings
indicate a good consistency between the Landsat-9 and Landsat-8 satellites, with the former
demonstrating superior performance.

The selection of image data is pivotal to ensuring the accuracy of cross-comparisons,
necessitating the use of synchronized image pairs. The most reliable data are the cross
under-fly data provided by the United States Geological Survey (USGS), where Landsat
9 and Landsat 8 pass overhead almost simultaneously, with temporal discrepancies as
minimal as a few seconds and no more than three minutes and nearly identical solar
azimuth and elevation angles [55]. This minimizes the potential discrepancies arising from
atmospheric and illumination conditions. The results in [39,54] have leveraged these data
to analyze the differences between the two sensors, illustrating this approach.

It is crucial to note, however, that the Landsat-8 and Landsat-9 data used in this
study were still separated by 1d. Water bodies can undergo changes within a single day,
particularly in arid regions [13], which may influence the outcomes of this study. More-
over, the selection of water bodies was somewhat limited, primarily due to the multiple
considerations of acquisition date (minimum temporal gap), image quality (cloud cover),
geographical distribution, and water body coverage in our selection of remote sensing
imagery. For the accuracy assessment, this study mainly relied on visual interpretation
results of employed Landsat-8 and Landsat-9 imagery. The high-resolution Google Earth
imagery and Chinese MapWorld database were also utilized to distinguish between water
and non-water classes, especially for indistinguishable pixels on 30 m Landsat scenes. How-
ever, these datasets might have been compiled and integrated from remote sensing images
acquired over adjacent periods (within several weeks before or after the primary acquisi-
tion dates). Although the temporal differences between the Landsat and high-resolution
reference datasets may introduce potential uncertainties, in this study, the imagery was
captured over the same scene and within a 24 h interval, minimizing any impact on the final
results. In future studies, we aim to increase the number of reference data by incorporating
additional field sites to reduce uncertainty and enable more robust comparisons.

In this study, we utilized level 2 science products (L2SP) available on the Google Earth
Engine (GEE) platform, employing the atmospheric correction algorithm from the Land
Surface Reflectance Code (LaSRC) algorithm (Version 3.5.5) [57]. Although Landsat-8 and
Landsat-9 are sibling satellites, certain improvements or modifications to the OLI-2 sensor
on Landsat-9 compared to the OLI sensor could account for some of the observed discrep-
ancies in water body extraction results caused by identical surface reflectance computations.
In addition, the different performance of various indices between Landsat-8 and Landsat-9
data can be attributed to variability of reflectance spectra caused by concentrations of
phytoplankton and sediments, depth, and/or substratum type [58]. For example, Lianhuan
Lake is a typical shallow water area (average depth < 0.5 m), and regional aquatic plants
are flourishing. Liangzi Lake is characterized by dense phytoplankton. These facts might
result in possible spectral variations (as well as water index values) affecting the water
mapping accuracy.

Threshold segmentation is a commonly employed method for water body extraction,
yet the setting of the threshold significantly influences the separation outcome [8]. An
excessively high threshold may lead to omission errors, particularly for smaller water
bodies, while a low threshold can introduce considerable noise [46]. The subjectivity in-
herent in manually setting thresholds is undeniable. Beyond logical operations, water
index thresholds predominantly utilize empirical (global) thresholds and bisection (local
adaptive) thresholds, with the key to threshold applicability lying in its ability to differen-
tiate the subtle distinctions between mixed water and non-water pixels [59]. In fact, the
optimal threshold is only available in ideal conditions since it is dependent not only on
the sensor but also on the scene. To mitigate the subjectivity of empirical thresholds, this
study employed the Otsu method for determining the segmentation threshold. Algorithms
like the Otsu method and histogram bimodality are standard for threshold segmentation
but are not without limitations, especially in complex environments. Li et al. [56] explored
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the usability of Landsat-9 images in the relationship between the extraction accuracy and
the algorithm; the results indicated that the fixed threshold may cause the significantly
distorted overall accuracy of water mapping. Studies have shown that the Otsu method’s
optimal threshold for the NDWI index is 0.18 [59], significantly lower than the actual
optimal value (0.38) obtained by the minimum thresholding method. Further research
demonstrated that the accuracy gap between the Otsu threshold and manually determined
optimal thresholds could reach up to 9–200% [60,61], suggesting the Otsu threshold may
not be suitable for all case areas or for indices with unimodal distributions. In addition, this
specific method is sensitive to the proportion of water vs. non-water pixels. In this study,
we found that the impact of the polygon size on Otsu threshold and subsequently on water
extraction accuracy is limited. This can be attributed to the distinctive class separability
between water and non-water classes. Nevertheless, it is noted that the performance of
Otsu method for threshold segmentation in this study is satisfactory. In addition, though
not implemented in our current study, we intend to do so in the future so the modified
Otsu method can identify the robust threshold of various water indices and believe we can
further reduce the uncertainty and improve the accuracy of the water mapping.

The pivotal role of the Landsat series in water body remote sensing research is un-
deniable. With the confirmation that the Landsat-9 satellite can accurately map surface
water, the future holds promise for achieving high-spatiotemporal resolution Earth obser-
vations at more detailed temporal intervals [21]. By integrating emerging technologies
such as deep learning, we can precisely depict land cover changes and their impacts on
surface water resources, crafting comprehensive solutions for assessing progress towards
SDG-6 indicators.

6. Conclusions

The Landsat program has functioned much like a relay runner, launching a series of
satellites that have conducted Earth observations for over 50 years. This enduring initiative
has continually passed the baton from one satellite to the next, ensuring a consistent and
valuable flow of data to monitor and study our planet’s environment and changes. In
this study, we analyze the performance of almost simultaneous Landsat-8 and Landsat-9
data for water body extraction based on eight common water indices (NDWI, MNDWI,
ANDWI, WI2015, TCW, AWEIsh, AWEInsh, and MBWI) to extract water bodies in seven
study sites worldwide. The Otsu algorithm is utilized to automatically determine the
optimal segmentation threshold for water body extraction. From the perspective of the
extraction performance of each index, we investigated the effect of both satellite data. The
results showed the following:

(1) Landsat-9 satellite data can be used for water body extraction effectively, with results
consistent with those from Landsat-8. The selected eight water indices in this study
are applicable on both Landsat-8 and Landsat-9 satellites.

(2) The NDWI index shows a larger variability in accuracy compared to other indices
when used on Landsat-8 and Landsat-9 imagery. Therefore, additional caution should
be exercised when using the NDWI for water body analysis with both Landsat-8 and
Landsat-9 satellites simultaneously.

(3) For Landsat-8 and Landsat-9 imagery, ratio-based water indices tend to have more
omission errors, while difference-based indices are more prone to commission errors.
All water indices can enhance water information and suppress background noise.
Among them, TCW and MBWI show less effective suppression of mountain shadows,
while AWEInsh performs well in extracting fine rivers but poorly in suppressing build-
ing information, leading to more misclassification. Overall, ratio-based indices exhibit
greater variability in overall accuracy, whereas difference-based indices demonstrate
lower sensitivity to variations in the study area, showing smaller overall accuracy
fluctuations and higher robustness.

Last but not least, the combined use of Landsat-8 and Landsat-9 is promising, par-
ticularly for water extraction. However, different water index methods exhibit unique
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characteristics under various environmental conditions, and the most suitable method
should be selected based on specific circumstances.
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