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Abstract: Instance segmentation is pivotal in remote sensing image (RSI) analysis, aiding in many
downstream tasks. However, annotating images with pixel-wise annotations is time-consuming and
laborious. Despite some progress in automatic annotation, the performance of existing methods
still needs improvement due to the high precision requirements for pixel-level annotation and the
complexity of RSIs. With the support of large-scale data, some foundational models have made
significant progress in semantic understanding and generalization capabilities. In this paper, we delve
deep into the potential of the foundational models in automatic annotation and propose a training-
free automatic annotation method called DiffuPrompter, achieving pixel-level automatic annotation
of RSIs. Extensive experimental results indicate that the proposed method can provide reliable
pseudo-labels, significantly reducing the annotation costs of the segmentation task. Additionally, the
cross-domain validation experiments confirm the powerful effectiveness of large-scale pseudo-data
in improving model generalization performance.

Keywords: automatic labeling; instance segmentation; remote sensing; prompt generation; training-free

1. Introduction

With the development of deep learning, the interpretation of RSIs has also made signif-
icant progress [1]. Instance segmentation is a crucial part of remote sensing interpretation.
However, it is also a data-intensive task that requires a significant amount of pixel-level
annotations, which are labor-intensive and expensive, limiting the development of the
task. To reduce the annotation costs, some scholars have introduced the automatic image
annotation task, AIA for short, which has become an integral component of computer
vision [2]. Although the scarcity of pixel-level annotated datasets in the remote sensing
domain may be more severe, previous AIA methods have mainly focused on natural
images. The perspective effect in natural images often results in distinct foreground and
background elements. Therefore, some methods use the attention maps of classification
networks to locate the foreground region and consider the image category as the foreground
class to generate a pseudo-mask for objects [3–5]. In contrast, the top-down perspective
and complex image content in RSIs diminish the effectiveness of these AIA methods.

Recently, the potential of big data has been further explored, leading to the emergence
of many fundamental models trained on large-scale datasets, such as the Stable Diffusion
Model (SDM) [6] and the Segment Anything Model (SAM) [7], which show significant
contributions to downstream tasks [8]. Although fundamental models have become plen-
tiful, none are tailored for RSI, which limits their application in RSI tasks. The main goal
of this paper is not to create a fundamental model tailored for RSIs but to investigate the
applicability of existing fundamental models to pixel-level AIA in RSIs.
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With the development of text-guided generation models such as SDM, a pixel-level
AIA technical route based on synthetic images has emerged in natural images [9,10]. These
methods utilize generative models to synthesize data and generate masks for objects in
synthetic images via vision–text alignment knowledge during generation [11]. Generative-
based methods account for two assumptions: (1) the synthetic images are realistic enough
to avoid domain shift issues between training and testing sets, and (2) the vision–text
alignment knowledge can guide the generation of sufficiently accurate object masks. While
these assumptions hold in natural images, they do not necessarily apply in RSIs. Generative
models trained on natural images cannot synthesize RSIs realistically enough, and the
complex and diverse scenes in remote sensing images seriously interfere with vision–text
alignment, making it difficult to segment objects accurately. Some scholars incorporate
the SAM model into instance segmentation methods for more accurate results [12]. After
training on over one billion masks, the SAM model has demonstrated an outstanding ability
to segment anything. However, SAM is a class-agnostic segmentation method and requires
prior positional cues, such as points and bounding boxes, to segment target objects. These
limitations prevent SAM from being directly applied to the instance segmentation task.

As shown in Figure 1, we present new insight into automatically obtaining mask
annotations for authentic images using pre-trained foundational models to reduce the
annotation cost of the instance segmentation task. Based on the insight, we propose a
training-free prompt generation method called DiffuPrompter, which transforms SAM from
a category-agnostic into a category-aware segmentation method to label RSIs automatically.
Specifically, the proposed DiffuPrompter model leverages the text-concept grounding
capabilities of a pre-trained diffusion model to provide coarse localization results for target
objects. These localization results are then used as visual segmentation prompts for the SAM
model, enabling precise segmentation of the target objects. We tested various automatic
annotation methods on remote sensing datasets, and the experimental results validated the
superiority of DiffuPrompter, i.e., it achieved 27.3% and 15.4% AP on the NWPU and iSAID
datasets, respectively. Furthermore, the cross-domain study demonstrates the positive
impact of pseudo-labels on improving model generalization performance, providing a
valuable reference for future research.

The main contributions of this paper can be summarized as follows:

1. We present the novel insight that it is possible to automatically obtain the mask
annotation of authentic images using off-the-shelf foundational models.

2. We propose a training-free prompt generation method, DiffuPrompter, that trans-
forms SAM from a class-agnostic segmenter to a class-aware segmenter to label
RSIs automatically.

3. We tested several automatic annotation methods on remote sensing datasets, and
the extensive results validated the superiority of the proposed DiffuPrompter while
proving the positive impact of pseudo-labels on enhancing model generalization
performance. The results may provide a reference for future work.
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Figure 1. DiffuPrompter classification images, with pixel-level annotations labeled by DiffuPrompter.
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2. Theory and Methods

DiffuPrompter utilizes the pre-trained SDM to explore generating semantically explicit
prompts for SAM, enabling it to generate masks for specified remote sensing objects auto-
matically. Section 2.1 introduces the working principles of SDM and SAM. In Section 2.2.1,
we introduce how to realize the grounding of textual concepts into input images, and we
discuss noise suppression in Section 2.2.2. Section 2.2.3 introduces how to prompt SAM to
segment specific objects.

2.1. Preliminary Knowledge
2.1.1. Overview of SDM

SDM [6] is derived from a perceptual compression model consisting of an autoencoder,
a U-Net, and a decoder. Specifically, when we input an image x ∈ RH×W×3, the encoder E
encodes x into a latent representation z = E(x) ∈ Rh×w×c, and the decoder D reconstructs
the image from z, i.e., x̃ = D(z) = D(E(x)). The encoder downsamples the image
according to the sampling factor f = H/h = W/w, where f has different values in
different layers of the encoder and U-Net, namely f = 2m, where m ∈ N.

The training process of SDM consists of a forward diffusion and a backward denoising
stage. In the forward diffusion stage, SDM adds noise to z for T steps until z is completely
replaced by noise N (0, 1). In the backward denoising stage, SDM learns to gradually
remove the noise by U-Net based on the textual condition to recover z. Finally, z is decoded
into an image by D(z). SDM achieves semantic mapping between visual and textual
inputs through the cross-attention mechanism in U-Net [13]. To pre-process the condition
text prompt Ptext, SDM introduces a domain-specific encoder τθ that projects Ptext to an
intermediate representation, which is then mapped to the intermediate layers of the U-Net
via cross-attention layers as follows:

Attention(Q, K, V) = softmax
(

QKT
√

d

)
· V,

Q = W(i)
Q · φi(zt),

K = W(i)
K · τθ(Ptext),

V = W(i)
V · τθ(Ptext).

(1)

Here, φi(zt) ∈ RN×di
ϵ refers the intermediate embedding in the U-Net implementation,

and W(i)
V ∈ Rd×di

E and W(i)
Q ∈ Rd×dτ &W(i)

K ∈ Rd×dτ are learnable projection matrices [13,14].

2.1.2. Overview of SAM

SAM is an interactive segmentation approach predicated on provided prompts such
as instance points and bounding boxes. The mask-generation process can be expressed
as follows:

zimg = Ei-enc(x),

zinter = Ep-enc(Pinter),

zmask = Ep-enc(Pmask),

zout = Cat
(

Tmc- f ilter, TIoU , zinter

)
,

M = Em-dec
(
zimg + zmask, zout

)
,

(2)

where zimg ∈ Rh×w×c represents the latent representation of the input image; Pinter denotes
the interactive prompts, including points and bounding boxes; Pmask ∈ Rk×c signifies
the mask prompt tokens, which are from the previous prediction iteration; Ep-enc en-
codes prompts into features zinter ∈ Rh×w×c and zmask ∈ Rh×w×c; Tmc- f ilter ∈ R4×c and
TIoU ∈ R1×c are the pre-inserted learnable tokens representing four different mask filters
and their corresponding IoU predictions; and M denotes the predicted masks. The primary
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objective of DiffuPrompter is to provide Pinter (points and bounding boxes) for SAM to
segment the target object.

2.2. Proposed Method
2.2.1. Textual Concept Grounding

Upon further exploration of the SDM training process, we discovered that, dur-
ing the training of SDM, the U-Net restores the latent presentations of the input image
step by step based on the text description. Equation (1) illustrates that textual concepts
V = W(i)

V · τθ(Ptext) are directed into latent presentations through cross-attention of the
cross-modal spatial transformer module in U-Net.

Based on this observation, we constructed a text semantic grounding pipeline centered
on the cross-attention map. This pipeline utilizes classification datasets as its data source
and grounds image categories into the images. As illustrated in Figure 2, given an image
from a classification dataset, the textual description is achieved by using the ‘Photo of a
category’ template to process the corresponding class name. Then, the cross-attention layer
grounds each text semantic in the template into the visual space by cross-attention maps
as follows:

A = Softmax
(

QKT
√

d

)
, (3)

where A ∈ RH×W denotes the re-shaped attention map. For the j-th text token, e.g.,
airplane in Figure 3a, the corresponding cross-attention Aj ∈ RH×W shows the visual
location in φ(zt) of the j-th token.
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V
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Figure 2. Pipeline for our method with the prompt ‘Photo of a stadium’. DiffuPrompter mainly
includes three steps: (1) Organize the object name into the template and use it as a text prompt.
(2) Object mask proposal generation. (3) The denoising strategy is applied to refine the proposals.

We propose integrating grounding results at different resolutions to enhance the accu-
racy and robustness. The cross-attention pyramid As

j is obtained by applying Equation (3)
to different layers in U-Net, where s denotes the attention map from the s-th layer of U-Net.
We extract four resolutions in this paper, i.e., 8× 8, 16× 16, 32× 32, and 64× 64, as shown in
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Figure 3b. Then, we aggregate multi-scale grounding results in the cross-attention pyramid
by calculating the average map as follows:

Âj = Norm(
1
S ∑

s∈S

As
j

max(As
j )
), (4)

where S represents the total number of layers (i.e., four for U-Net). Finally, the attention
maps are transformed into probability maps through a normalization layer to facilitate
subsequent binarization processing.

“Photo” “of” “an” “airplane”

8×8 16×16 32×32 64×64 Average

λ= 0.3 λ= 0.4 λ= 0.5 λ= 0.6

(a) Cross attention maps of different tokens.

(b) Cross attention maps of “airplane” with different resolutions.

(c) Binarization mask with different thresholds λ.

“Photo” “of” “an” “airplane”

8×8 16×16 32×32 64×64 Average

λ= 0.3 λ= 0.4 λ= 0.5 λ= 0.6

(a) Cross attention maps of different tokens.

(b) Cross attention maps of “airplane” with different resolutions.

(c) Binarization mask with different thresholds λ.

Figure 3. Cross-attention maps of SDM. Text prompt: ‘Photo of an airplane’.

2.2.2. Denoise by Noise

Figure 3a indicates that the highlighted regions in the cross-attention map correlate
with the regions where that input token is presented. However, the maps are significantly
noisy. Figure 4 compares the cross-attention maps between natural and remote-sensing
images. Figure 4a shows a precise attention map for the ‘horse’ region. On the contrary,
the attention map in Figure 4b for an RSI only roughly indicates the ‘playground’ region,
showing a very weak correlation with regions a human would pick out as meaningful.
Therefore, it is necessary to denoise the cross-attention maps in SDM before using them
to localize remote sensing objects. However, the noise points tend to be localized and
demonstrate high randomness in their distribution. Hence, achieving precise removal of
these noise points poses a significant challenge.
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Photo of a horse Photo of a playgroundAverage attention Average attention

(a) (b)
Photo of a horse Photo of a playgroundAverage attention Average attention

(a) (b)

Figure 4. The cross-attention maps of natural and remote-sensing images.

Inspired by [15], we propose a Loop-Sampling Averaging Denoising (LSAD) strategy
to suppress noise interference. In LSAD, we model the observed cross-attention map as a
combination of a noise-free attention map and additive noise, as follows:

A(x, y) = A(x, y) +N (x, y), (5)

where A(x, y) represents the value of the captured cross-attention map at coordinates (x, y),
A(x, y) signifies the value of the noise-free map, and N (x, y) denotes the value of the noise.
The denoising process is the procedure of approximating A(x, y) from the known A(x, y).
For multiple cross-attention maps of the same input image and token, the A(x, y) will
remain constant, and N (x, y) is random. Thus, the mean of L maps of the same image can
be represented as follows:

Ā(x, y) =
1
L

L
∑
i=1

[A(x, y) +Ni(x, y)]

= A(x, y) +
1
L

L
∑
i=1

Ni(x, y),

(6)

where Ā(x, y) denotes the mean value of the maps at coordinates (x, y), and L is the total
number of maps considered. As the noise is random and unrelated, the expectation of the
mean value approximates zero, i.e., ∑k

i=1 Ni(x, y) ≈ 0. Therefore, the expected mean and
variance of the cross-attention maps can be expressed as follows:

EĀ(x,y) = A(x, y), (7)

σĀ(x,y) =
1√
L

σN (x,y), (8)

where σ represents the standard deviation. Equation (7) shows that the expected mean
value of multiple cross-attention maps is a map without noise. However, there will be
some disturbances, and the standard deviation determines the noise’s intensity. The
essence of denoising is reducing the standard deviation. Equation (8) indicates that, by
increasing the value of L, i.e., increasing the number of averaged maps, the noise can be
suppressed effectively.

The main challenge of applying Equation (8) to denoise cross-attention maps lies in
introducing random noise onto A(x, y). As mentioned in Section 3, the SDM is trained to
construct a clear image from Gaussian noise by removing Gaussian noise step by step. Noise
contributes to generation diversity [16], implying attention maps are variable. Therefore,
injecting Gaussian noise into the latent embeddings of the input image will result in multiple
noisy cross-attention maps. Fortunately, the forward diffusion process in SDM is the noise
addition process. Therefore, given an image, we perform an iterative forward diffusion
process, preserving the cross-attention pyramid maps during each loop. Subsequently, we
apply LSAD to them as follows:

Āj(x, y) =
1
L ∑

l∈L
Âl

j(x, y), (9)
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where l represents the l-th sampling iteration. Figure 5 illustrates the workflow of the
LSAD algorithm.
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Figure 5. Flow chart of LSAD.

Figure 6 visualizes the performance of LSAD on natural and remote sensing images.
It can be observed that there is no noticeable noise in the cross-attention map of the
natural image. LSAD does not show a significant enhancement effect on the cross-attention
map. In contrast, there is much noise in the cross-attention map of the RSI, making it
challenging to locate the target object accurately. After LSAD processing, the noise is
effectively suppressed, making the highlighted areas more meaningful.

Remote sensing image

Natural image

Photo of a horse

Photo of a playground

L=1 L=2 L=5 L=10 L=20 L=50 L=100

L=1 L=2 L=5 L=10 L=20 L=50 L=100

(a)

(b)

Figure 6. Visualization of denoising effects with different sampling times; t = 40 was applied to each
sampling process. (a) visualizes the denoising effect on a natural image; (b) visualizes the denoising
effect on a remote sensing image.

2.2.3. Prompt for SAM

Given a normalized average attention map Ā ∈ RH×W for the j-th text token to get the
target object region (e.g., ‘airplane’). As shown in Figure 3c, the solution to the binarization
process is using a threshold value γ and refining with DenseCRF [17] as follows:

B = DenseCRF
([

γ; Âj
]

argmax

)
. (10)

As shown in Figure 7, we take the minimum bounding box and centroid of the areas in
B with a value of 1 as the box and point prompts for SAM. Then, SAM will output a mask
list based on the prompts. We select the mask with the highest IoU, with the attention mask
in B as the final segmentation result. If the selected mask contains multiple closed intervals,
it is considered to have multiple objects, such as the boat, airplane, tennis court, and storage
tank in Figure 7. If the selected mask contains a single closed interval, we consider that
there is a single object, such as the playground. At this point, we have constructed a
training-free, pixel-level AIA pipeline using SDM and SAM.
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

AI

ST

SH

BD

TC

VE

BR

SP

HA

BC

GT

RA

Figure 7. Visualization of the DiffuPrompter mask generation process: (a) original image, (b) cross-
attention map, (c) binarized map, (d) box and point prompts, (e) segmentation result.

3. Results
3.1. Datasets

iSAID: iSAID [18] is a large-scale dataset for remote sensing instance segmentation
inherited from DOTA [19]. The spatial resolutions of images range between 800 and 13,000.
We split them into 512 × 512 patches during training and testing. It contains 15 classes
of 655, 451 instances in 2806 images: ship, storage tank, baseball diamond, tennis court,
basketball court, playground, bridge, large vehicle, small vehicle, helicopter, swimming
pool, roundabout, soccer ball field, plane, and harbor.

NWPU VHR-10: NWPU VHR-10 [20] is another widely used dataset for object detec-
tion of RSIs. It has 800 high-resolution images, among which 650 are positive and 150 are
negative, without any objects of interest. This dataset contains annotations of 10 object
categories: airplane, ship, storage tank, baseball diamond, tennis court, basketball court,
ground track field, harbor, bridge, and vehicle.

Classification Dataset: We selected target images corresponding to the segmentation
dataset from 11 classification datasets: UC Merced Land Use Dataset [21], WHU-RS19 [22,23],
RSSCN7 [24], RS_C11 [25], NWPU-RESISC45 [26], AID [26], RSD46-WHU [27,28], Pattern-
Net [29], OPTIMAL-31 [30], CLRS [31], and DLR Munich Vehicle [32]. Ultimately, we
collected 9300 RSIs across 12 categories of 0.3∼3 m resolution: airplane, ship, storage tank,
baseball diamond, swimming pool, tennis court, basketball court, roundabout, ground
track field, harbor, bridge, and vehicle. The corresponding classes are selected when testing
on the iSAID and NWPU datasets. The spatial resolution is uniformly set to 512 × 512.
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3.2. Evaluation Metrics

We adopted the commonly used mean average precision (mAP) metric to evaluate the
performance of the proposed method. When the mask of an instance exists an intersection-
over-union (IoU) with a mask of ground truth above a threshold and its predicted category
matches the label, the prediction is considered to be true positive. In this study, we employ
AP, AP50, AP75, APS, APM , and APL for evaluation. AP refers to metrics averaged across
all 10 IoU thresholds (0.50:0.05:0.95) and all categories. A larger AP value denotes more
accurate predicted instance masks and superior instance segmentation performance. AP50
represents the calculation under the IoU threshold of 0.50, while AP75 embodies a stricter
metric corresponding to the calculation under the IoU threshold 0.75. Therefore, if we
havethe same AP75 and AP50 values, qhere the AP75 indicates more accurate instance masks.
APL is set for large targets (area > 962); APM is set for medium targets (322 < area < 962);
and APS is set for small targets (area < 322).

3.3. Implementation Details

In this paper, we do not train any parameters in the SDM and SAM. Due to the lack of
information about vehicle sizes in the remote sensing classification datasets, we merged
‘small-vehicle’ and ‘large-vehicle’ as one category, i.e., ‘vehicle’, during testing on iSAID.
Additionally, since the “helicopter” and “soccer ball field” categories do not exist in the
classification dataset, we did not generate pseudo-labels for them. Finally, we collected
9300 RSIs. The total pseudo-label categories and their abbreviations annotated in this
paper are: AI-airplane, SH-ship, ST-storage tank, BD-baseball diamond, TC-tennis court,
BC-basketball court, RA-roundabout, PL-playground (ground track field), SP-swimming
pool, HA-harbor, BR-bridge, and VE-vehicle. Mask R-CNN [33], Cascade R-CNN [34],
and Mask2Former [34] were used as the baseline to evaluate our method. Eight Tesla
V100 GPUs were used to generate pseudo-labels, which took approximately 96 h.

3.4. Qualitative Experiments

Visualizations in Figure 7 depict the intermediate results of DiffuPrompter in generat-
ing pseudo-labels. It can be observed that the proposed method can accurately segment
any number of target objects, significantly increasing the number of positive samples in the
pseudo-labels. In the Stable Diffusion model, time steps control the noise intensity, affecting
the results of DiffuPrompter. Figure 8 visualizes the cross-attention maps at different time
steps and shows that the cross-attention map at time step 40 is the clearest, maintaining the
structure of the target object. The reason may be that, at t = 40, the artificially introduced
noise intensity is close to the inherent noise intensity in the cross-attention map. Therefore,
LSAD can effectively suppress noise without losing the contours of the target objects due to
excessive noise. Thus, we use cross-attention in step 40 to conduct experiments throughout
the paper.

3.5. Ablation Study

We also performed an extensive ablation analysis to better understand the effectiveness
of each proposed module in our DiffuPrompter.

3.5.1. Comparison with Attention Map under Different Thresholds

Figure 3c illustrates the impact of different thresholds on the binary image. It is
evident that the λ value significantly impacts the prompt quality for SAM. Table 1 quali-
tatively compares the segmentation performance under different binary thresholds. The
term “cross-attention” means using the binarized attention map as pseudo-labels to train
the segmentation model. The experimental results indicate that setting the threshold to
0.4 provides the best guidance for the model to segment target objects in both methods.
Therefore, the value of λ in subsequent experiments is set to 0.4. Additionally, the perfor-
mance of DiffuPrompter far exceeds that of the attention map across all thresholds. This
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can be attributed to the superior segmentation ability of SAM, which provides accurate
pseudo-masks for the segmentation model.

Step： t=10 t=20 t=30 t=40 t=50 t=60Step： t=10 t=20 t=30 t=40 t=50 t=60

Figure 8. Visualization of cross-attention maps with different time steps. The L in LSAD is set to 50.

Table 1. The performance of Mask R-CNN trained by pseudo-labels generated by DiffuPrompter
vs. cross-attention with different λ thresholds.

Mask λ
NWPU iSAID

AP AP 50 AP75 AP AP50 AP75

Cross-Attention
0.3 10.3 17.7 13.2 3.1 7.4 5.5
0.4 17.2 25.1 13.5 9.2 15.2 10.6
0.5 15.6 22.3 19.7 5.3 9.1 7.4

DiffuPrompter
0.3 22.5 37.9 30.1 5.7 15.6 10.9
0.4 27.3 50.2 36.1 15.4 31.2 19.4
0.5 25.4 47.9 33.0 13.1 27.5 16.3

3.5.2. Sampling Times

Table 2 provides the related ablation study for sampling times in LSAD. The results
reflect that, with the increase in sampling iterations, there is a significant improvement
in segmentation performance, and the performance stabilized after reaching 50 sampling
iterations. We ultimately adopted 50 iterations as the universal sampling count to balance
performance and economy.
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Table 2. The performance of Mask R-CNN trained on pure synthesis data under different L loop
sampling times.

Times
NWPU iSAID

AP AP50 AP75 AP AP50 AP75

1 4.3 6.7 4.2 2.4 3.7 2.1
5 7.6 10.3 8.6 4.5 7.3 6.5

10 10.3 12.5 10.5 5.4 9.6 7.8
20 20.5 48.6 33.3 12.5 27.8 16.5
50 27.3 50.2 36.1 15.4 31.2 19.4
100 27.2 50.4 36.2 15.6 31.1 19.5

3.6. Segmentation Performance Comparison

NWPU: Table 3 presents instance segmentation results on the NWPU. The baseline
segmentation methods trained on the data labeled by DiffuPrompter can reach approx-
imately half of the performance achieved with pure real data, e.g., 27.3% vs. 58.3% for
mask AP of Mask R-CNN. Additionally, further fine-tuning on 600 (25% off) real data
can achieve performance comparable to training on pure real data, e.g., 55.6% mask AP
after fine-tuning vs. 58.3% mask AP training on pure real data with Mask R-CNN; 59.1%
mask AP after fine-tuning vs. 59.8% mask AP training on pure real data with Cascade
R-CNN; and 60.9% mask AP after fine-tuning vs. 61.3% mask AP training on pure real data
with Mask2Former.

iSAID: Table 4 presents the results on iSAID. iSAID is more challenging than NWPU,
as it includes more objects and complex backgrounds. Even in the absence of pseudo-labels
for helicopter and football field categories, DiffuPrompter and iSAID still can present a
competitive result, i.e., 34.8% vs. 35.1% mask AP of Mask R-CNN; 35.1% vs. 35.6% mask
AP of Cascade Mask R-CNN; 36.8% vs. 37.1% mask AP of Mask2Former, when trained on
9300 pseudo-data and 2200 real data (saved 21.4% in manner effort).

Table 3. The performance of Mask R-CNN and Cascade R-CNN on the NWPU. ‘P’ and ‘R’ refer to
‘Pseudo’ and ‘Real’.

Training Set Method Size AP AP50 AP75 APS APM APL

Training with Pure Real Label

NWPU

Mask R-CNN R: 0.8 k (all) 58.3 90.2 60.7 40.9 56.6 61.1
Cascade R-CNN R: 0.8 k (all) 59.8 91.9 66.6 45.3 60.0 67.3
Mask2Former R: 0.8 k (all) 61.3 92.5 68.6 46.3 62.7 69.5
Mask R-CNN R: 0.6 k 50.2 83.1 55.4 31.2 48.3 57.5
Cascade R-CNN R: 0.6 k 55.4 86.1 62.4 40.3 49.7 62.1
Mask2Former R: 0.6 k 56.2 87.1 64.1 42.5 53.8 64.2

Training with Pure Pseudo-Label

DiffuPrompter
Mask R-CNN P: 9.3 k 27.3 50.2 36.1 17.2 25.1 35.4
Cascade R-CNN P: 9.3 k 29.9 52.3 38.1 19.4 28.7 35.2
Mask2Former R: 9.3 k 30.3 53.4 40.1 21.3 30.5 37.2

Training with Pseudo and Real Label

DiffuPrompter
& NWPU

Mask R-CNN P: 9.3 k R: 0.4 k 50.6 85.3 54.2 32.4 53.3 58.6
Cascade R-CNN P: 9.3 k R: 0.4 k 52.1 86.5 59.1 33.4 55.3 64.0
Mask2Former P: 9.3 k R: 0.4 k 54.6 88.7 64.2 40.9 53.6 62.1
Mask R-CNN P: 9.3 k R: 0.6 k 55.6 89.3 60.2 37.4 56.3 61.6
Cascade R-CNN P: 9.3 k R: 0.6 k 59.1 90.5 65.1 45.3 58.9 67.0
Mask2Former P: 9.3 k R: 0.6 k 60.9 92.6 66.9 46.0 61.8 68.2
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Table 4. The performance of Mask R-CNN and Cascade R-CNN on the iSAID. Mask AP is for 15
classes. ‘P’ and ‘R’ refer to ‘Pseudo’ and ‘Real’.

Training Set Method Size AP AP50 AP75 APS APM APL

Training with Pure Real Label

iSAID

Mask R-CNN R: 2.8 k 34.8 57.4 37.0 20.5 43.2 50.3
Cascade R-CNN R: 2.8 k 35.6 57.8 38.0 20.8 44.3 52.7

Mask2Former R: 2.8 k 37.1 59.4 40.2 20.5 45.1 55.6
Mask R-CNN R: 2.2 k 29.5 52.3 31.4 12.5 37.7 46.9

Cascade R-CNN R: 2.2 k 31.2 51.4 31.6 13.5 39.7 47.2
Mask2Former R: 2.2 k 33.8 53.1 33.6 14.1 39.9 47.8

Training with Pure Pseudo-Label

DiffuPrompter
Mask R-CNN P: 9.3 k 15.4 31.2 19.4 9.3 20.6 33.7

Cascade R-CNN P: 9.3 k 16.1 32.5 21.5 11.1 22.7 36.2
Mask2Former R: 9.3 k 17.9 36.2 24.3 14.5 22.5 36.3

Training with Pseudo and Real Label

DiffuPrompter
& iSAID

Mask R-CNN P: 9.3 k R: 1.4 k 31.6 54.3 32.4 15.3 41.7 48.4
Cascade R-CNN P: 9.3 k R: 1.4 k 32.7 55.1 34.3 15.8 43.3 51.1

Mask2Former P: 9.3 k R: 1.4 k 33.4 56.4 35.3 16.3 45.7 54.5
Mask R-CNN P: 9.3 k R: 2.2 k 35.1 57.3 36.4 17.3 42.7 50.4

Cascade R-CNN P: 9.3 k R: 2.2 k 35.2 57.1 38.3 17.8 43.9 52.5
Mask2Former P: 9.3 k R: 2.2 k 36.8 58.7 38.9 17.9 45.2 55.3

3.7. Domain Generalization

Table 5 delivers the results of cross-domain validation, which can evaluate the gen-
eralization performance. We tested the performance on overlapping categories under the
two datasets. The results indicate that DiffuPrompter plays a prominent role in domain
generalization, e.g., 22.5% AP with DiffuPrompter and NWPU vs. 17.9% AP with NWPU
on the iSAID test set, and 50.3% AP with DiffuPrompter and iSAID vs. 47.2% AP with
iSAID on the NWPU test set.

Table 5. Performance of domain generalization between different datasets. Mask R-CNN with
ResNet50 is used as the baseline.

Training Set Data Size Test Set AP AP50 AP75

NWPU R: 0.8 K (all) iSAID 17.9 29.0 20.1
iSAID R: 2.8 K (all) NWPU 47.2 78.5 51.0

DiffuPrompter & NWPU 9.3K + R: 0.6K iSAID 22.5 40.3 23.0
DiffuPrompter & iSAID 9.3K + R: 2.2K NWPU 45.4 72.6 48.1

DiffuPrompter & NWPU 9.3K + R: 0.8 K (all) iSAID 25.2 45.1 26.0
DiffuPrompter & iSAID 9.3K + R: 2.8 K (all) NWPU 50.3 82.7 53.5

3.8. Comparison with the State of the Art

Figure 9 visualizes the output results of two advanced AIA methods and our Dif-
fuPrompter. CAM originates from classification models and focuses more on discriminative
regions while neglecting details. Consequently, the masks it generates often fail to cover
the object entirely. DiffuMask, a recently proposed advanced algorithm, also leverages
diffusion models to generate pseudo-masks for objects. It optimizes attention maps in
U-Net through noise learning and uses them as pseudo-labels. However, DiffuMask is
designed to generate pseudo-labels for synthetic images, which limits its annotation ability
for authentic images. From Figure 9, it is evident that the optimized attention map is still
easily disturbed by the complex background in RSIs. Moreover, the additional training
process significantly increases its annotation cost compared to DiffuPrompter. In con-
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trast, the proposed DiffuPrompter can accurately locate and label masks for target objects
without training.

Original

CAM

DiffuMask

DiffuPrompt

Figure 9. Some examples of pseudo-labels generated by different methods.

Table 6 quantitatively compares the performance of the proposed method with other
state-of-the-art algorithms. The results in Table 6 show that the proposed method signif-
icantly outperforms the baselines in terms of accuracy. However, there is still room for
improvement in annotation speed.

Table 6. Comparison of different AIA methods. The results are from segmentation methods trained
on pseudo-labels constructed by these AIA methods. Seconds/im represents the time consumed by
labeling each image with one V100 GPU.

Method Seconds/im
NWPU iSAID

AP AP50 AP75 AP AP50 AP75

CAM
Mask R-CNN

2.5
8.4 15.3 10.7 3.1 7.4 5.5

Mask2Former 7.9 16.1 11.2 3.5 6.9 5.7

DiffuMask
Mask R-CNN

35.3
12.3 17.9 13.1 9.5 13.6 11.2

Mask2Former 12.9 18.1 14.5 10.2 14.2 10.9

DiffuPrompter
Mask R-CNN

297.3
27.3 50.2 36.1 15.4 31.2 19.4

Mask2Former 30.3 53.4 40.1 17.9 36.2 24.3

Table 7 compares DiffuPrompter with some advanced weakly supervised meth-
ods. Here, we denote the supervision type as: I (image-level label), B (box-level label).
DiffuPrompterM and DiffuPrompterC represent Mask R-CNN and Cascade Mask R-CNN
trained with pseudo-labels generated by DiffuPrompter, respectively. The results show
that DiffuPrompterM and DiffuPrompterC significantly outperform methods based on
image-level supervision, e.g., 29.9% AP with DiffuPrompterC vs. 13.3% AP with BESTIE
on NWPU, and achieve performance comparable to methods based on object-level su-
pervision, e.g., 29.9% AP with DiffuPrompterC vs. 29.8% AP with MGWI-Net on NWPU.
In conclusion, DiffuPrompter can perform better with less manual labor than existing
advanced methods.
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Table 7. Performance comparison with some weakly supervised methods on the NWPU and iSAID
datasets. ‘Sup’ refers to the supervision type.

Method Sup
NWPU iSAID

AP AP50 AP75 AP AP50 AP75

CAM [35] I 8.4 15.3 10.7 3.1 7.4 5.5
SEC [36] I 21.4 30.0 23.1 4.2 12.7 10.3
AffinityNet [37] I 22.5 37.9 30.1 5.7 15.6 10.9
BESTIE [38] I 13.3 25.9 13.8 7.3 9.4 8.5
BoxSup [39] B 27.5 53.1 37.9 10.3 20.2 14.1
MGWI-Net [40] B 29.8 62.9 25.8 - - -
DiffuPrompterM I 27.3 50.2 36.1 11.4 22.6 14.4
DiffuPrompterC I 29.9 52.3 38.1 13.1 25.5 16.3

Table 8 compares the class-wise performance of DiffuPrompterM against several ad-
vanced supervised methods trained by ground truth. The results indicate that most cate-
gories achieve nearly half the performance of supervised methods. However, the perfor-
mance of “bridge” and “vehicle” is significantly lower than that of supervised methods.
We hypothesize that this is due to the significant scale difference between the pseudo-
labels and the segmentation dataset for these two categories. The pseudo-labels do not
adequately guide the segmentation of these objects in the target dataset. Therefore, ad-
dressing the cross-dataset issues between pseudo-labels and the target dataset is worth
further investigation.

Table 8. Comparison of class-wise results with advanced supervision methods on NWPU dataset.

Method AP AI SH ST BD TC BC PL HB BR VE

Mask R-CNN 58.3 28.4 52.8 69.6 81.4 59.6 69.6 84.3 60.7 25.8 50.6

PANet [18] 64.8 50.6 53.5 78.4 83.5 73.0 78.1 87.2 58.6 33.8 51.6

PointRend [41] 65.4 54.5 53.2 75.7 84.3 72.4 74.4 90.1 58.8 35.9 54.7

BlendMask [42] 65.7 48.1 51.1 79.8 84.0 72.4 76.7 91.5 58.9 39.6 54.6

CATNet [43] 73.3 51.9 64.4 87.1 89.4 75.8 79.7 95.0 65.0 53.2 72.0

DiffuPrompterM 27.3 17.9 27.5 35.3 37.1 30.4 31.1 40.1 27.9 9.9 15.8

4. Discussion

To obtain more accurate prompts, we fine-tuned SDM on a combination of some RSI
caption datasets (RSICD [44], UCM-captions [45], and Sydney-captions [45]). However, the
cross-attention maps of the fine-tuned SDM, as shown in Figure 10, cannot provide precise
guidance for SAM. The reason may be that the image caption datasets for RSIs are too small
in scale and insufficient to convey accurate text–visual correspondence information to the
SDM model. Therefore, the SDM used in this paper has yet to be fine-tuned. It is worth
exploring how to fine-tune the SDM model on remote sensing datasets to obtain a more
familiar understanding of remote sensing objects.

Another factor affecting performance is domain discrepancy. The significant differ-
ences between the classification and object detection datasets result in the knowledge
provided by the pseudo-labels not being well applied to the dataset. Therefore, address-
ing the cross-domain issue between pseudo-labels and target data is also a valuable
research direction.
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Figure 10. Cross-attention map with fine-tuned SDM.

In this paper, we determined the hyperparameter values based on the overall perfor-
mance of the segmentation algorithm. However, the optimal hyperparameters vary slightly
across different categories. Table 9 presents the category-level results under different pa-
rameters, indicating that designing adaptive hyperparameters could further improve the
quality of the pseudo-labels. Therefore, developing an adaptive pseudo-labeling algorithm
tailored to each category is a promising direction for future research.

Table 9. Class-wise results of Mask R-CNN on the NWPU VHR-10 test set with different values of λ

and t.

t λ AP AI SH ST BD TC BC PL HA BR VE

30
0.3 12.3 8.9 11.5 8.6 22.5 11.3 21.6 15.9 9.6 9.1 4.1
0.4 20.5 16.7 19.7 15.7 18.4 22.6 28.5 26.4 27.8 11.9 17.3
0.5 18.5 16.0 20.7 19.7 19.4 25.0 12.9 19.2 23.9 10.6 17.5

40
0.3 22.5 27.7 30.0 21.1 30.0 19.7 28.0 22.1 21.8 10.5 14.1
0.4 27.3 17.9 27.5 35.3 37.1 30.4 31.1 40.1 27.9 9.9 15.8
0.5 25.4 35.0 35.0 20.1 35.0 18.9 18.9 35.0 30.8 12.7 12.6

50
0.3 19.5 23.7 14.2 25.0 21.1 24.0 21.1 11.3 23.0 25.0 6.4
0.4 23.7 30.6 19.1 26.3 32.0 28.8 29.4 33.0 16.7 8.7 12.4
0.5 20.1 32.4 30.5 20.9 24.4 15.9 21.0 24.6 16.8 8.5 6.2

5. Conclusions

This paper introduces a novel insight that demonstrates the possibility of automatically
annotating object masks for RSIs by leveraging off-the-shelf foundational models. Building
on the SDM and SAM models, we propose an AIA method, namely DiffuPrompter, capable
of leveraging the text semantic grounding knowledge in SDM to generate semantically
precise SAM prompts, enabling it to acquire instance masks autonomously. We compre-
hensively test the effectiveness of the proposed method on two general datasets. We first
evaluate the efficacy of each component in DiffuPrompter through ablation studies. Then,
the cross-domain validation experiments confirm the significant effectiveness of large-scale
pseudo-data in improving model generalization performance. Finally, we compare our
method with other state-of-the-art algorithms, and the results demonstrate the superiority
of our proposed method over existing ones.
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