Advancing the Limits of InSAR to Detect Crustal Displacement from Low-Magnitude Earthquakes through Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Background
2.2. Data
2.3. Methods
2.3.1. 2D Time-Series Analysis
2.3.2. Deep Learning
2.3.3. Slip Assessment via Spatial Deformation Modeling and Temporal Adjustment
3. Results
3.1. InSAR Time Series
3.2. Signal Refinement via Deep Learning
3.3. Spatial Deformation Modeling and Slip Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Baseline Maps for InSAR Pair Formation
Appendix B. InSAR-Measured Displacement Accuracy Assessment Using GPS
Appendix C. DL Displacement Results at Nacimiento Fault Site
Appendix D. K-Means Analysis of DL Displacements
- Cluster 0 (not shown in Figure A4)—low-magnitude noise with a weighted mean of 0.02 mm and a standard deviation of 0.018 mm. This cluster did not exhibit distinct uplift or subsidence.
- Cluster 1—high-magnitude deformation with a weighted mean value of −0.56 mm and a standard deviation of 0.73 mm. Overall, this cluster favors subsidence.
- Cluster 2—overall uplift with a weighted mean value of 0.08 mm and a standard deviation of 0.14 mm.
- Cluster 3—overall subsidence with a weighted mean of −0.14 mm and a standard deviation of 0.22 mm.
Appendix E. Geologic Relationship of Observed Displacement
Appendix F. Comparison Studies for InSAR-Observed Seismic Displacement
EQ Date | EQ Location | Mw | LOS Disp. [cm] | Study |
---|---|---|---|---|
24 August 2014 | Napa, California | 6.1 | 6 | Yang et al., 2017 [57] |
6 February 2018 | Hualien, Taiwan | 6.4 | 30 | Yang et al., 2018 [58] |
11 January 2018 | Mandali, Iran | 5.25 | 3 | Barnhart et al., 2018 [59] |
17 November 2017 | Nyingchi, China | 6.5 | 9 | Yu et al., 2018 [60] |
12 November 2017 | Darbandikhan, Iran | 7.3 | 80 | Barnhart et al., 2018 [59] |
8 September 2017 | Tehuantepac, Mexico | 8.1 | 20 | Chen et al., 2018 [61] |
21 August 2017 | Ischia, Italy | 4.2 | 4 | De Novellis et al., 2018 [12] |
8 August 2017 | Jiuzhaigou, China | 6.5 | 21 | Nie et al., 2018 [62] |
5 April 2017 | Sangsefid, Iran | 6.1 | 12 | Su et al., 2019 [63] |
6 February 2017 | Gulpinar, Turkey | 5.1 | 6.2 | Ganas et al., 2018 [13] |
24 August 2016 | Amatrice, Italy | 6.2 | 18.5 | Xu et al., 2017 [64] |
25 December 2016 | Melinka, Chile | 7.6 | 45 | Moreno et al., 2018 [65] |
25 November 2016 | Aketao, China | 6.6 | 10 | Bie et al., 2018 [66] |
13 November 2016 | Kaikoura, New Zealand | 7.8 | 130 | Hamling et al., 2017 [67] |
30 October 2016 | Norcia, Italy | 6.6 | 35 | Papadopoulos et al., 2017 [68] |
17 October 2016 | Zaduo, China | 5.9 | 3 | Jiang et al., 2018 [11] |
3 September 2016 | Pawnee, Oklahoma | 5.8 | 3 | Grandin et al., 2017 [10] |
26 June 2016 | Nura, Kyrgyzstan | 6.5 | 12.1 | He et al., 2018 [69] |
21 May 2016 | Petermann Ranges, Australia | 4.1 | 13 | Polcari et al., 2018 [70] |
16 April 2016 | Pedernales, Ecuador | 7.8 | 60 | Bejar-Pizarro et al., 2018 [71] |
5 February 2016 | Meinong, Taiwan | 6.4 | 12 | Qu et al., 2017 [72] |
20 January 2016 | Menyuan, China | 5.9 | 8 | Liu et al., 2018 [73] |
7 December 2015 | Murghab, Tajikistan | 7.2 | 56 | Metzger et al., 2017 [74] |
15 November 2017 | Lefkada, Greece | 6.5 | 28.6 | Avallone et al., 2017 [75] |
3 July 2015 | Pishan, China | 6.4 | 11.8 | Ainscoe et al., 2017 [76] |
25 April 2015 | Gorkha, Nepal | 7.8 | 110 | Castaldo et al., 2017 [77] |
24 August 2014 | South Napa, California | 6 | 10 | Guangcai et al., 2015 [78] |
26 November 2019 | Durres City, Albania | 6.3 | 5 | Panuntun, 2021 [79] |
5 July 2019 | Ridgecrest, California | 7.1 | 5 | Wang and Burgman, 2020 [80] |
29 December 2020 | Petrinja, Croatia | 6.2 | 40 | Bjelotomić Oršulić et al., 2021 [81] |
16 October 2019 | Mindanao, Philippines | 6.4 | 5 | Li et al., 2020 [82] |
30 November 2018 | Anchorage, Alaska | 7.1 | 5 | He et al., 2020 [83] |
17 June 2019 | Changning, China | 6 | 6 | Wang et al., 2020 [84] |
20 March 2019 | Acipayam basin, Turkey | 5.7 | 4.8 | Yang et al., 2020 [85] |
9 August 2019 | Lombok Island, Indonesia | 6.2 | 39 | Wibowo et al., 2021 [86] |
16 April 2016 | Kumamoto, Japan | 7 | 20 | He et al., 2019 [87] |
24 September 2019 | Mirpur, Pakistan | 5.4 | 9.5 | Vaka et al., 2020 [88] |
11 November 2019 | Le Teil, France | 4.9 | 16 | Marconato et al., 2021 [89] |
19 January 2020 | Jiashi, China | 6 | 5.3 | Yu et a., 2020 [90] |
26 December 2016 | Chiloe, Chile | 7.5 | 50 | Xu, 2017 [91] |
12 August 2016 | Xiangyang Lake, China | 4.9 | 1 | Tian et al., 2018 [92] |
28 September 2018 | Sulawesi, Indonesia | 7.5 | 12 | Bacques et al., 2020 [93] |
21 March 2020 | Greece | 5.7 | 5 | Bignami et al., 2021 [94] |
22 March 2020 | Zagreb, Croatia | 5.4 | 3 | Bignami et al., 2021 [94] |
References
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. Solid Earth 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Elliott, J.; Walters, R.; Wright, T. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun. 2020, 11, 3863. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Zebker, H.; Shankar, P.; Hooper, A. InSAR remote sensing over decorrelating terrains: Persistent scattering methods. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 717–722. [Google Scholar]
- Kirui, P.K.e.; Reinosch, E.; Isya, N.; Riedel, B.; Gerke, M. Mitigation of atmospheric artefacts in multi temporal InSAR: A review. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 251–272. [Google Scholar] [CrossRef]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J. Geophys. Res. Solid Earth 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Rousset, B.; Jolivet, R.; Simons, M.; Lasserre, C.; Riel, B.; Milillo, P.; Çakir, Z.; Renard, F. An aseismic slip transient on the North Anatolian Fault. Geophys. Res. Lett. 2016, 43, 3254–3262. [Google Scholar] [CrossRef]
- Khoshmanesh, M.; Shirzaei, M. Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nat. Geosci. 2018, 11, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Grandin, R.; Vallée, M.; Lacassin, R. Rupture process of the Mw 5.8 Pawnee, Oklahoma, earthquake from Sentinel-1 InSAR and seismological data. Seismol. Res. Lett. 2017, 88, 994–1004. [Google Scholar] [CrossRef]
- Jiang, G.; Wen, Y.; Li, K.; Fang, L.; Xu, C.; Zhang, Y.; Xu, X. A NE-trending oblique-slip fault responsible for the 2016 Zaduo earthquake (Qinghai, China) revealed by InSAR data. Pure Appl. Geophys. 2018, 175, 4275–4288. [Google Scholar] [CrossRef]
- De Novellis, V.; Carlino, S.; Castaldo, R.; Tramelli, A.; De Luca, C.; Pino, N.A.; Pepe, S.; Convertito, V.; Zinno, I.; De Martino, P. The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophys. Res. Lett. 2018, 45, 2193–2202. [Google Scholar] [CrossRef]
- Ganas, A.; Kourkouli, P.; Briole, P.; Moshou, A.; Elias, P.; Parcharidis, I. Coseismic displacements from moderate-size earthquakes mapped by Sentinel-1 differential interferometry: The case of February 2017 Gulpinar earthquake sequence (Biga Peninsula, Turkey). Remote Sens. 2018, 10, 1089. [Google Scholar] [CrossRef]
- Rocca, F. Modeling interferogram stacks. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3289–3299. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Jolivet, R.; Dalaison, M.; Johnson, P.A.; Hulbert, C. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning. Nat. Commun. 2021, 12, 6480. [Google Scholar] [CrossRef] [PubMed]
- Thompson Jobe, J.A.; Chupik, C. Low-Rate Faulting on the Margin of the Colorado Plateau and Rio Grande Rift in North-Central New Mexico. Tectonics 2021, 40, e2021TC006860. [Google Scholar] [CrossRef]
- Wong, I.; Silva, W.; Olig, S.; Dober, M.; Gregor, N.; Gardner, J.; Lewis, C.; Terra, F.; Zachariasen, J.; Stokoe, K. Update of the Probabilistic Seismic Hazard Analysis and Development of Seismic Design Ground Motions at the Los Alamos National Laboratory; URS Corporation: Oakland, CA, USA, 2007; p. 25. [Google Scholar]
- Roberts, P.; Ten Cate, J.; House, L.; Greene, M.; Morton, E.; Kelley, R. The Los Alamos Seismic Network (LASN): Improved Network Instrumentation, Local Earthquake Catalog Updates, and Peculiar Types of Data. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2013; p. S51A-2287. [Google Scholar]
- Stoeser, D.B.; Green, G.N.; Morath, L.C.; Heran, W.D.; Wilson, A.B.; Moore, D.W.; Van Gosen, B.S.; New Mexico Faults, from the USGS Geologic Map Database 2005. USGS ScienceBase-Catalog. Available online: https://www.sciencebase.gov/catalog/item/4f4e496ee4b07f02db5a354e (accessed on 19 January 2024).
- Baltz, E.H. Stratigraphy and Regional Tectonic Implications of Part of Upper Cretaceous and Tertiary Rocks, East-Central San Juan Basin, New Mexico; 2330-7102; US Government Publishing Office: Washington, DC, USA, 1967. [Google Scholar]
- Kelley, S.A.; Chapin, C.E.; Corrigan, J. Late Mesozoic to Cenozoic Cooling Histories of the Flanks of the Northern and Central Rio Grande Rift, Colorado and New Mexico; New Mexico Bureau of Mines & Mineral Resources: Socorro, NM, USA, 1992; Volume 145. [Google Scholar]
- Woodward, L.A.; Hultgren, M.C.; Crouse, D.L.; Merrick, M.A.; Lucas, S.; Kues, B.; Williamson, T.; Hunt, A. Geometry of Nacimiento-Gallina fault system, northern New Mexico. San Juan Basin IV New Mex. Geol. Soc. Guideb. 1992, 43, 103–108. [Google Scholar]
- Wong, I.; Kelson, K.; Olig, S.; Kolbe, T.; Hemphill-Haley, M.; Bott, J.; Green, R.; Kanakari, H.; Sawyer, J.; Silva, W.; et al. Seismic hazards evaluation of the Los Alamos National Laboratory; Unpublished Consulting Report Prepared for Los Alamos National Laboratory; Woodward-Clyde Federal Services: Oakland, CA, USA, 1995; Volume 3. [Google Scholar]
- Derouin, S.; Su, F. Revised Probabilistic Seismic Hazard Analysis for El Vado Dam, New Mexico. Technical Memorandum 86-68330-2013-20; Bureau of Reclamation: Denver, CO, USA, 2013. [Google Scholar]
- Sanford, A.R.; Jaksha, L.H.; Cash, D.J.; Slemmons, D.; Engdahl, E.; Zoback, M.; Blackwell, D. Seismicity of the Rio Grande rift in New Mexico. Neotectonics N. Am. 1991, 1, 229. [Google Scholar]
- House, L.; Hartse, H. Seismicity and faults in northern New Mexico: New Mexico Geological Society. In Proceedings of the 46th Field Conference, Guidebook, Santa Fe, NM, USA, 27–30 September 1995; pp. 135–137. [Google Scholar]
- Woodward, L.A.; Kaufman, W.H.; Anderson, J.B. Nacimiento fault and related structures, northern New Mexico. Geol. Soc. Am. Bull. 1972, 83, 2383–2396. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.a.; Scharroo, R.; Wobbe, F.; Smith, W.H.; Tian, D. The generic mapping tools version 6. Geochem. Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar]
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools; Technical Report; Scripps Institute of Oceanography: La Jolla, CA, USA, 2011. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Brcic, R.; Parizzi, A.; Eineder, M.; Bamler, R.; Meyer, F. Estimation and compensation of ionospheric delay for SAR interferometry. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2908–2911. [Google Scholar]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. JOSA A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens. 2011, 50, 271–280. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38, L17311. [Google Scholar] [CrossRef]
- Feigl, K.L.; Thurber, C.H. A method for modelling radar interferograms without phase unwrapping: Application to the M 5 Fawnskin, California earthquake of 1992 December 4. Geophys. J. Int. 2009, 176, 491–504. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Newton, C.A.; Cash, D.J.; Olsen, K.H.; Homuth, E.F. LASL Seismic Programs in the Vicinity of Los Alamos, New Mexico; Los Alamos National Lab (LANL): Los Alamos, NM, USA, 1976. [Google Scholar]
- Reinisch, E.C.; Cardiff, M.; Feigl, K.L. Graph theory for analyzing pair-wise data: Application to geophysical model parameters estimated from interferometric synthetic aperture radar data at Okmok volcano, Alaska. J. Geod. 2017, 91, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Strang, G.; Borre, K. Linear Algebra, Geodesy, and GPS; Wellesley-Cambridge Press: Wellesley, MA, USA, 1997. [Google Scholar]
- Woodward, L.A.; Karlstrom, K.E.; Daniel, C.G. Restoration of Laramide right-lateral strike slip in northern New Mexico by using Proterozoic piercing points: Tectonic implications from the Proterozoic to the Cenozoic: Comment and Reply. Geology 1994, 22, 862–864. [Google Scholar] [CrossRef]
- Merrick, M.A.; Woodward, L.A. Geology of Regina Quadrangle, Rio Arriba and Sandoval Counties, New Mexico; New Mexico Bureau of Mines & Mineral Resources: Socorro, NM, USA, 1982. [Google Scholar]
- Doerry, A.W. Atmospheric loss considerations for synthetic aperture radar design and operation. In Proceedings of the Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Orlando, FL, USA, 14–15 April 2004; pp. 17–27. [Google Scholar]
- Rosen, P.A.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, V.R. Global persistent SAR sampling with the NASA-ISRO SAR (NISAR) mission. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 0410–0414. [Google Scholar]
- Sheehan, A. Rio Grande Rift GPS Network—RG09-RG09LndrthNM2006 P.S; The GAGE Facility operated by EarthScope Consortium and UNAVCO: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Sheehan, A. Rio Grande Rift GPS Network—RG10-RG10CbollaNM2006 P.S; The GAGE Facility operated by EarthScope Consortium and UNAVCO: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Reinisch, E.C.; Cardiff, M.; Feigl, K.L. Characterizing volumetric strain at Brady Hot Springs, Nevada, USA using geodetic data, numerical models and prior information. Geophys. J. Int. 2018, 215, 1501–1513. [Google Scholar] [CrossRef]
- Reinisch, E.C.; Cardiff, M.; Kreemer, C.; Akerley, J.; Feigl, K.L. Time-Series Analysis of Volume Change at Brady Hot Springs, Nevada, USA, Using Geodetic Data from 2003–2018. J. Geophys. Res. Solid Earth 2020, 125, e2019JB017816. [Google Scholar] [CrossRef]
- Reinisch, E.C.; Henderson, B.G. Spatio-temporal analysis and volumetric characterization of interferometric synthetic aperture radar-observed deformation signatures related to underground and in situ leach mining. J. Appl. Remote Sens. 2023, 17, 044511. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Valley, H.W.; Quaternary Fault and Fold Database of the United States. US Geological Survey. 2010. Available online: http://earthquakes.usgs.gov/hazards/qfaults (accessed on 6 March 2024).
- Yang, Y.; Chen, Q.; Xu, Q.; Zhang, Y.; Yong, Q.; Liu, G. Coseismic surface deformation of the 2014 Napa earthquake mapped by Sentinel-1A SAR and accuracy assessment with COSMO-SkyMed and GPS data as cross validation. Int. J. Digit. Earth 2017, 10, 1197–1213. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Hu, J.-C.; Tung, H.; Tsai, M.-C.; Chen, Q.; Xu, Q.; Zhang, Y.-J.; Zhao, J.-J.; Liu, G.-X.; Xiong, J.-N. Co-seismic and postseismic fault models of the 2018 Mw 6.4 Hualien earthquake occurred in the junction of collision and subduction boundaries offshore eastern Taiwan. Remote Sens. 2018, 10, 1372. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Brengman, C.M.; Li, S.; Peterson, K.E. Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw7. 3 Darbandikhan, Iran/Iraq earthquake. Earth Planet. Sci. Lett. 2018, 496, 96–107. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Chen, J.; Hu, J.-C. Small magnitude co-seismic deformation of the 2017 Mw 6.4 Nyingchi earthquake revealed by InSAR measurements with atmospheric correction. Remote Sens. 2018, 10, 684. [Google Scholar] [CrossRef]
- Chen, K.; Feng, W.; Liu, Z.; Song, Y.T. 2017 Mw 8.1 Tehuantepec earthquake: Deep slip and rupture directivity enhance ground shaking but weaken the tsunami. Seismol. Res. Lett. 2018, 89, 1314–1322. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, D.-J.; Jia, Z.; Yu, P.; Li, L. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data. Earth Planets Space 2018, 70, 55. [Google Scholar] [CrossRef]
- Su, Z.; Yang, Y.-H.; Li, Y.-S.; Xu, X.-W.; Zhang, J.; Zhou, X.; Ren, J.-J.; Wang, E.-C.; Hu, J.-C.; Zhang, S.-M. Coseismic displacement of the 5 April 2017 Mashhad earthquake (Mw 6.1) in NE Iran through Sentinel-1A TOPS data: New implications for the strain partitioning in the southern Binalud Mountains. J. Asian Earth Sci. 2019, 169, 244–256. [Google Scholar] [CrossRef]
- Xu, G.; Xu, C.; Wen, Y.; Jiang, G. Source parameters of the 2016–2017 Central Italy earthquake sequence from the Sentinel-1, ALOS-2 and GPS data. Remote Sens. 2017, 9, 1182. [Google Scholar] [CrossRef]
- Moreno, M.; Li, S.; Melnick, D.; Bedford, J.; Báez, J.C.; Motagh, M.; Metzger, S.; Vajedian, S.; Sippl, C.; Gutknecht, B. Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nat. Geosci. 2018, 11, 285–290. [Google Scholar] [CrossRef]
- Bie, L.; Hicks, S.; Garth, T.; Gonzalez, P.; Rietbrock, A. ‘Two go together’: Near-simultaneous moment release of two asperities during the 2016 Mw 6.6 Muji, China earthquake. Earth Planet. Sci. Lett. 2018, 491, 34–42. [Google Scholar] [CrossRef]
- Hamling, I.J.; Hreinsdóttir, S.; Clark, K.; Elliott, J.; Liang, C.; Fielding, E.; Litchfield, N.; Villamor, P.; Wallace, L.; Wright, T.J. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science 2017, 356, eaam7194. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.; Ganas, A.; Agalos, A.; Papageorgiou, A.; Triantafyllou, I.; Kontoes, C.; Papoutsis, I.; Diakogianni, G. Earthquake triggering inferred from rupture histories, DInSAR ground deformation and stress-transfer modelling: The case of central Italy during August 2016–January 2017. Pure Appl. Geophys. 2017, 174, 3689–3711. [Google Scholar] [CrossRef]
- He, P.; Hetland, E.A.; Niemi, N.A.; Wang, Q.; Wen, Y.; Ding, K. The 2016 Mw 6.5 Nura earthquake in the Trans Alai range, northern Pamir: Possible rupture on a back-thrust fault constrained by Sentinel-1A radar interferometry. Tectonophysics 2018, 749, 62–71. [Google Scholar] [CrossRef]
- Polcari, M.; Albano, M.; Atzori, S.; Bignami, C.; Stramondo, S. The causative fault of the 2016 Mwp 6.1 Petermann Ranges intraplate earthquake (Central Australia) retrieved by C-and L-band InSAR data. Remote Sens. 2018, 10, 1311. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Álvarez Gómez, J.A.; Staller, A.; Luna, M.P.; Pérez-López, R.; Monserrat, O.; Chunga, K.; Lima, A.; Galve, J.P.; Martínez Díaz, J.J. InSAR-based mapping to support decision-making after an earthquake. Remote Sens. 2018, 10, 899. [Google Scholar] [CrossRef]
- Qu, C.; Zuo, R.; Shan, X.; Hu, J.-c.; Zhang, G. Coseismic deformation of the 2016 Taiwan Mw6. 3 earthquake using InSAR data and source slip inversion. J. Asian Earth Sci. 2017, 148, 96–104. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Zhang, Y.; Shan, X. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements. J. Asian Earth Sci. 2018, 158, 103–111. [Google Scholar] [CrossRef]
- Metzger, S.; Schurr, B.; Ratschbacher, L.; Sudhaus, H.; Kufner, S.K.; Schöne, T.; Zhang, Y.; Perry, M.; Bendick, R. The 2015 Mw7. 2 Sarez strike-slip earthquake in the Pamir interior: Response to the underthrusting of India’s western promontory. Tectonics 2017, 36, 2407–2421. [Google Scholar] [CrossRef]
- Avallone, A.; Cirella, A.; Cheloni, D.; Tolomei, C.; Theodoulidis, N.; Piatanesi, A.; Briole, P.; Ganas, A. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history. Sci. Rep. 2017, 7, 10358. [Google Scholar] [CrossRef] [PubMed]
- Ainscoe, E.; Elliott, J.; Copley, A.; Craig, T.; Li, T.; Parsons, B.; Walker, R. Blind thrusting, surface folding, and the development of geological structure in the Mw 6.3 2015 Pishan (China) earthquake. J. Geophys. Res. Solid Earth 2017, 122, 9359–9382. [Google Scholar] [CrossRef]
- Castaldo, R.; De Novellis, V.; Solaro, G.; Pepe, S.; Tizzani, P.; De Luca, C.; Bonano, M.; Manunta, M.; Casu, F.; Zinno, I. Finite element modelling of the 2015 Gorkha earthquake through the joint exploitation of DInSAR measurements and geologic-structural information. Tectonophysics 2017, 714, 125–132. [Google Scholar] [CrossRef]
- Guangcai, F.; Zhiwei, L.; Xinjian, S.; Bing, X.; Yanan, D. Source parameters of the 2014 Mw 6.1 South Napa earthquake estimated from the Sentinel 1A, COSMO-SkyMed and GPS data. Tectonophysics 2015, 655, 139–146. [Google Scholar] [CrossRef]
- Panuntun, H. Geodetic slip model of the November 26, 2019 Albania earthquake estimated from Sentinel-1 TOPS interferometry. Tectonophysics 2021, 807, 228814. [Google Scholar] [CrossRef]
- Wang, K.; Bürgmann, R. Co-and early postseismic deformation due to the 2019 Ridgecrest earthquake sequence constrained by Sentinel-1 and COSMO-SkyMed SAR data. Seismol. Res. Lett. 2020, 91, 1998–2009. [Google Scholar] [CrossRef]
- Bjelotomić Oršulić, O.; Markovinović, D.; Varga, M.; Bašić, T. Coseismic ground displacement after the Mw6. 2 earthquake in NW Croatia determined from Sentinel-1 and GNSS CORS Data. Geosciences 2021, 11, 170. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Jiang, W.; Su, Z.; Shen, W. Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102127. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Chen, Y.; Xu, C.; Ding, K. Coseismic rupture geometry and slip rupture process during the 2018 Mw 7.1 Anchorage, south-central Alaska earthquake: Intraplate normal faulting by slab tear constrained by geodetic and teleseismic data. Earth Space Sci. 2020, 7, e2019EA000924. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, G.; Weingarten, M.; Niu, Y. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence. Geophys. Res. Lett. 2020, 47, e2020GL087603. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wang, S.; Wang, X. Sentinel-1 observation of 2019 Mw 5.7 Acipayam earthquake: A blind normal-faulting event in the Acipayam basin, southwestern Turkey. J. Geodyn. 2020, 135, 101707. [Google Scholar] [CrossRef]
- Wibowo, S.B.; Hadmoko, D.S.; Isnaeni, Y.; Farda, N.M.; Putri, A.F.S.; Nurani, I.W.; Supangkat, S.H. Spatio-temporal distribution of ground deformation due to 2018 lombok earthquake series. Remote Sens. 2021, 13, 2222. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. Complete three-dimensional near-field surface displacements from imaging geodesy techniques applied to the 2016 Kumamoto earthquake. Remote Sens. Environ. 2019, 232, 111321. [Google Scholar] [CrossRef]
- Vaka, D.S.; Rao, Y.; Singh, T. Surface deformation of the 2019 Mirpur earthquake estimated from Sentinel-1 InSAR data. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Virtual, 1–4 December 2020; pp. 130–133. [Google Scholar]
- Marconato, L.; Leloup, P.-H.; Lasserre, C.; Caritg, S.; Jolivet, R.; Grandin, R.; Cavalié, O.; Métois, M.; Audin, L. Insights on fault reactivation during the 2019, Mw4. 9 Le Teil earthquake in southeastern France, from a joint 3D geology and InSAR study. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021; p. EGU21-4388. [Google Scholar]
- Yu, P.; Qiao, X.; Xiong, W.; Chen, W.; Nie, Z.; Wang, D.; Jia, Z.; Li, J. Source model for the M w 6.0 earthquake in Jiashi, China on 19 January 2020 from Sentinel-1A InSAR data. Earth Planets Space 2020, 72, 169. [Google Scholar] [CrossRef]
- Xu, W. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data. Geophys. Res. Lett. 2017, 44, 4774–4780. [Google Scholar] [CrossRef]
- Tian, Y.; Liu-Zeng, J.; Luo, Y.; Li, Y.; Zhang, J. Deformation Related to an M < 5 Earthquake Sequence on Xiangyang Lake-Burog Co Fault in Central Xizang, China, Observed by Sentinel-1 Data. Bull. Seismol. Soc. Am. 2018, 108, 3248–3259. [Google Scholar]
- Bacques, G.; de Michele, M.; Foumelis, M.; Raucoules, D.; Lemoine, A.; Briole, P. Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5). Sci. Rep. 2020, 10, 9103. [Google Scholar] [CrossRef] [PubMed]
- Bignami, C.; Antonioli, A.; Atzori, S.; Kiratzi, A.; Polcari, M.; Svigkas, N.; Tolomei, C. Mapping InSAR deformation of low and moderate earthquakes. Procedia Comput. Sci. 2021, 181, 214–219. [Google Scholar] [CrossRef]
Parameter | Estimate | Uncertainty | |
---|---|---|---|
Okada 1 (O1) | Length [m] | 1668.8 | 484.4 |
Width [m] | 210.8 | 93.8 | |
Centroid Depth [m] | 207.0 | 46.9 | |
Dip [°] | 79.2 | 20.6 | |
Strike [°] | 192.9 | 5.6 | |
Centroid Easting [m] | 328,415.4 | 150.0 | |
Centroid Northing [m] | 4,008,606.1 | 500.0 | |
Rake [°] | −74.1 | 19.4 | |
Okada 2 (O2) | Length [m] | 146.4 | 281.3 |
Width [m] | 228.0 | 67.5 | |
Centroid Depth [m] | 370.5 | 62.5 | |
Dip [°] | 49.6 | 6.6 | |
Strike [°] | 216.4 | 4.4 | |
Centroid Easting [m] | 328,856.7 | 41.3 | |
Centroid Northing [m] | 4,008,818.7 | 62.5 | |
Rake [°] | −107.5 | 17.5 |
Parameterization | Planar Slip Rate at Depth [cm/yr] | ||||
---|---|---|---|---|---|
17 March to 1 July | 1 July to 30 July | 30 July to 25 August | |||
O1 | 4.3 | ||||
1.6 | |||||
1.2 | |||||
O2 | 3.7 | ||||
3.8 | |||||
2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinisch, E.C.; Abolt, C.J.; Swanson, E.M.; Rouet-Leduc, B.; Snyder, E.E.; Sivaraj, K.; Solander, K.C. Advancing the Limits of InSAR to Detect Crustal Displacement from Low-Magnitude Earthquakes through Deep Learning. Remote Sens. 2024, 16, 2019. https://doi.org/10.3390/rs16112019
Reinisch EC, Abolt CJ, Swanson EM, Rouet-Leduc B, Snyder EE, Sivaraj K, Solander KC. Advancing the Limits of InSAR to Detect Crustal Displacement from Low-Magnitude Earthquakes through Deep Learning. Remote Sensing. 2024; 16(11):2019. https://doi.org/10.3390/rs16112019
Chicago/Turabian StyleReinisch, Elena C., Charles J. Abolt, Erika M. Swanson, Bertrand Rouet-Leduc, Emily E. Snyder, Kavya Sivaraj, and Kurt C. Solander. 2024. "Advancing the Limits of InSAR to Detect Crustal Displacement from Low-Magnitude Earthquakes through Deep Learning" Remote Sensing 16, no. 11: 2019. https://doi.org/10.3390/rs16112019
APA StyleReinisch, E. C., Abolt, C. J., Swanson, E. M., Rouet-Leduc, B., Snyder, E. E., Sivaraj, K., & Solander, K. C. (2024). Advancing the Limits of InSAR to Detect Crustal Displacement from Low-Magnitude Earthquakes through Deep Learning. Remote Sensing, 16(11), 2019. https://doi.org/10.3390/rs16112019