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Abstract: The Yellow River Basin (YB) acts as a key barrier to ecological security and is an important
experimental region for high-quality development in China. There is a growing demand to assess the
ecological status in order to promote the sustainable development of the YB. The eco-environmental
quality (EEQ) of the YB was assessed at both the regional and provincial scales utilizing the remote
sensing-based ecological index (RSEI) with Landsat images from 2000 to 2020. Then, the Theil–Sen
(T-S) estimator and Mann–Kendall (M-K) test were utilized to evaluate its variation trend. Next, the
optimal parameter-based geodetector (OPGD) model was used to examine the drivers influencing the
EEQ in the YB. Finally, the geographically weighted regression (GWR) model was utilized to further
explore the responses of the drivers to RSEI changes. The results suggest that (1) a lower RSEI value
was found in the north, while a higher RSEI value was found in the south of the YB. Sichuan (SC)
and Inner Mongolia (IM) had the highest and the lowest EEQ, respectively, among the YB provinces.
(2) Throughout the research period, the EEQ of the YB improved, whereas it deteriorated in both
Henan (HA) and Shandong (SD) provinces. (3) The soil-available water content (AWC), annual
precipitation (PRE), and distance from impervious surfaces (IMD) were the main factors affecting the
spatial differentiation of RSEI in the YB. (4) The influence of meteorological factors (PRE and TMP)
on RSEI changes was greater than that of IMD, and the influence of IMD on RSEI changes showed
a significant increasing trend. The research results provide valuable information for application in
local ecological construction and regional development planning.

Keywords: Yellow River Basin (YB); RSEI; trend analysis; OPGD model; geographically weighted
regression (GWR)

1. Introduction

Sustainable development will have an impact on future generations [1]. The Chinese
government regards sustainable development as a major strategy to promote China’s
national development. The Yellow River Basin (YB) is a crucial ecological and economic
hub in China, contributing significantly to regional development and ecological civilization
construction. The monitoring and quantitative evaluation of EEQ in the YB can provide a
reference for environmental planning and ecological protection policy formulation and is
of great importance in realizing regional sustainable development goals.
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Remote sensing technology can efficiently and accurately objectively gather extensive
ground feature information and has been widely applied in assessing EEQ [2,3]. The eco-
environment is comprehensively affected by multiple factors, and the evaluation results of
a single index can only represent changes in a certain aspect of the terrestrial ecological
status [4,5]. As a result, scholars have started focusing on all-encompassing measures
to better assess the regional EEQ comprehensively and effectively. The most commonly
utilized EEQ models at present are the analytic hierarchy process (AHP) [6], the ecological
index (EI) [7], the “pressure-state-response” conceptual framework (PSR) [8] and the remote
sensing-based ecological index (RSEI) [7].

The AHP is a comprehensive decision-making method combining qualitative and
quantitative methods, and since factor weights are relatively fixed in the analysis process, it
is unable to deal with possible dynamic changes in indicators [9]. The EI was developed by
China’s Environmental Protection Administration in 2006 and can be used for annual EEQ
evaluation in areas above the county level [7]. During the process of EI construction, index
weight selection is affected by subjectivity, thus affecting the accuracy of EEQ evaluation
results. The PSR framework, proposed by the OECD, chose metrics from the three levels of
pressure, state, and response, combining social, economic, and environmental elements [10].
According to the PSR framework, the RSEI couples greenness, humidity, heat, and dryness
to represent the overall ecological status of the area [4]. The RSEI is based entirely on
remote sensing image inversion and has strong comparability with the EI [11]. It has been
widely applied to EEQ evaluation at various spatial scales in cities [12], mining areas [13],
nature reserves [14], basins [15], and countries [16]. Compared with EI and AHP methods,
RSEI is more conducive to the evaluation of the ecological status of uninterrupted land
cover [11].

Ecological conditions are affected by a variety of factors, which can be divided into
natural factors such as terrain, soil, and climate, as well as human factors including social
economy, among others [17]. The analysis methods for driver identification mainly include
correlation analysis, principal component analysis, linear regression analysis, geographical
detectors, and spatial regression analysis [18–21]. Geographical detectors can detect both
numerical and continuous data and can avoid the influence of multivariable collinearity [22].
The geographically weighted regression (GWR) model is capable of establishing the spatial
heterogeneity of parameters across different regions. Both geographical detectors and
GWR take into account the spatial effects of data and have been widely used in driver
analysis [21–23].

The YB is a key belt connecting China’s eastern, central, and western regions. It is an
important task in regional coordinated development in the YB to evaluate the EEQ and
its changing patterns. In this study, we examined the spatial–temporal differences in the
YB’s EEQ from 2000 to 2020 at the overall and provincial levels and identified the driving
factors affecting EEQ. The following were the main focuses of this paper: (1) We performed
quantitative analysis of EEQ based on the RSEI model. (2) The Theil–Sen (T-S) estimator
and Mann–Kendall (M-K) method were used to analyze the spatiotemporal variation of
RSEI. (3) The main factors affecting the spatial heterogeneity of RSEI were obtained by
using the optimal parameter-based geographical detector (OPGD) model. (4) The GWR
model was used to examine the responses of driving factors to RSEI changes.

2. Study Area and Datasets
2.1. YB Region

The YB in the northwest of China covers Qinghai (QH), Sichuan (SC), Gansu (GS),
Ningxia (NX), Inner Mongolia (IM), Shaanxi (SN), Shanxi (SX), Henan (HA) and Shandong
(SD) provinces (Figure 1) and lies between the latitudes 32◦10′N and 41◦50′N and the
longitudes 95◦53′E and 119◦05E. The YB consists of four geomorphological units, with
varying temperatures and precipitation across the landscape. The majority of areas in
the upper and middle sections of the YB are situated in dry and semi-dry regions, with
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ecosystems that are delicate and easily affected. This is especially the case in central and
the southern IM, northern SN, southeastern GS, and southern NX provinces [24].
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Figure 1. Location of the YB.

2.2. Datasets

Landsat 5 and Landsat 8 tier-1 surface reflectance (SR) data obtained from the GEE
platform were used, with a 30 m spatial resolution. Landsat images captured from June
to September during the target years 2000, 2005, 2010, 2015, and 2020, and each year
before and after, were selected to synthesize cloud-free mean data. DEM data, which were
published by NASA and NIMA, had a spatial resolution of 30 m and were used to extract
elevation and slope measurements in the study area (https://developers.google.com/
earth-engine/datasets/catalog/USGS_SRTMGL1_003, accessed on 10 November 2023).
Sand, clay, silt, soil organic carbon content, and soil available water content were obtained
from the soilgrid250m dataset [25], available at https://soilgrids.org/, accessed on 26 May
2023. Soil data (clay, sand, silt, and soil organic carbon) were used to calculate the soil
erodibility factor. More details are available in the Supplementary Materials. Precipitation
and temperature datasets have a spatial resolution of 1000 m and are available from
https://poles.tpdc.ac.cn/zh-hans/, accessed on 16 April 2023. The land cover data [26]
with a 30 m spatial resolution were released by Huang Xin’s team at Wuhan University
(http://irsip.whu.edu.cn/resources/CLCD.php, accessed on 7 April 2023). The GDP
data with a 1000 m spatial resolution were obtained from https://www.resdc.cn/DOI/,
accessed on 31 July 2023. The distance from impervious surfaces (IMD) was calculated using
Euclidean distance, with impervious data obtained from land cover data. The geographic
reference system for all datasets was unified into the WGS-84 coordinate system and UTM
projection.

3. Methods

This study’s framework comprised three parts (Figure 2). The first part was the
calculation of the RSEI. The second part evaluated the EEQ of the study area through the
spatial distribution analysis and spatial–temporal change analysis of the RSEI. The third
part employed the OPDG model and GWR model to explore the factors influencing the
EEQ in the YB.

https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://soilgrids.org/
https://poles.tpdc.ac.cn/zh-hans/
http://irsip.whu.edu.cn/resources/CLCD.php
https://www.resdc.cn/DOI/
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Figure 2. Technology flowchart.

3.1. RSEI Model

Principal component analysis (PCA) was used to derive the RSEI model [7,11] from
NDVI, WET, LST, and NDBSI. Before conducting PCA, a water body mask needed to be
applied to each index using the modified normalized difference water index proposed by
Xu (MNDWI) [27].

The following formula was used to calculate RSEI:

RSEI0 = 1 − PC1(NDVI, WET, LST, NDBSI) (1)

RSEI = Nor(RSEI0) (2)

where Nor( ) represents the min-max normalization. Before conducting PCA, four compo-
nents were normalized by means of min–max normalization methods.

3.2. T-S Estimator and M-K Test

The T-S estimator [28,29] and the M-K test [30,31] are commonly utilized in analyzing
ecological factors to detect trend changes in time series data and minimize the influence of
data inaccuracies.

The T-S estimator calculation formula is as follows:

β = median
(RSEIj − RSEIi

j − i

)
, ∀j > i (3)

where RSEIi and RSEIj denote the RSEI values for year i and year j, respectively. When β >
0, RSEI displays a growing trend; otherwise, it displays a decreasing trend.

The M-K test calculation formula is as follows:

Z =


(S − 1)/

√
var(S), S > 0

0, S = 0
(S + 1)/

√
var(S), S < 0

(4)

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(

RSEIj − RSEIi
)

(5)

sgn
(

RSEIj − RSEIi
)
=


1, RSEIj − RSEIi > 0
0, RSEIj − RSEIi = 0
−1, RSEIj − RSEIi < 0

(6)
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var(S) = n(n − 1, 2n + 5)/18 (7)

where n is the length of the time series, sgn( ) is the symbolic function, and Z is the
significance test statistic with values in the range (−∞, +∞).

The trend categories of the T-S estimator and M-K test are shown in Table 1.

Table 1. T-S estimator and M-K test trend categories.

β Z Trend Type Trend Features

<0 ≤−1.96 SD Significant decrease
<0 −1.96–1.96 NSD No significant decrease
0 −1.96–1.96 NC No change

>0 −1.96–1.96 NSI No significant increase
>0 ≥1.96 SI Significant increase

NOTE: β is the variation trend of the RSEI sequence calculated by the T-S estimator; Z is the standardized test
statistics calculated by the M-K test.

3.3. OPGD Model

Based on the OPGD model [32], the best discretization scheme for the continuous
variables was selected and geographical exploration analysis was subsequently conducted.
The classification methods used were based on equal intervals, Jenks natural breaks (Jenks),
and quantiles, and the classification classes were 4–10. The factor detector and interaction
detector were used for the experiment (R version 4.1.3). Factor detection can identify the q
value, representing the impact of the drivers on the RSEI. The q can have a value between 0
and 1. Greater q values indicate increased explanatory strength. Interaction detection can
detect the influence of the interaction between two drivers on the explanatory power of
the RSEI.

In this paper, elevation (ELE), slope (SLO), soil erodibility (SE), soil available water
content (AWC), annual precipitation (PRE), annual mean temperature (TMP), land cover
types (LCT), GDP and distance from impervious surfaces (IMD) were selected. The spatial
distribution of driving factors is shown in Figure 3. These nine factors were divided into
four categories based on their content and attributes: (1) topographic factors (ELE and SLO);
(2) soil factors (SE and AWC); (3) meteorological factors (PRE and TMP); and (4) human
factors (LCT, GDP, and IMD). Considering the area of YB and satisfying the requirements
of spatial heterogeneity, a 10 km × 10 km grid was generated. LCT data were obtained for
the types that occupy the largest proportion in each grid, and other factors were calculated
for the grid mean data.

3.4. Geographically Weighted Regression

The geographically weighted regression (GWR) model is a widely used local spatial
regression model, which can effectively reflect the spatial heterogeneity of regression
relationships [33].

The general expression of GWR is as follows:

yi = β0(ui, vi) + ∑ βk(ui, vi)xik + εi (8)

where yi is the RSEI fitting value of sample i, βk is the band estimation coefficient of sample
i, (ui,vi) is the central coordinate of the spatial unit of sample i, β0(ui, vi) is the estimated
value of the constant term of sample i, and εi is the independent identically distributed
error term.

The GWR model was used to analyze the influence of driving factors on RSEI changes.
Since topographic and soil factors can be regarded as constants during the study period,
meteorological factors and human factors are selected as regression variables. Excluding
numerical data (LCT) and local collinearity data (GDP), the final factors are selected as PRE,
TMP, and IMD. The fitting results of the GWR model are shown in Table 2.
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Table 2. Comparison of the results of OLS and GWR models.

Period Model AICc Sigma R2 Adjust R2

2000–2005 OLS 24,085.113 1312.632 0.047 0.047
GWR 10,723.586 8225.790 0.848 0.826

2005–2010 OLS 24,076.407 8217.495 0.048 0.047
GWR 11,776.483 1469.866 0.830 0.830

2010–2015 OLS 21,448.259 6059.903 0.298 0.297
GWR 9117.758 1099.883 0.873 0.855

2015–2020 OLS 23,851.793 8006.352 0.072 0.072
GWR 9843.700 1139.525 0.868 0.846

2000–2020 OLS 23,281.808 7494.584 0.131 0.131
GWR 10,390.218 1229.309 0.858 0.835

4. Results
4.1. Spatial Distribution and Change Characteristics of EEQ

The RSEI was categorized into five classes via the Jenks method, namely Poor, Fair,
Moderate, Good, and Excellent. The RSEI classes were lower in the north and higher in
the south (Figure 4). The Poor and Fair entries were concentrated in the upper and middle
reaches of the YB, including Lanzhou and Baiyin in GS, IM, and the arid zone of central NX.
The Moderate and Good entries were primarily found in the Yellow River’s origin areas and
the YB’s lower reaches. The Excellent entries were primarily found in the Ruoergai-Maqu
Ecological Function Reserve, the Qilian Mountains, and the Qinling Mountains.

At both the provincial and the land cover levels, the RSEI classes in the YB had regional
characteristics (Figure 5a). The ecological condition of NX and IM was not good, with more
than 60% of this area being categorized as Poor or Fair. The ecological condition of other
provinces was higher, with the majority of regions categorized as Moderate and above (an
area exceeding 70% of the whole). SC had the highest categorized ecological condition,
with more than 90% of its total area classified as Good or Excellent. The distribution of RSEI
classes varied across different land cover types (Figure 5b). The distribution of RSEI classes
in forestland, shrubland, and wetland was mainly Good and Excellent, while barren land
was almost entirely Poor. The ecological condition of cropland, grassland, and impervious
land was dominated by multiple RSEI classes.
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The T-S estimator and M-K test were used to perform a statistical analysis of EEQ
changes in the YB during the period of 2000–2020 (Figure 6, Table 3). A total of 21.86% of
EEQ improvement areas were mainly distributed in northern QH, SC, eastern GS, southern
NX, northeastern IM, western SN, and SX. Of these, 16.53% were significant improvement
areas, mainly located in ecological function protection areas on the Loess Plateau. The
portion of land that was degraded was 4.27%, while the portion that was significantly de-
graded was 2.63%. Most of the deteriorated regions were located in the Ningxia Plain urban
agglomeration, Hetao Plain in IM, the Guanzhong Plain urban agglomeration (centered on
Xi’an in SN), the Jinzhong urban agglomeration in SX, HA, and SD.
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Table 3. Grading table of RSEI change amplitude in YB.

Class Trend Type Area/km2 Proportion/%

Degeneration SD 21,375
34,371

2.63
4.27NSD 13,356 1.64

No change NC 599,800 599,800 73.87 73.87

Improvement NSI 43,267
177,488

5.33
21.86SI 134,221 16.53

Table 4 shows the RSEI trend change types in the provinces of the YB from 2000 to
2020. Throughout this timeframe, aside from HA and SD, the ratio of land improvement
areas in the other seven provinces exceeded that of the land degradation area. The change
ratio of land ecological status in the nine provinces in descending order was SX > SN > SD
> HA > GS > NX > IM > QH > SC. SX and SN showed the most obvious improvement in
EEQ, with area improvement rates reaching 35.93% and 31.45%, respectively—far greater
than the land degradation area. The degradation of EEQ was most obvious in HA and SD,
with area degradation ratios of 17.76% and 18.27%, respectively.
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Table 4. The grading scale of EEQ change in YB provinces (%).

Trend Type QH SC GS NX IM SN SX HA SD

SD 1.61 1.81 1.56 2.99 0.93 3.74 2.31 10.91 9.96
NSD 0.74 1.15 0.97 1.41 1.08 2.07 1.19 6.85 8.31
NC 81.76 86.50 75.71 79.49 79.77 62.75 60.58 72.91 70.42
NSI 7.37 4.83 5.15 3.78 6.00 4.86 3.39 4.28 5.08
SI 8.53 5.73 16.61 12.33 12.21 26.59 32.54 5.06 6.22

Table 5 shows the RSEI trend change types in different land cover change types of the
YB from 2000 to 2020. The seven types of land cover in the area without conversion and
the top nine types of land cover change were selected. In areas where the land cover has
not been changed, the EEQ of cropland and impervious land has changed greatly, with
the proportion of change being more than 38%. Only the EEQ of impervious areas has
been degraded, and the EEQ of the other land cover has been improved. Changes in land
cover change are often accompanied by changes in ecological conditions. Except for BA-GR
and GR-BA, the ecological area change rates of other transfer types ranged from 22.6% to
59.58%. In general, the RSEI index can reflect the difference in EEQ among different land
cover types and the change in EEQ brought about by type conversion.

Table 5. The grading scale of EEQ change in different land cover types (%).

Trend Type FO SH WE CR GR IM BA CR-GR

SD 0.60 1.03 1.27 5.68 1.01 13.16 0.01 5.50
NSD 0.20 0.51 0.62 4.44 0.60 4.59 0.17 2.53
NC 93.06 81.62 76.36 61.27 78.02 70.28 98.10 62.43
NSI 1.60 4.33 6.03 7.03 5.73 3.13 0.70 5.62
SI 4.53 12.51 15.71 21.58 14.63 8.84 1.01 23.92

Trend type BA-GR GR-CR CR-IM GR-FO GR-BA CR-FO GR-IM BA-CR

SD 0.01 0.43 42.29 0.07 1.07 0.26 10.02 0.03
NSD 0.03 0.45 12.37 0.08 0.67 0.19 3.43 0.18
NC 90.99 49.23 40.42 41.48 96.01 55.93 77.40 48.15
NSI 0.53 7.04 2.23 3.83 0.81 4.96 2.69 3.05
SI 8.44 42.85 2.70 54.54 1.43 38.66 6.45 48.59

4.2. Analysis of Driving Factors of RSEI Spatial Differentiation

The explanatory power of driving factors was as follows: AWC > PRE > IMD > LCT >
SLO > TMP > ELE > GDP > SE (Table 6). AWC, PRE, and IMD were the dominant factors
of RSEI, with 5-year mean q values of 0.787, 0.614, and 0.421, respectively. LCT, SLO, TMP,
and ELE also have an important impact on EEQ, with five-year average q values of 0.330,
0.314, 0.297, and 0.233, respectively. The explanatory power of GDP and SE is relatively low.

Table 6. q statistics of detection factors (95% confidence level).

Year ELE SLO SE AWC PRE TMP LCT GDP IMD

2000 0.289 0.280 0.150 0.818 0.663 0.328 0.318 0.186 0.453
2005 0.229 0.296 0.121 0.791 0.615 0.303 0.344 0.158 0.430
2010 0.243 0.313 0.116 0.797 0.633 0.305 0.332 0.132 0.417
2015 0.176 0.332 0.084 0.725 0.602 0.247 0.350 0.110 0.357
2020 0.229 0.348 0.100 0.803 0.555 0.303 0.306 0.160 0.447

The interactive detection analysis results clearly show that the RSEI in the YB is
influenced by both bilinear enhancement and nonlinear enhancement (Figure 7). This
suggests that the combined effect of these two factors is more significant than that of a
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signal factor. The explanatory power of AWC∩ELE and AWC∩LCT for the interaction of
factors is significantly stronger than that of other factors. Although GDP and SE may not
individually have a strong impact, their combined influence on the spatial differentiation
features of the RSEI is evident in interactive detection.
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Figure 8 shows the factor detection results of provinces in the YB. In QH, SC, and
GS, natural factors are the main influencing factors. In NX, IM, SN, SX, HA, and SD, both
natural and human factors show a strong influence. The interactive detection results show
that the factors selected in this study are reasonable, and the interaction between factors
can explain the spatial differentiation characteristics of RSEI well (Table 7).

In conclusion, topographic factors, soil factors, meteorological factors, and human
factors jointly influence the formation of spatial patterns of regional RSEI. Natural factors
can explain most of the spatial differentiation characteristics of RSEI. The influence of
human factors on RSEI can be strongly demonstrated when they interact with other factors.

4.3. Response of the Driving Factors to EEQ Changes

To explore the influence of changes in driving factors on the change in RSEI, the GWR
model was performed with the grid difference of PRE, TMP, and IMD as the independent
variable and the grid difference of RSEI as the dependent variable (Table 8). By comparing
the absolute value of the regression coefficient, the dominant driving factor of each grid
was obtained, and the results are shown in Figures 9 and 10.
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Table 7. The main interaction factors of nine provinces in YB (95% confidence level).

Name 2000 2005 2010 2015 2020

QH
AWC∩TMP (0.898) AWC∩TMP (0.898) AWC∩TMP (0.874) ELE∩AWC (0.867) AWC∩TMP (0.884)
AWC∩IMD (0.858) AWC∩IMD (0.878) AWC∩IMD (0.870) AWC∩TMP (0.870) AWC∩IMD (0.875)

SC
ELE∩AWC (0.703) ELE∩SE (0.624) SE∩TMP (0.642) ELE∩PRE (0.600) ELE∩PRE (0.624)
PRE∩IMD (0.782) PRE∩IMD (0.676) AWC∩TMP (0.614) AWC∩PRE (0.595) AWC∩PRE (0.647)

GS
ELE∩AWC (0.915) ELE∩AWC (0.919) ELE∩AWC (0.922) ELE∩AWC (0.908) ELE∩AWC (0.925)
AWC∩LCT (0.929) TMP∩AWC (0.916) TMP∩AWC (0.917) TMP∩AWC (0.899) TMP∩AWC (0.920)

NX
ELE∩AWC (0.884) ELE∩AWC (0.884) ELE∩AWC (0.880) SLO∩AWC (0.878) SLO∩AWC (0.895)
SLO∩AWC (0.880) SLO∩AWC (0.879) SLO∩AWC (0.889) AWC∩LCT (0.882) AWC∩LCT (0.896)

IM
ELE∩AWC (0.817) AWC∩PRE (0.839) AWC∩PRE (0.808) AWC∩PRE (0.798) AWC∩PRE (0.813)
AWC∩LCT (0.824) AWC∩GDP (0.843) AWC∩GDP (0.817) AWC∩GDP (0.823) AWC∩GDP (0.828)

SN
PRE∩AWC (0.932) SLO∩AWC (0.927) ELE∩AWC (0.903) ELE∩AWC (0.910) ELE∩AWC (0.946)
AWC∩IMD (0.931) AWC∩IMD (0.926) TMP∩AWC (0.902) TMP∩AWC (0.909) SLO∩AWC (0.948)

SX
ELE∩AWC (0.840) ELE∩AWC (0.862) TMP∩AWC (0.854) ELE∩AWC (0.861) ELE∩AWC (0.855)
TMP∩AWC (0.837) TMP∩AWC (0.859) AWC∩IMD (0.856) TMP∩AWC (0.867) TMP∩AWC (0.855)

HA
SLO∩PRE (0.806) SLO∩PRE (0.846) ELE∩SE (0.873) ELE∩SE (0.845) SLO∩TMP (0.902)
PRE∩IMD (0.784) PRE∩IMD (0.829) SE∩IMD (0.876) SLO∩GDP (0.841) SE∩IMD (0.890)

SD
ELE∩AWC (0.822) ELE∩AWC (0.794) ELE∩AWC (0.853) ELE∩IMD (0.815) ELE∩IMD (0.840)

ELE∩SE (0.796) ELE∩SE (0.770) ELE∩SE (0.830) ELE∩SE (0.855) ELE∩SE (0.786)
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Table 8. Statistical analysis of regression coefficients of the GWR model.

Factor
2000–2005 2005–2010 2010–2015 2015–2020 2000–2020

N+ N− N+ N− N+ N− N+ N− N+ N−
PRE 1892 1711 1723 1652 1054 868 2063 1621 2703 1867
TMP 1448 1428 1819 1652 2189 1905 927 828 792 749
IMD 1485 665 970 595 1906 707 1929 1261 1854 664

NOTE: N+: the number of grids of positive influence; N−: the number of grids of negative influence.
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According to the number of positive and negative regression coefficients, PRE and
TMP have a slight positive influence on RSEI change in the YB, while IMD has a significant
positive influence on RSEI change. From left to right, the dominant role of meteorological
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factors (PRE and TMP) on RSEI changes gradually decreases, while the dominant role
of human factors on RSEI changes gradually increases. Meteorological factors almost
dominate the RSEI changes in QH and SC, while IMD almost dominates the RSEI change
in SD, with the proportion of dominant grids exceeding 90% from 2000 to 2020. From 2000
to 2005, 2005 to 2010, 2010 to 2015, and 2015 to 2020, the leading role of driving factors in
different provinces of the YB was judged by summing the number of grids dominated by
driving factors. The provinces dominated by PRE are QH and SC, the provinces dominated
by TMP are GS, NX, IM, and SN, and the provinces dominated by IMD are HA and SD. It
is worth noting that the number of grids dominated by IMD showed an increasing trend
during the study period, indicating that the impact of human activities on EEQ change is
becoming more and more obvious.

5. Discussion
5.1. Computational and Analytical Problems of RSEI

Landsat SR products on GEE contain pixel quality information, atmospheric opacity
information, and radiometric saturation information. This information can be used to
synthesize the best available data for target years in the YB. However, there were two
anomalies in Landsat5 SR data: Christmas tree anomalies (Figure 11a) and caterpillar tracks
(Figure 11b). For Christmas tree anomalies, we can use the establishment of an internal
buffer zone of 3000 m to remove them [34]. Caterpillar tracks are found throughout the
image, and the larger outliers in the ST_B6 band can be used as screening criteria. To save
computation, we set up an inner ring buffer of 500 m for the image set with the Christmas
tree anomaly removed and obtain the maximum value of ST_B6 band in this buffer. If the
maximum value is greater than 60,000, we remove the image. The annual image can then
be generated by combining the mean values.
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Before RSEI calculation, annual image synthesis should be performed. Images with
similar dates in different years are selected to calculate RSEI values [12,35]. This mostly
occurs in small research areas; that is, one remote sensing image can completely cover
the research area. The development of cloud platforms has also made the computation
and processing of a large number of images very straightforward. In larger research areas,
images covering two to four months with a high NDVI in the research year are selected to
synthesize the images [36,37]. The YB was selected for the research, encompassing over
800,000 km2. To balance the phenological differences in different periods and realize the
coverage of the whole basin, we chose to synthesize the mean image using three years of
Landsat data, from June to September.

Some scholars replace component indicators with alternative indicators to construct
new RSEI models to monitor EEQ in specific areas (arid deserts, alpine regions, and so on).
In the case of the YB, however, its vast area and diverse geological and geomorphological
types make it difficult to find suitable component indexes. Moreover, creating new indica-
tors through substituting component indicators [38] appears to introduce more subjectivity
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and challenges in the consistent application of the model. The effectiveness of the initial
RSEI model has been demonstrated in different settings [39], leading to its application in
monitoring EEQ in the YB. The average correlation coefficients of RSEI with NDVI, WET,
LST, and NDBSI are 0.9758, 0.8726, −0.7964, and −0.9550, as shown in Figure 12, further
validating the comprehensive representativeness of RSEI.
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This study found that the EEQ of the YB showed an improving trend from 2000 to
2020, which is consistent with the research of Yang et al. [40]. The significant improvement
area is mainly located in the Loess Plateau protection area. Zhang et al. [41] analyzed
the eco-environment of the Loess Plateau and found that 84.51% of the EEQ in the study
area had improved. The variations in RSEI are affected by many factors. The selection of
factors in this paper is not sufficiently comprehensive. Natural factors such as wind speed,
sunshine hours, and environmental protection policy-related factors were not selected.
Future work will involve selecting a wider range of influencing factors, taking into account
the current state of the research field.

5.2. Relationship between RSEI and Land Cover Change

Land cover is an important factor affecting the spatial differentiation of RSEI (Section 4.2).
The distribution characteristics of RSEI differ significantly among different land cover
types, and EEQ improvement or degradation areas tend to occur in areas where land
type conversion occurs (Section 4.1). A comparative experiment was conducted to further
explore the relationship between land cover types and RSEI. Figure 13 shows that the order
of EEQ of different land cover types from high to low was forest, shrub, wetland, cropland,
grassland, impervious land, and barren land.
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Area changes of different land cover types in the YB for the period 2000–2020 were
calculated (Figure 14). During this period, the area of cropland and grassland in QH
decreased, while the area of barren land increased by 1177.93 km2, and the grassland
was severely degraded [42]. Problems with reduced grassland areas are also present in
SC and GS. According to relevant studies, increased grassland degradation and areas
of desertification have been caused by overgrazing in QH, SC, and GS [43], with the
problem of grassland degradation remaining prominent. China’s prevention and control
efforts regarding desertification have achieved a double reduction, in both desertification
land and desertified land area. Indeed, the bare land areas of NX and IM reduced by
1141.14 km2 and 6653.82 km2, respectively, during the study period. A series of soil and
water conservation measures, such as the comprehensive watershed management, the
construction of the Three-North Shelterbelt, and the return of cropland to forest (grass),
have partially improved the ecological status of the region. In addition, the ecological
degradation of the YB is also related to the large-scale expansion of impervious surface,
which has increased by 10,844.71 km2 in the past 20 years.

In recent decades, China has attached great importance to the sustainable development
of the YB and has launched and implemented a large number of major ecological protection,
construction, and restoration projects, which are the main reasons for the improvement
of the EEQ. Certain unresolved issues remain, however, such as the vulnerability and
systematic degradation of the YB. The ecological environmental management of the YB is a
long-term project, which heightens the requirements for ecological environmental quality
evaluation. More accurate data support and enhanced analysis, potentially combined with
expanded aspects of evaluation such as ecosystem services, are future research directions.



Remote Sens. 2024, 16, 2018 16 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 

severely degraded [42]. Problems with reduced grassland areas are also present in SC and 
GS. According to relevant studies, increased grassland degradation and areas of desertifi-
cation have been caused by overgrazing in QH, SC, and GS [43], with the problem of 
grassland degradation remaining prominent. China’s prevention and control efforts re-
garding desertification have achieved a double reduction, in both desertification land and 
desertified land area. Indeed, the bare land areas of NX and IM reduced by 1141.14 km2 
and 6653.82 km2, respectively, during the study period. A series of soil and water conser-
vation measures, such as the comprehensive watershed management, the construction of 
the Three-North Shelterbelt, and the return of cropland to forest (grass), have partially 
improved the ecological status of the region. In addition, the ecological degradation of the 
YB is also related to the large-scale expansion of impervious surface, which has increased 
by 10,844.71 km2 in the past 20 years. 

In recent decades, China has attached great importance to the sustainable develop-
ment of the YB and has launched and implemented a large number of major ecological 
protection, construction, and restoration projects, which are the main reasons for the im-
provement of the EEQ. Certain unresolved issues remain, however, such as the vulnera-
bility and systematic degradation of the YB. The ecological environmental management 
of the YB is a long-term project, which heightens the requirements for ecological environ-
mental quality evaluation. More accurate data support and enhanced analysis, potentially 
combined with expanded aspects of evaluation such as ecosystem services, are future re-
search directions. 

 
Figure 14. Area changes of different land cover types in YB from 2000 to 2020. 

  

Figure 14. Area changes of different land cover types in YB from 2000 to 2020.

6. Conclusions

This research examines the patterns and drivers of RSEI in the YB region from 2000 to
2020. The distribution of EEQ in the YB area has regional characteristics, and the overall
distribution was low in the north and high in the south. SC and IM had the highest and
lowest EEQ, respectively. Throughout the research period, the improved area made up
21.86%, while the degraded area made up 4.27%. In the YB provinces, the degraded area
of HA and SD is greater than the improved area. Soil-available water content (AWC),
annual precipitation (PRE), and distance from impervious surfaces (IMD) were the main
factors affecting the spatial distribution of RSEI. Precipitation, temperature, and IMD have
important effects on RSEI variation in the YB, whereas the area dominated by precipitation
and temperature fluctuated continuously during the study period, but the area dominated
by IMD showed a significant increasing trend. The dominant factors vary among provinces.
From west to east, IMD has an increasing influence on EEQ. Future research will focus on
analyzing the changes and factors influencing EEQ in the YB at an annual scale with a more
comprehensive approach, aiming to offer valuable insights for decision making related to
ecological development and regional growth.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16112018/s1.

https://www.mdpi.com/article/10.3390/rs16112018/s1
https://www.mdpi.com/article/10.3390/rs16112018/s1


Remote Sens. 2024, 16, 2018 17 of 18

Author Contributions: Conceptualization: Z.L. and M.G.; methodology: M.Z. and L.T.; software:
W.Z.; validation: M.Z.; formal analysis: M.G.; investigation: W.Z. and S.Z.; resources: S.Z.; data
curation: M.Z.; original draft preparation: M.Z. and J.M.; review and editing of draft: Z.L. and M.G.;
visualization: G.Y.; supervision: Z.L.; project administration: Z.L.; funding acquisition: Z.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Shaanxi Province Science and Technology Innovation
Team (Ref. 2021TD-51), the Shaanxi Province Geoscience Big Data and Geohazard Prevention
Innovation Team (2022), and the Fundamental Research Funds for the Central Universities, CHD
(Refs. 300102260301 300102261108, and 300102262902).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: The authors are grateful for the constructive comments from the anonymous
reviewers and the editors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Commission on Environment and Development (WCED). Our Common Future; Oxford University Press: Oxford, UK, 1987;

ISBN 978-0-19-282080-8.
2. Karbalaei Saleh, S.; Amoushahi, S.; Gholipour, M. Spatiotemporal Ecological Quality Assessment of Metropolitan Cities: A Case

Study of Central Iran. Environ. Monit Assess 2021, 193, 305. [CrossRef] [PubMed]
3. Li, J.; Tan, K.; Ou, D.P.; Chen, Y.; Xu, K.L.; Ding, J.W. Evaluation of Ecological Environmental Quality Based on Multi-Temporal

Remote Sensing Data. In Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing
Images (MultiTemp), Shanghai, China, 5–7 August 2019; pp. 1–4.

4. Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI)
Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [CrossRef]

5. Alcaraz-Segura, D.; Lomba, A.; Sousa-Silva, R.; Nieto-Lugilde, D.; Alves, P.; Georges, D.; Vicente, J.; Honrado, J. Potential of
Satellite-Derived Ecosystem Functional Attributes to Anticipate Species Range Shifts. Int. J. Appl. Earth Obs. Geoinf. 2017, 57,
86–92. [CrossRef]

6. Singh, S.H.; Maiyar, L.M.; Bhowmick, B. Assessing the Appropriate Grassroots Technological Innovation for Sustainable
Development. Technol. Anal. Strateg. Manag. 2020, 32, 175–194. [CrossRef]

7. Xu, H.Q. A Remote Sensing Urban Ecological Index. Acta Ecol. Sin. 2013, 33, 7853–7862.
8. Burritt, R.L.; Hahn, T.; Schaltegger, S. Towards a Comprehensive Framework for Environmental Management Accounting—Links

between Business Actors and Environmental Management Accounting Tools. Aust. Account. Rev. 2002, 12, 39–50. [CrossRef]
9. Negoiţă, C.V.; Ralescu, D.A. Applications of Fuzzy Sets to Systems Analysis; Birkhäuser: Basel, Switzerland, 1975; ISBN 978-3-7643-0789-9.
10. Organization for Economic Co-operation and Development (OECD). Waste Management and the Circular Economy in Selected OECD

Countries: Evidence from Environmental Performance Reviews; OECD: Paris, France, 2019.
11. Xu, H.Q. A Remote Sensing Index for Assessment of Regional Ecological Changes. China Environ. Sci. 2013, 33, 889–897.
12. Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of Spatial–Temporal Changes of Ecological

Environment Quality Based on RSEI and GEE: A Case Study in Erhai Lake Basin, Yunnan Province, China. Ecol. Indic. 2021, 125,
107518. [CrossRef]

13. Zhu, D.Y.; Chen, T.; Niu, R.Q.; Zhen, N. Analyzing the Ecological Environment of Mining Area by Using Moving Window Remote
Sensing Ecological Index. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 341–347. [CrossRef]

14. Zhang, X.; Fan, H.; Zhou, C.; Sun, L.; Xu, C.; Lv, T.; Ranagalage, M. Spatiotemporal Change in Ecological Quality and Its
Influencing Factors in the Dongjiangyuan Region, China. Environ. Sci. Pollut. Res. 2023, 30, 69533–69549. [CrossRef]

15. Yang, H.; Yu, J.; Xu, W.; Wu, Y.; Lei, X.; Ye, J.; Geng, J.; Ding, Z. Long-Time Series Ecological Environment Quality Monitoring and
Cause Analysis in the Dianchi Lake Basin, China. Ecol. Indic. 2023, 148, 110084. [CrossRef]

16. Liao, W.; Nie, X.; Zhang, Z. Interval Association of Remote Sensing Ecological Index in China Based on Concept Lattice. Env. Sci.
Pollut. Res. 2022, 29, 34194–34208. [CrossRef]

17. Kang, J.; Li, C.; Zhang, B.; Zhang, J.; Li, M.; Hu, Y. How Do Natural and Human Factors Influence Ecosystem Services Changing?
A Case Study in Two Most Developed Regions of China. Ecol. Indic. 2023, 146, 109891. [CrossRef]

18. Naseri, N.; Mostafazadeh, R. Spatial Relationship of Remote Sensing Ecological Indicator (RSEI) and Landscape Metrics under
Urban Development Intensification. Earth Sci. Inf. 2023, 16, 3797–3810. [CrossRef]

19. Zhang, J.M.; Zang, C.F. Spatial and temporal variability characteristics and driving mechanisms of land use in the Southeastern
River Basin from 1990 to 2015. Acta Ecol. Sin. 2019, 39, 9339–9350. [CrossRef]

20. Du, B.; Ye, S.; Gao, P.; Ren, S.; Liu, C.; Song, C. Analyzing Spatial Patterns and Driving Factors of Cropland Change in China’s
National Protected Areas for Sustainable Management. Sci. Total Environ. 2024, 912, 169102. [CrossRef] [PubMed]

https://doi.org/10.1007/s10661-021-09082-2
https://www.ncbi.nlm.nih.gov/pubmed/33900465
https://doi.org/10.3390/rs11202345
https://doi.org/10.1016/j.jag.2016.12.009
https://doi.org/10.1080/09537325.2019.1646420
https://doi.org/10.1111/j.1835-2561.2002.tb00202.x
https://doi.org/10.1016/j.ecolind.2021.107518
https://doi.org/10.13203/j.whugis20190122
https://doi.org/10.1007/s11356-023-27229-1
https://doi.org/10.1016/j.ecolind.2023.110084
https://doi.org/10.1007/s11356-021-17588-y
https://doi.org/10.1016/j.ecolind.2023.109891
https://doi.org/10.1007/s12145-023-01119-z
https://doi.org/10.5846/stxb201810102187
https://doi.org/10.1016/j.scitotenv.2023.169102
https://www.ncbi.nlm.nih.gov/pubmed/38056649


Remote Sens. 2024, 16, 2018 18 of 18

21. Li, M.; Abuduwaili, J.; Liu, W.; Feng, S.; Saparov, G.; Ma, L. Application of Geographical Detector and Geographically Weighted
Regression for Assessing Landscape Ecological Risk in the Irtysh River Basin, Central Asia. Ecol. Indic. 2024, 158, 111540.
[CrossRef]

22. Wang, J.F.; Zhang, T.L.; Fu, B.J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
23. Lv, Y.; Xiu, L.; Yao, X.; Yu, Z.; Huang, X. Spatiotemporal Evolution and Driving Factors Analysis of the Eco-Quality in the Lanxi

Urban Agglomeration. Ecol. Indic. 2023, 156, 111114. [CrossRef]
24. Mou, X.J.; Zhang, X.; Wang, X.H.; Wang, J.N.; Rao, S.; Huang, J.; Chai, H.X. Ecological Change Assessment and Protection Strategy

in the Yellow River Basin. Chin. J. Eng. Sci. 2022, 24, 113. [CrossRef]
25. Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.;
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