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Abstract: Challenges in enhancing the multiclass segmentation of remotely sensed data include
expensive and scarce labeled samples, complex geo-surface scenes, and resulting biases. The intricate
nature of geographical surfaces, comprising varying elements and features, introduces significant
complexity to the task of segmentation. The limited label data used to train segmentation models may
exhibit biases due to imbalances or the inadequate representation of certain surface types or features.
For applications like land use/cover monitoring, the assumption of evenly distributed simple random
sampling may be not satisfied due to spatial stratified heterogeneity, introducing biases that can
adversely impact the model’s ability to generalize effectively across diverse geographical areas. We
introduced two statistical indicators to encode the complexity of geo-features under multiclass scenes
and designed a corresponding optimal sampling scheme to select representative samples to reduce
sampling bias during machine learning model training, especially that of deep learning models. The
results of the complexity scores showed that the entropy-based and gray-based indicators effectively
detected the complexity from geo-surface scenes: the entropy-based indicator was sensitive to the
boundaries of different classes and the contours of geographical objects, while the Moran’s I indicator
had a better performance in identifying the spatial structure information of geographical objects
in remote sensing images. According to the complexity scores, the optimal sampling methods
appropriately adapted the distribution of the training samples to the geo-context and enhanced their
representativeness relative to the population. The single-score optimal sampling method achieved the
highest improvement in DeepLab-V3 (increasing pixel accuracy by 0.3% and MIoU by 5.5%), and the
multi-score optimal sampling method achieved the highest improvement in SegFormer (increasing
ACC by 0.2% and MIoU by 2.4%). These findings carry significant implications for quantifying the
complexity of geo-surface scenes and hence can enhance the semantic segmentation of high-resolution
remote sensing images with less sampling bias.

Keywords: sampling bias; optimal sampling; semantic segmentation; deep learning

1. Introduction

Deep learning methods have achieved great success in semantic segmentation in
traditional computer vision applications [1–3] and a superior performance in other do-
mains [4–6]. Researchers are increasingly applying deep learning technology to remote
sensing problems. The semantic segmentation of remote sensing data has been an important
topic for decades and applied in many fields [7], such as environmental monitoring [8,9],
crop cover and analysis [10–12], the detection of land cover and land use changes [13],
the inventory and management of natural resources [14,15], etc. The complexity of the

Remote Sens. 2024, 16, 1987. https://doi.org/10.3390/rs16111987 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16111987
https://doi.org/10.3390/rs16111987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1551-0786
https://orcid.org/0000-0002-9382-8637
https://doi.org/10.3390/rs16111987
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16111987?type=check_update&version=2


Remote Sens. 2024, 16, 1987 2 of 23

geographical scene has considerably affected the accuracy of geographic feature classifica-
tion [16–19], and the representativeness and quality of training samples have an important
role in the performance of deep learning models for the semantic segmentation of remote
sensing images [20–22].

Complexity, in contrast to simplicity, denotes a state of uncertainty, unpredictabil-
ity, intricacy, or difficulty in terms of a description, explanation, or solution [23]. In the
geographical sciences, the geocomplexity of the Earth’s system comes from multiple inter-
actions and feedback loops of the different spheres, including the geosphere, hydrosphere,
lithosphere, atmosphere, cryosphere, and biosphere [24]. Various landforms, abundant
types of surface objects, changeable meteorological conditions, human activities, and other
factors [25,26] are important influential factors for the Earth’s surface complexity that
present challenges for the semantic segmentation of remote sensing images. There are
three distinct characteristics of surface complexity, including scale dependence, non-linear
driving, and a high level of uncertainty regarding evolutionary trends. For scale depen-
dence, the spatial-temporal patterns of surface elements are diverse between low and high
spatiotemporal scales, and the laws of different scales vary [27]. For non-linear driving,
the surface elements are interrelated and constrained with complex nonlinearity interac-
tions [28]. For a high level of uncertainty regarding the evolutionary trend, the overall
evolutionary trend of the system could be changed by small changes in the surface sys-
tem [29]. Practices have been conducted to investigate surface complexity in previous
studies. Stand density and surface fraction, called geomorphic indicators, were used to
quantify the spatial distribution to realize the mining of geospatial patterns of various land
covers [30,31]. Shannon entropy was applied in urban research by quantifying informa-
tion complexity [32]. The fractal dimension was employed in the ecological domain to
understand spatial information [33]. Based on spatial neighbor dependence, a spatial local
geocomplexity indicator was proposed to explain spatial errors between different spatial
models [34]. It is a challenge to provide a geocomplexity indicator that can effectively
improve the semantic segmentation of remote sensing. In addition, the impact of sampling
bias, caused by simple random sampling, on model learning and the performance of the
model is also a challenge.

Sampling bias can have undesired effects on the performance of deep learning remote
sensing applications [35–39]. Deep learning has been utilized to realize the recognition and
classification of remote sensing images in recent years [40–43] because of its efficient learn-
ing and powerful prediction abilities. While altering the network structure and increasing
the number of layers were proven to be effective strategies for enhancing information
extraction in remote sensing images, the selection of training samples played a crucial
role in this improvement [44]. A common assumption in machine learning methods is
that the training sample consists of identically distributed examples which are simply and
randomly drawn from a population [45,46]. However, in remote sensing applications such
as land use/cover analyses, this simplistic assumption may not hold true due to the pres-
ence of diverse and varied geographical features with imbalanced spatial and/or temporal
distributions [44,47–49]. In geosciences, geo-surfaces, including land use/cover, are often
characterized by spatially stratified heterogeneity (SSH), making it challenging to obtain
representative training samples solely through the random sampling of a population [50,51].
If the study regions are spatially stratified and heterogenous and the sample size is not
large enough with few or no samples in some strata, the problem of prediction bias will
be exasperated [51]. This issue is commonly referred to as “sampling bias” or “sample
selection bias” in the context of remote sensing applications. Quality training samples
should effectively represent the population while minimizing sampling bias [50]. The
common sampling methods [52], such as simple random sampling, systematic sampling,
and strata sampling, have been applied by collecting labeled samples in remote sensing
and selecting training samples of deep learning methods with a potentially unbalanced
spatial distribution of samples and an unbalanced proportion of classes in samples [44].
Inadequate and non-representative training samples may be the primary causes of seman-
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tic segmentation errors in remote sensing images [44,53,54]. Especially in the multiclass
semantic segmentation of remote sensing images, category diversity, boundary ambiguity,
and complex spatial distribution require higher-quality training samples than those re-
quired for binary class segmentation [55,56]. To achieve good performance in the multiclass
semantic segmentation of remote sensing images, it is important to acquire training samples
representing the overall characteristics of the study area.

Within a geospatial context, our paper aims to explore the effectiveness of utilizing
complexity-related indicators for optimal sampling, with the goal of reducing sampling
bias in remote sensing. For this purpose, we derived two indicators based on information
entropy and Moran’s I to quantify the multiclass complexity in remote sensing images.
Based on the complexity scores, two optimal sampling strategies were proposed to reduce
bias in the training samples representative of the population. To evaluate the effectiveness
and extensibility of the optimal sampling method, several representative deep learning
models, such as UNet, SegNet, Global CNN, DeepLab V3, FCN-ResNet, UperNet, and
SegFormer, were selected for model comparison. The deep learning models selected above,
with different architectures, are mainstream models commonly employed in remote sensing
semantic segmentation applications. Additionally, we also did a sensitivity test using our
optimal sampling methods for other classical machine learning methods such as Random
Forest and XGBoost. By testing our proposed optimal sampling method against these
representative models, we can effectively demonstrate the generalizability and extensibility
of our approach. In summary, this paper made the following three contributions:

(1) The entropy-based and gray-based multiclass indicators could effectively recognize
the multiclass complexity features of remote sensing images and quantify geocom-
plexity information, providing a quantitative basis for selecting training samples.

(2) An optimal sampling strategy was proposed to obtain training samples that were
preferably representative of the population. Compared to the simple random sam-
pling method, the optimal sampling method could improve the performance of the
multiclass semantic segmentation and adeptly select samples with rich feature infor-
mation while simultaneously reducing the sampling bias.

(3) The optimal sampling method was effective and applicable to representative machine
learning algorithms, particularly for those involving deep learning.

2. Methods

We proposed two geocomplexity indicators to quantify the complexity of multiclass re-
mote sensing images, and based on the result of the complexity quantification, we designed
the multiclass optimal sampling method. To verify the effectiveness and extensibility of
the multiclass optimal sampling method, we carried out several control experiments for
semantic segmentation of remote sensing images. The flow chart of the research is shown in
Figure 1. There were three parts: multiclass complexity quantification, multiclass optimal
sampling, and model evaluation. In the multiclass complexity quantification, the entropy-
based indicator and Moran’s I indicator were used to quantify the complexity of the ground
truth and grayscale images, respectively, and the complexity scores were obtained to be the
stratification factor and sampling weight in the optimal sampling stage. In the multiclass
optimal sampling, the feature of the samples was described by the complexity score, and
two optimal sampling methods were designed to select optimal training samples. In the
model evaluation of multiclass semantic segmentation, the training samples were selected
by two optimal sampling strategies (single-score vs. multi-score) and compared with the
simple random training samples. The results of complexity quantification and semantic
segmentation were analyzed to explain the usefulness of geocomplexity indicators for
enhancement of multiclass segmentation.
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2.1. Definition of Geocomplexity Statistical Indicators and Complexity Quantification

The choice of statistical indicators to measure geocomplexity was based on geoscience
context of our study. For fine-scale remote sensing semantic segmentation, we defined
complexity of geo-scenes as a statistical indicator of the context surrounding a target
pixel or spatial location of interest. Our study focuses on understanding geocomplexity
from the perspective of spatial variogram/dependence [34] and spatial heterogeneity [51].
Spatial variation or uncertainty can be intuitively measured by information entropy based
on information theory, and its higher value indicates higher levels of uncertainty and
randomness (and thus, a higher complexity), showing multiple classes located or clustered
in a location of interest. Moran’s I can be used to measure spatial dependence or distribution
of spatial locations, and its value at a location reflects the spatial distribution pattern of
its context or surrounding neighbors. Similar complexity measures based on information
entropy and spatial statistics have also been proposed and led to important improvements
in other remote sensing applications [32,34,57,58].

(a) Entropy-based indicator and complexity quantification

Information entropy, proposed by Shannon in 1948 [59], is described as the probability
of the occurrence of discrete random events and used to quantify the complexity of infor-
mation. Based on the definition of information entropy, we designed an entropy-based
indicator to quantify the multiclass non-linear complexity from remote sensing images and
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used a convolution operator to achieve the extraction of the multiclass complexity features.
The formula of the entropy-based indicator is defined as follows:

C = E
[
− ln
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x(dk)
))]
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∑
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)
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where x denoted the ground truth of the multiclass, dk was the kernel size of the convolution
operator, i was the class index within context, xi was the class i for classification, c was the
number of all classes, and p

(
x(dk)

i

)
was the probability for xi within the kernel size dk. C

was the entropy-based complexity score, and its value range was [0, 1]. This meant that as
the complexity decreased, the entropy-based complexity score neared 0, and vice versa.

To correctly evaluate the complexity on the edge of the image, we expanded the input
patch of complexity convolution with half the kernel size to avoid the edge effects of
convolution computations [60] (Figure 2). The score of the target point or pixel reflected
the entropy-based complexity of the surrounding context within the kernel of convolution.
Thus, the kernel size was an important factor in complexity quantification [61].
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Figure 2. Flow chart for entropy-based complexity quantification. (The number in convolution
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of target pixel.)

(b) Gray-based indicator and complexity quantification

Moran’s I, developed by Patrick Alfred Pierce Moran [62], is a statistical measure of
spatial autocorrelation and reflects the spatial pattern and spatial structure of data. Based
on the features of Moran’s I, we designed Moran’s I indicator to identify the complexity of
spatial patterns from remote sensing images and used the convolution operator to calculate
multiclass complexity score. The formula of the gray-based indicator was as follows:

L =
N
W

∑i∈B ∑j∈B wij(xi − x)
(
xj − x

)
∑i∈B(xi − x)2 (2)

where N denotes the number of pixels within the sliding window. i was the pixel i, and wij
was the spatial weight of pixel i and pixel j (wij was 1 if pixel i and pixel j were adjacent;
otherwise, it was 0). xi was the gray value for pixel i, while x meant the average gray
value of pixels within the sliding window. B was the collection of pixels, and W was the
sum of spatial weight w. L was the gray-based complexity score, and its value range was
[0, 1]. This meant that as the spatial complexity decreased, the gray-based complexity score
neared 0, and vice versa.

To effectively calculate the spatial complexity on the edge of the image, we also
expanded the input patch of complexity convolution with half the kernel size to avoid the
edge effects of convolution computations (Figure 3). The gray-based complexity score of
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the target pixel reflected the spatial complexity corresponding to the sliding window region.
The kernel size of convolution was used to decide the size of the region, and we used the
same kernel size to quantify the gray-based complexity in this paper corresponding to
entropy-based complexity.
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2.2. Multiclass Optimal Sampling Method

It is evident that nature is lawful and structured rather than purely random, and there
is spatial stratified heterogeneity (SSH) in geographical data [51]. And the presence of
SSH is a source of bias in the simple random selection of training samples. Our proposed
geocomplexity indicators could detect spatial correlation and spatial structure information
from geo-surface, thereby indirectly reflecting SSH within context. Based on quantitative
results, we designed a multiclass optimal sampling method to increase the representa-
tiveness of the selected samples, thus decreasing sampling bias during remote sensing
information extraction.

There are two strategies for optimal sampling, single-score optimal sampling and
multi-score optimal sampling, which differ in stratification factors and sampling weights
(Figure 4). Single-score optimal sampling uses entropy-based complexity score as the
stratifying and weighing factors. On the other hand, for the multi-score optimal sampling
strategy, entropy-based complexity score is the stratifying factor, and the gray-based com-
plexity score is used as the sampling weight. For optimal sampling, complexity scores
of the stratification factor were firstly summarized, and the samples were divided into a
certain number of stratums, which was determined according to the distribution of the
average of these scores. Then, the same proportion was used in the sampling within each
stratum, and the samples drawn from every stratum were combined into training sam-
ples. Complexity scores of the sampling weight were probability of sampling within each
stratum so that the patches with higher complexity scores were more likely to be selected,
because regions with high levels of complexity were more difficult to learn than those with
low levels of complexity, and we put higher sampling weight on their samples. Therefore,
the distribution of complexity in training samples was closer to the population distribution,
while sampling bias was decreased.
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2.3. Model Evaluation

To verify the effectiveness and extensibility of the optimal sampling method, we used
seven representative deep learning models and two machine learning algorithms to verify
the improvement of multiclass segmentation in remote sensing images by optimal sampling
strategy. These deep learning methods included U-Net, SegNet, Global CNN, DeepLab
V3, FCN-ResNet, UperNet, and SegFormer. UNet is known for its use of skip connections,
containing a context path to learn context information and a spatial path to preserve spatial
information [63]. SegNet, like UNet, is a classic encoder–decoder architecture network us-
ing the combined index and nonlinear upsampling to minimize the number of parameters
during model learning and improve the recognition effect of the segmentation task [3].
Compared to small filters (1 × 1 or 3 × 3) used in network architecture, Global CNN
adopt symmetric, separable large filters and boundary refinement block to reduce the
parameters and model the boundary alignment as a residual structure [64]. DeepLab V3
was another typical convolutional neural network architecture incorporating atrous spatial
pyramid pooling (ASPP) modules enable the network to capture multi-scale context in
images efficiently [1]. FCN-ResNet integrated the fully convolutional network [2] with
residual connections from ResNet [65]. By utilizing skip connections, it effectively merged
low-level and high-level features to improve segmentation performance. UperNet lever-
aged a combination of the pyramid pooling module (PPM) [66] and the feature pyramid
network [67] to unify parsing of visual attributes across multiple levels. This approach
exploited multi-level feature representations in an inherent and pyramidal hierarchy, en-
abling the incorporation of global prior representations [68]. SegFormer is an efficient and
powerful semantic segmentation framework that unifies Transformers [69] with lightweight
multilayer perceptron decoders, avoiding the interpolation of positional codes and complex
decoders [70]. As for the other two machine learning methods selected, random forest [71]
is a combination of tree predictors, which are independent with same distribution. It is
robust with respect to noise. XGBoost [72] is a scalable and end-to-end tree boosting system,
with a sparsity-aware algorithm for sparse data and weighted quantile sketch. Three-group
experiment for each model was designed to compare results with those of simple random
sampling, single-score optimal sampling, and multi-score optimal sampling. Pixel accuracy
(ACC) and mean intersection over union (MIoU) were used to measure the performance of
the learned models in semantic segmentation. For semantic segmentation of remote sensing
images, MIoU can better measure the classification performance than pixel accuracy [73].
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2.4. Evaluation and Prediction

(a) Pixel Accuracy

The pixel accuracy was defined as the ratio of the number of correctly classified pixels
to the number of total pixels, and its formula was as follows:

ACC =
∑K

i=1 xi

N
(3)

where K denoted the number of classes, xi was the number of pixels correctly classified as
class i, and N was the total number of pixels.

(b) Mean Intersection over Union

The mean intersection over union was defined as the size of the intersection for the
correctly classified region and ground truth masks divided by the size of the union for
the prediction region and ground truth masks, which was used to measure the degree of
overlap between the intersection region and the union region. Its formula was as follows:

MIoU =
1
K
|ŷ ∩ y|
|ŷ ∪ y| =

1
K

K

∑
k=1

xkk

∑K
i=1 xik + ∑K

j=1 xkj − xkk
(4)

where K was the number of classes, ŷ was the number of pixels of prediction, and y was
the ground truth. xkk was the number of predicted pixels correctly classified as target class
k, xik was the number of pixels classified as class k whose ground truth was class i, and xkj
was the number of pixels classified as class j whose ground truth was class k.

3. Experiment and Result
3.1. Experiment
3.1.1. Dataset

The Five-Billion-Pixels dataset [74], derived from GF-2 satellite images, was used to
evaluate our proposed method. It consisted of 150 images with a size of 6800 × 7200 pixels
and a ground resolution of 4 m, including a spectral range of blue (0.45–0.52 µm), green
(0.52–0.59 µm), red (0.63–0.69 µm), and near-infrared (0.77–0.89 µm). There were 24 cate-
gories in this dataset, and the images were collected in various regions of China, containing
rich and diverse information on complex multiclass geographic scenarios. Experiments
based on this dataset can effectively verify the applicability of geocomplexity statistical in-
dicators in multiclass classification. We only used the RGB band of the images in this paper
to fairly compare it with other works. The Five-Billion-Pixels dataset is available online
(https://x-ytong.github.io/project/Five-Billion-Pixels.html (accessed on 24 October 2023).

3.1.2. Experimental Detail

We performed the calculation of the complexity-based statistical indicators and com-
pared seven representative deep learning models and two other representative machine
learning algorithms to investigate the enhancement of optimal sampling strategies for mul-
ticlass semantic segmentation with PyTorch. The experiments were conducted on a Linux
server with a single Nvidia GeForce RTX 3090 GPU. The RGB image and the ground truth
were cut into image patches with the size of 296 × 296 pixels without overlapping, and the
size of the image patches included the target output size (256 × 256 pixels) along with a
border size of 20 pixels to eliminate boundary effects in the complexity calculations. The
gray image patches were generated from the RGB image patches. Three sampling methods
were used to obtain the training dataset for multiclass segmentation, which was composed
of 5000 image patches with a size of 256 × 256 pixels. The testing dataset, obtained by
simple random sampling, included 2000 image patches with a size of 256 × 256 pixels.
After performing a sensitivity test, we found that a kernel size of 41 was the optimal choice
for the convolution operator when computing the complexity in a geo-surface scene from

https://x-ytong.github.io/project/Five-Billion-Pixels.html
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the GID dataset, as employed in our experiment. The model was trained for 80 epochs with
the Adam optimizer, and the learning rate, initially set to 0.001, was adjusted during the
process of training.

3.1.3. Loss Function

The dice coefficient loss [75], designed to solve the class imbalance problem, was
effective in learning better boundary representations. The dice coefficient loss Ldice can be
written as follows:

Ldice = 1 − 2 ∑N
i pigi

∑N
i p2

i + ∑N
i g2

i
(5)

where the sums run over the N voxels, the predicted segmentation volume is pi ∈ P, and
the ground truth volume is gi ∈ G.

The cross-entropy loss [76] can measure the differences of information between two
probability distributions by cross-entropy and minimize it to judge a model. There are
many variations of this loss function that apply to different situations [77]. The binary
cross-entropy loss (BCE loss) was chosen to train the model in our research, which was
used as a stable loss function for segmentation. We made a slight change to the BCE loss to
make it suitable for multiclass segmentation, and LBCE can be written as follows:

LBCE = ∑
K
− 1

N ∑
i
[gi log(pi) + (1 − gi) log(1 − pi)] (6)

where K was the number of classes, N was the number of total pixels, gi was the probability
of the ground truth mask in pixel i belonging to class k whose value was 0 or 1, and pi was
the probability of the prediction in pixel i belonging to class k.

The BCE loss gauged the pixel-wise similarity between the predicted and target masks,
whereas the dice coefficient loss emphasized the spatial overlap and boundary localization.
The combination of the dice coefficient loss and BCE loss, which was selected to judge the
model in our experiments, could be beneficial in achieving a balanced optimization that cap-
tured both the pixel-wise classification and spatial accuracy of the semantic segmentation.
Its formula was as follows:

Ltotal =
1
2

Ldice +
1
2

LBCE (7)

3.2. Result
3.2.1. Quantification of Geocomplexity

The geocomplexity was effectively detected by the entropy-based indicator and gray-
based indicator. The geocomplexity quantification results of six different scenes (an irrigated
field, urban residential area, road, rural residential area, arbor forest, and fish pond) show
the different characteristics of the two indicators in the complexity extraction (Figure 5). The
entropy-based indicator was sensitive to the boundaries of different classes and the contours
of geographical objects. The target pixel exhibited a higher entropy-based complexity score,
indicating the intricate presence of a greater number of different categories (classes) in
its mixed vicinity. The entropy-based complexity score decreased when the environment
around the target pixel was homogeneous. The gray-based (Moran’s I) indicator had a
better performance in extracting the spatial structure information of geographical objects
in the remote sensing images. A lower gray-based (Moran’s I) score indicated a bigger
difference in gray values, as well as a higher level of randomness of spatial distributions in
the pixels. The gray-based (Moran’s I) score increased when the environment around the
target pixel tended to be homogeneous, indicating a strong spatial autocorrelation based
on the statistical implication of Moran’s I [78].
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3.2.2. Complexity Score Distribution of Training Samples

The optimal sampling method was capable of selecting training samples with more
abundant feature information compared to the simple random sampling method. As il-
lustrated in Figure 6, the complexity score distributions of the training samples obtained
through optimal sampling better aligned with the population distribution than the distri-
bution resulting from simple random sampling. The average complexity score distribution
was analyzed to discover the differences between training samples obtained by simple ran-
dom sampling, single-score optimal sampling, and multi-score optimal sampling (Figure 6).
The kernel density curve was drawn to observe the complexity distribution of different
samples. There were two peaks in the curve of the kernel density for the entropy (entropy-
based) complexity score, which indicated that the entropy complexity of the training sample
was concentrated within the region close to 0 and the region of [0.20, 0.50]. Compared to the
training samples of the simple random sampling, the training samples of the single-score
optimal sampling had more patches with an entropy complexity score within the range
of [0.20, 0.50], and the training samples of the multi-score optimal sampling had more
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patches with an entropy complexity score within the range of [0.30, 0.40]. This suggested
that the two optimal training samples contained rich feature information with moderate
levels of entropy complexity compared to the simple random training samples. Regarding
the distribution of the Moran’s I (gray-based) complexity, the score distributions of the
samples obtained through optimal sampling closely resembled the natural distribution
of the simply randomly selected samples. The Moran’s I complexity was concentrated
in the high-value region of [0.85, 1.00]. In comparison to the training samples obtained
through simple random sampling, those acquired through optimal sampling exhibited a
greater number of patches with gray-based (Moran’s I) complexity scores falling within the
range of [0.85, 1.00]. Specifically, the training samples from multi-score optimal sampling
contained more patches with Moran’s I complexity scores within the range of [0.85, 0.95]
compared to the other training samples. This suggested that the training samples contained
more feature information than the others because a high level Moran’s I complexity reflects
a high spatial correlation, indicating a simpler (less random) distribution of geo-objects
with fewer land classes.

Remote Sens. 2024, 16, 1987 11 of 24 
 

 

distribution resulting from simple random sampling. The average complexity score dis-
tribution was analyzed to discover the differences between training samples obtained by 
simple random sampling, single-score optimal sampling, and multi-score optimal sam-
pling (Figure 6). The kernel density curve was drawn to observe the complexity distribu-
tion of different samples. There were two peaks in the curve of the kernel density for the 
entropy (entropy-based) complexity score, which indicated that the entropy complexity 
of the training sample was concentrated within the region close to 0 and the region of ሾ0.20,0.50ሿ. Compared to the training samples of the simple random sampling, the train-
ing samples of the single-score optimal sampling had more patches with an entropy com-
plexity score within the range of ሾ0.20,0.50ሿ, and the training samples of the multi-score 
optimal sampling had more patches with an entropy complexity score within the range of ሾ0.30,0.40ሿ. This suggested that the two optimal training samples contained rich feature 
information with moderate levels of entropy complexity compared to the simple random 
training samples. Regarding the distribution of the Moran’s I (gray-based) complexity, the 
score distributions of the samples obtained through optimal sampling closely resembled 
the natural distribution of the simply randomly selected samples. The Moran’s I complex-
ity was concentrated in the high-value region of ሾ0.85,1.00ሿ. In comparison to the training 
samples obtained through simple random sampling, those acquired through optimal sam-
pling exhibited a greater number of patches with gray-based (Moran’s I) complexity 
scores falling within the range of ሾ0.85,1.00ሿ . Specifically, the training samples from 
multi-score optimal sampling contained more patches with Moran’s I complexity scores 
within the range of ሾ0.85,0.95ሿ compared to the other training samples. This suggested 
that the training samples contained more feature information than the others because a 
high level Moran’s I complexity reflects a high spatial correlation, indicating a simpler 
(less random) distribution of geo-objects with fewer land classes. 

 
Figure 6. Distributions of the average complexity scores in the training samples selected using opti-
mal sampling methods vs. simple random sampling. 
Figure 6. Distributions of the average complexity scores in the training samples selected using
optimal sampling methods vs. simple random sampling.

As shown in the results, when the statistical distribution (class proportions) of the
samples remains relatively stable, their spatial distribution may present considerable
spatial heterogeneity, potentially posing a challenge for the selection of training samples
to represent the population feature. The proportion of categories was counted to find the
difference in the training samples selected by the three sampling methods (Figure 7). Six
classes accounted for more than 5%, of which irrigated fields accounted for more than 35%.
Parks, snowy areas, stadiums, squares, railway stations, and airports did not appear in
the training samples, with a ratio of 0%. Except for irrigated fields and lakes, the ratio
of the classes was roughly the same in the training samples generated in the three ways.
For the result (Figure 7), the multi-score optimal sampling seemed to slightly decrease the
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proportion of irrigated field and lake areas, compared with the other sampling methods;
utilizing single-score optimal sampling led to a slight decrease in the proportion of irrigated
field areas and a slight increase in the proportion of lake areas.
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3.2.3. Land Cover Segmentations

As shown in the results, the optimal sampling method was able to enhance the multi-
class segmentation of remote sensing images, evidenced by the performance across seven
representative deep learning models (Table 1) and two machine learning algorithms. The
result showed these models had a great performance in multiclass segmentation measured
by the ACC, which was more than 96% when using the deep learning models. Compared
to simple random sampling, the result showed that single-score optimal sampling im-
proved the performance of FCN-ResNet (increasing the ACC by 0.2% and MIoU by 1.9%),
DeepLab-V3 (increasing the ACC by 0.3% and MIoU by 5.5%), SegNet (increasing the ACC
by 0.2% and MIoU by 3.4%), SegFormer (increasing the ACC by 0.1% and MIoU by 2.3%),
UNet (increasing the ACC by 0.2% and MIoU by 3.0%), Global CNN (increasing the ACC
by 0.1% and MIoU by 1.8%), and UperNet (increasing the ACC by 0.1% and MIoU by 1.0%).
Multi-score optimal sampling improved the performance of DeepLab-V3 (increasing the
MIoU by 0.5%), UNet (increasing the ACC by 0.2% and MIoU by 2.2%), SegFormer (in-
creasing the ACC by 0.2% and MIoU by 2.4%), Global CNN (increasing the MIoU by 1.1%),
and UperNet (increasing the MIoU by 0.6%). For the sensitivity experiment using random
forest and XGBoost, the result showed that single-score optimal sampling improved the
performance of the random forest model (increasing the ACC by 0.2% and MIoU by 0.2%)
and XGBoost (increasing the ACC by 0.3% and MIoU by 0.2%), and multi-score optimal
sampling improved the performance of the random forest model (increasing the ACC by
0.6% and MIoU by 0.4%) and XGBoost (increasing the ACC by 0.9% and MIoU by 0.4%). As
the training samples change, the improvement in MIoU can be used as an indirect indicator
of the reduction in sampling bias during model training.
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Table 1. The testing results on the Five-Billion-Pixels dataset.

Model
Simple Random

Sampling
Single-Score

Optimal Sampling
Multi-Score

Optimal Sampling

ACC MIoU ACC MIoU Improved a ACC MIoU Improved a

FCN-ResNet 0.968 0.428 0.970 0.447 1.9% 0.968 0.427 -
DeepLab-V3

(Encoder:Resnet101) 0.972 0.419 0.975 0.474 5.5% 0.972 0.424 0.5%

SegNet 0.971 0.458 0.973 0.492 3.4% 0.971 0.453 -
Segformer (backbone:B0) 0.974 0.506 0.976 0.529 2.3% 0.976 0.530 2.4%

UNet 0.975 0.520 0.977 0.550 3.0% 0.977 0.542 2.2%
Global CNN 0.981 0.600 0.982 0.618 1.8% 0.981 0.611 1.1%

UperNet (backbone:Resnet101) 0.982 0.618 0.982 0.628 1.0% 0.982 0.624 0.6%
a: The percentage of the improvement in MioU for semantic segmentation utilizing optimal sampling methods.
(The bold numbers indicate the best performance or improvement in each column of the table.)

The predictions, made by UNet, were displayed to demonstrate the improved detail
of the semantic segmentation by the optimal sampling strategy (Figure 8). Various typical
scenes, including agricultural, urban, rural, urban–rural transition, river, and coastal
areas, were employed to evaluate the effectiveness of the optimal sampling and model.
These figures illustrated that the models trained using optimal sampling exhibited a more
representative selection of training samples, contributing to improvements in semantic
segmentation, even when utilizing the same number of training samples, which was 5000
in our experiment. In urban, rural, and urban–rural areas, roads and urban residential
areas were classified more precisely, and the boundaries between the classes were also
clearer with the optimal sampling, within which single-score optimal sampling had a better
effect than that of multi-score optimal sampling. In agricultural areas and river areas,
the spatial details of the optimal sampling predictions were more abundant. The optimal
sampling method enabled the model to learn more representative features to better cope
with classification in coastal areas with a high level of diversity and a dense distribution
of features.

The predictions generated by Global CNN (Figure 9) and UperNet (Figure 10) are
showcased to illustrate the enhanced level of detail in semantic segmentation achieved
through the optimal sampling strategy. Both Global CNN and UperNet demonstrated
superior segmentation accuracies compared to that of UNet, particularly in the precise
classification of ground objects and the recognition of boundaries. Specifically, single-score
optimal sampling with Global CNN exhibited a superior effectiveness compared to the
other methods in urban and rural scenarios. It demonstrated more accurate classifications
of roads and buildings, along with clearer boundaries. Additionally, in urban–rural regions,
the result of multi-score optimal sampling classified urban residential areas and irrigated
fields more accurately compared to other methods. For UperNet, the segmentation results
obtained by optimal sampling displayed continuous and complete roads and clear building
boundaries. Compared to the simple random sampling method, the classification results of
the optimal sampling methods showed fewer misclassification instances.

For SegFormer (Figure 11), the optimal sampling method significantly enhanced the
segmentation performance of the model. The predictions obtained through optimized
sampling were notably more accurate in identifying paddy fields and irrigated fields in
agricultural areas and rural areas compared to simple random sampling. In urban areas and
urban–rural areas, the segmentation of roads was continuous, and the boundaries between
urban residential areas and irrigated fields were clearly identified. Additionally, in river
areas, the predictions of riverways obtained by multi-score optimal sampling outperformed
those of the other methods.
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4. Discussion

This study proposed two geocomplexity multiclass indicators, derived from the defini-
tion of information entropy and Moran’s I, to detect the surface complexity at the pixel level
from the ground truth and gray images. A visualization of the complexity scores showed
that the entropy-based indicator was sensitive to the boundaries of different classes and the
contours of geographical objects, and the gray-based indicator better extracted the spatial
structure information of geographical objects in remote sensing images. The ground truth
contained the spatial locations and specific category information of geographic objects. The
gray images demonstrate the situations of the ground objects through gray values. The
entropy-based measure of complexity was based on Shannon’s definition of information
entropy. Moran’s I was used to evaluate the spatial autocorrelation of similar and dissimilar
values of a variable (gray) observed across space [79]. Within a complex geo-scene, a
high entropy score indicates the presence of various types (classes) of geo-objects. The
label value of a class remained the same, but its gray image values may vary. Conse-
quently, recognizing the fine-scale spatial structure information of geographical objects
using the entropy-based indicator was challenging due to the homogenized expression of
the same ground object. In contrast, the gray-based (Moran’s I) indicator proved effective
in extracting fine-scale spatial autocorrelation information.
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Through our results for the typical semantic segmentation networks with different
structures, we verified the generalizability and effectiveness of the multiclass complexity-
based optimal sampling method. Previous studies [44,53,54,80,81] have shown that the
stratified sampling method can obtain training samples from different strata (regions),
potentially improving the level of classification accuracy. However, the performance
improvement in these studies depended on correctly stratifying (partitioning) the data, as
there is no quantified standard indicator to measure the contribution of stratification to
performance, and many have overlooked the significant contribution of each individual
sample to the model’s generalization capability for prediction. In our research, two optimal
sampling methods were designed to select training samples with a high level of population
representativeness. The distribution (Figure 6) showed the aggregation of the feature
information (complexity) within the training sample from the perspective of the information
content (entropy) and spatial correlation (Moran’s I), respectively. Compared with the
training samples acquired by simple random sampling, the proportion of classes and
the complexity distribution of the training sample, obtained by optimal sampling, were
adjusted so that the training sample reflected information about the population more
comprehensively. The entropy-based complexity score was selected as the stratifying
factor because its average complexity score distribution greatly reflected the spatially
heterogeneity of the samples. Land cover classes and the combination of different features
were used as the stratified indicator to acquire high-quality training samples, exploring the
impact of the training sample distribution on the accuracy of land cover classification [44].
Compared with our previous work [61], the multiclass scene typically exhibited a more
complex geo-object distribution and structure compared to the binary class scene. A
combination of geocomplexity indicators was used in our optimal sampling method. The
applicability and effectiveness of the multiclass complexity-based optimization sampling
method have been demonstrated. Stratified equal random sampling [82] could provide
class-level-accurate land use and land cover mapping from remote sensing images, even for
minority classes. Compared to the stratified equal random sampling, our optimal sampling
method employed stratified weight sampling to ensure a higher probability of selecting
samples with a higher complexity or salient features. In scenes with a higher level of
complexity, the distribution of geo-objects is more intricate, requiring additional feature
information to aid in model learning. Our method could adeptly select samples with rich
feature information while simultaneously enhancing the representativeness of training
samples. Our research offered a potential solution to address the issue of sample bias in the
multiclass semantic segmentation of remote sensing images.

By our extensive experiments involving representative deep learning and machine
learning methods, it was observed that the optimal sampling method consistently enhances
multiclass semantic segmentation across the models of different structures, with reduced
sampling bias. The single-score optimal sampling method exhibited a slight advantage over
the multi-score optimal sampling approach in improving the segmentation accuracy of the
model. But the performance of multi-score optimal sampling for SegFormer surpassed that
of the former. In our experiments, UperNet demonstrated a superior semantic segmentation
performance on the GID dataset compared to that of the other models. Furthermore, our
research utilized SegFormer-b0 to assess the suitability of the optimal sampling method
within the Transformer architecture. An enhanced performance can be achieved with larger
SegFormers, such as b1, b2, b3, b4, or even -b5. It is depicted in Figure 6 that the distinction
between training samples obtained by three methods was the changed number of patches
between different intervals of complexity scores, indicating that the feature information
offered by the training samples was different. Consistently, our experimental findings
demonstrated that the optimal sampling methods significantly enhanced the prediction
performance of models in the multiclass semantic segmentation of land cover, particularly
for the models that initially had a low segmentation accuracy (MIoU), such as UNet,
DeepLab-V3, and SegFormer-b0. It could be observed that the models with a relatively
poor initial performance did not sufficiently extract the relevant feature information when
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trained on simply randomly sampled data (Figure 12), since the assumption of simple
random sampling is violated in the complex geo-surface scenes. This inadequate feature
learning from the simple random training samples resulted in the poor recognition and
segmentation of the target regions of interest in urban areas.
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However, upon employing the optimal sampling methods proposed in our research,
the selected training samples could contain more representative and informative feature
information, satisfying the requirement for the spatiotemporal heterogeneous distribution
of the geo-surface, compared to those acquired by simple random sampling. This is because
the optimal sampling strategies aim to identify and include samples that better capture the
diversity and complexity of the geo-features present in the data. Therefore, by training on
these optimally sampled datasets, the models could more effectively mine and leverage the
discriminative feature information present in the geo-features. Consequently, their ability
to accurately recognize and segment the target regions within urban areas was significantly
improved, as evidenced by the substantial performance gains observed in Figure 12. Even
without an increased number of training samples, it is illustrated in Figure 12 that the
structure and boundaries of roads were accurately identified by UNet when utilizing
optimal sampling. Conversely, roads were not recognized by UNet when utilizing simple
random sampling.

Simultaneously, our proposed optimal sampling approach also yielded significant
improvements for models that initially had relatively a high segmentation accuracy (MIoU),
such as UperNet and Global CNN. By adjusting and enhancing the feature information
present in the training samples through optimal sampling, misclassification errors were
further alleviated. Consequently, the structural boundaries and delineation of different
land cover classes were more clearly and accurately identified by UperNet when trained
on the optimally sampled data, compared to its performance using randomly sampled
training data (as evident in Figure 12).

These experimental results demonstrate that our optimal sampling method is capable
of obtaining suitable and representative training samples, which can effectively improve the
performance of semantic segmentation models for land use and land cover across a range
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of architectures and initial accuracy levels. By providing the models with training data
that better capture the diverse feature information and spatial heterogeneous distributions
present in the geo-features, our approach enables more effective learning and the accurate
segmentation of land cover classes in these complex, varying, and high-resolution remotely
sensed datasets.

As shown in the results, optimal sampling significantly improved the performance of
various deep learning methods, while only providing marginal benefits to other machine
learning methods, such as random forest and XGBoost. Deep learning models, such as those
employing convolutional or attention mechanisms, can effectively leverage optimal samples
by modeling the surrounding context information. This is particularly advantageous
because our geocomplexity indicators capture surrounding variation patterns through
metrics like entropy and Moran’s I, which align well with the context-based learning
capabilities of deep learning methods.

In contrast, other machine learning methods like random forest and XGBoost do not
possess internal mechanisms to capture contextual information [71,72]. These models
rely primarily on the associations between spectral features and target labels for inference
and prediction. As a result, the geocomplexity indicators contributed only slightly to the
performance improvement in semantic segmentation for these methods. However, while
our method’s contributions to traditional machine learning techniques like random forest
are slight and limited, it significantly enhances deep learning methods. Given the growing
dominance of deep learning for the semantic segmentation of land cover using remotely
sensed data [7,83], our approach proves especially beneficial for these advanced methods.

5. Conclusions

Our study offered an efficient way for quantifying the complexity of multiclass geo-
scenes, sampling representative samples from label datasets, and reducing sampling bias
during deep learning model training. This study provides important an reference for
quantifying the complexity features of geo-surface scenes and improving the semantic
segmentation of high-resolution remote sensing images. Our geocomplexity indicators,
including entropy-based and gray-based indicators, could identify the surrounding varia-
tion and spatial features on a target pixel or regions by convolution operators. Based on
complexity scores, the optimal sampling methods improved the distributions of training
samples in model training. In the multiclass segmentation of remote sensing images, the
single-score optimal sampling method achieved the greatest improvement in DeepLab-V3
(increasing the ACC by 0.3% and MIoU by 5.5%), and the multi-score optimal sampling
method achieved the greatest improvement in SegFormer (increasing the ACC by 0.2%
and MIoU by 2.4%). The results indicates that the proposed geocomplexity indicators and
the optimal sampling method had promising potential for improving multiclass semantic
segmentation tasks on remote sensing imagery. By addressing these challenges of geo-scene
complexity and sampling bias, our proposed approach can be used to considerably improve
models’ performance and generalization capabilities for land use and land cover mapping
from remotely sensed data using deep learning.

There were several limitations and prospects for our study. Firstly, the surface complex-
ity was influenced by many factors [25,26], but the entropy-based indicator and gray-based
indicator only considered one aspect of complexity. This might have led to the potential
impact of other factors in the geo-surface scenes being overlooked. In future research, we
will explore more factors to quantify the surface complexity and improve the semantic seg-
mentation of remote sensing images. The combination of various geocomplexity indicators
may be an effective measure of enhancing information extraction from remote sensing,
and applicable scenarios need to be further explored. Secondly, the result of complexity
quantification was not directly involved in model learning. Rich features could improve
the performance of information extraction in remote sensing by deep learning models [84].
Surface complexity information has great potential in the field of remote sensing applica-
tions. Thirdly, sampling bias will progressively decrease with the expansion of the training
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sample size. The relationship between training sample size and sampling bias is a valuable
research topic when aiming to obtain the best result with limited samples.
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