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Abstract: Earth observation imaging technologies, particularly multispectral sensors, produce ex-
tensive high-dimensional data over time, thus offering a wealth of information on global dynamics.
These data encapsulate crucial information in essential climate variables, such as varying levels of soil
moisture and temperature. However, current cutting-edge machine learning models, including deep
learning ones, often overlook the treasure trove of multidimensional data, thus analyzing each vari-
able in isolation and losing critical interconnected information. In our study, we enhance conventional
convolutional neural network models, specifically those based on the embedded temporal convo-
lutional network framework, thus transforming them into models that inherently understand and
interpret multidimensional correlations and dependencies. This transformation involves recasting
the existing problem as a generalized case of N-dimensional observation analysis, which is followed
by deriving essential forward and backward pass equations through tensor decompositions and
compounded convolutions. Consequently, we adapt integral components of established embedded
temporal convolutional network models, like encoder and decoder networks, thus enabling them
to process 4D spatial time series data that encompass all essential climate variables concurrently.
Through the rigorous exploration of diverse model architectures and an extensive evaluation of
their forecasting prowess against top-tier methods, we utilize two new, long-term essential climate
variables datasets with monthly intervals extending over four decades. Our empirical scrutiny,
particularly focusing on soil temperature data, unveils that the innovative high-dimensional em-
bedded temporal convolutional network model-centric approaches markedly excel in forecasting,
thus surpassing their low-dimensional counterparts, even under the most challenging conditions
characterized by a notable paucity of training data.

Keywords: ND convolutional neural networks; tensor decompositions; stacked convolutions; time
series forecasting; essential climate variables

1. Introduction

Monitoring Earth’s climate change is a significant contemporary challenge, and data
collected from different geographical areas over time play a critical role in understanding
different physical characteristics and processes. Essential Climate Variables (ECVs) are crucial
to this work, as they provide global-scale climate change insight and help assess climate
risks and causes. The Global Climate Observing System (GCOS) (https://gcos.wmo.int/
en/essential-climate-variables) (accessed on 1 February 2024) currently specifies 54 such
variables [1], including soil temperature, soil moisture, above-ground biomass, and sea
surface salinity, among others. ECVs are observed according to specific climate monitoring
principles (identified by the GCOS), while the typical estimation of ECVs is usually based
on numerical simulation models [2].

In the past years, data-driven Machine Learning (ML) methods have also contributed
to the field in terms of mitigation and the prediction of climate change [3]. Moreover, the
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quite prominent performance of Deep Learning (DL) methods in numerous Remote Sensing
(RS) tasks [4], such as multispectral [5] and hyperspectral [6] classification, as well as
multitemporal land cover classification [7,8], has also paved the way for its involvement
in the field [9]. While DL methods have been considered for the instantaneous retrieval
of the ECV values, the problem of forecasting has yet to be explored in sufficient detail.
Furthermore, existing cutting-edge DL frameworks [9] forecast each ECV independently,
thus failing to capitalize on existing correlations.

In RS research, considerable efforts concentrate on DL models for supervised classifi-
cation tasks, thus spanning land cover classification [10], building detection [11], and scene
classification [12], among others. The interest in spatiotemporal data analysis is escalating,
thus prompted by its extensive application potential [13]. Urgent global challenges, like
uncontrolled deforestation [14,15] and growing environmental pollution [16,17], accentuate
the necessity for pioneering research and solutions, thus attracting academia, policymakers,
and decision makers.

When the problems in question involve sequential time dependence, DL methods like
Recurrent Neural Networks (RNNs) and Long Short Term Memory (LSTM) networks [18] are
typically employed. While such methods can capture long-range temporal dependencies,
they are not able to simultaneously capture both spatial and temporal observations, which
are encoded in 3D spatiotemporal structures. A very successful approach toward that goal
is the Conv-LSTM [19], which is a variant of the LSTM network in which the data flow
through the cells by keeping the input dimension (3D in that case) instead of being just a
1D vector with features.

Beyond the RNN/LSTM methodologies in sequence modeling tasks, a particular
subset of CNN models has emerged as a noteworthy substitute, specifically the Temporal
Convolutional Networks (TCNs). The TCNs, which are 1D models, were initially devel-
oped for detailed action segmentation tasks [20]. In this pioneering work, two variants
of TCNs were presented: the encoder–decoder TCN and the dilated TCN, with the latter
drawing inspiration from the Wavenet model [21]. Another model conceived by Google
DeepMind [22] leveraged 1D-CNN structures, utilizing dilated convolutions and residual
blocks, and it outperformed the capabilities of existing RNN models. This model under-
scores the effectiveness of 1D-CNN architectures in complex sequence modeling tasks.

Of noticeable interest are works aiming to compensate for multidimensional data
with more than three dimensions by adopting 4D architectures. More precisely, 4D-CNNs
have been introduced for semantically segmenting cardiac volumetric sequences [23] and
classifying multitemporal land cover [7,8], amongst others. Both approaches construct
encoder–decoder networks, but while in [23], the upsampling is performed via kNN
interpolation, in [7,8], it is executed via fully learnable 4D transpose convolution.

Focusing on spatiotemporal observation analysis, [19] proposed a Conv-LSTM model
for the problem of precipitation nowcasting. To predict future radar maps from past radar
echo sequences, the method adopted an LSTM architecture that employs convolutions
in the input-to-state and state-to-state transitions. Moreover, Conv-LSTM architectures
have also been employed in similar tasks, thus dealing with radar [24] and satellite [25]
time series data.

In the study conducted in [26], another form of TCN architecture that utilizes residual
blocks and dilated causal convolutions was presented. This model was benchmarked
against various recurrent architectures, including LSTMs, Gated Recurrent Units (GRUs),
and RNNs, in tasks typically employed for RNN evaluations, with results indicating
superior performance of the TCN. However, these outcomes are not universal; for example,
ref. [27] demonstrated scenarios where LSTM and CNN outperformed TCN, specifically
in forecasting day-ahead electricity prices in Spain. This suggests that the effectiveness of
these architectures can significantly depend on the context and specific characteristics of
the task at hand.

In a noteworthy recent study, Villia et al. introduced an innovative technique for
predicting ECV values, which is detailed in their paper [9]. The proposed model, termed



Remote Sens. 2024, 16, 2020 3 of 42

ETCN, merges three distinct networks: an encoder, a TCN, and a decoder. The proposed
architecture is capable of analyzing spatiotemporal sequences and predicting the next time
step. We discuss the method in detail in Section 2.2.

In essence, existing state-of-the-art ECVs’ forecasting architectures comprise lower-
order (2D or 3D) models in the quest to accurately forecast ECVs’ values. Retooling
these lower-order DL architectures for handling the intrinsically 4D simultaneous ECVs’
forecasting task can lead to inferior performance, as demonstrated in Figure 1.

Figure 1. Time series data from various ECVs are teeming with valuable insights, thus capturing
their temporal dynamics. Notably, ECVs like soil temperature and moisture at varying depths
often exhibit significant correlations, which are evident in the slope of the least squares line drawn
between each pair. These critical interdependencies among ECV time series can be effectively
harnessed and maintained using meticulously crafted 4D model architectures, thus allowing for a
more comprehensive and nuanced analysis.

Simultaneously measuring multiple ECVs such as soil temperature at different depths
can provide more reliable estimations by exploiting the inherent correlations, thus mandat-
ing the need for models that are capable of performing the regression of high-dimensional
structures. In this work, we diverge from traditional methodologies and introduce a so-
phisticated high-dimensional DL strategy for forecasting ECVs. We accomplish this by
expanding the cutting-edge Embedded Temporal Convolutional Network (ETCN) architec-
ture [9] into its more advanced high-dimensional variant, thus enabling the concurrent
learning of spatiotemporal features across all ECVs under consideration. This holistic
approach not only streamlines the forecasting process, but also leverages the intricate
interdependencies present among the various climate variables.

In addition, we present two new ECV forecast datasets for the purpose of training
and assessing the efficacy of the suggested model in comparison to leading approaches.
We carry out comprehensive tests to measure each model’s performance against various
structures and multiple model parameters. The empirical outcomes from actual ECV data
underscore the superiority and promise of the proposed advanced feature modeling in all
cases under consideration.
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The main contributions of this work include the following:

• The theoretical extension of lower-order Convolutional Neural Networks (CNNs) to their
N-D analogs by providing a rigorous mathematical foundation for the forward and
backward passes;

• The demonstration of issues and workarounds for incorporating this extension into a
working DL framework;

• The design and development of a novel 4D-ETCN to tackle the ECVs’ forecasting
problem and its evaluation on properly designed datasets for the cause;

• The introduction of two novel datasets encoding satellite-derived geophysical param-
eters, specifically soil temperature at different levels, obtained on monthly periodicity
over 40 years.

The paper is organized as follows: Section 2 introduces the proposed high-dimensional
extension of the basic functionality of the convolutional layer for both forward and back-
ward passes, with some parts of the detailed mathematical and conceptual study of this
extension being placed in the accompanying appendices of the present work. In addition,
we therein sketch the proposed 4D-ETCN architecture for tackling the ECVs’ forecasting
problem as an instance of the aforementioned extension for the problem at hand. Section 3
outlines the datasets formulated and the experimental frameworks established, and this
is accompanied by the in-depth evaluations performed to determine the effectiveness of
the introduced 4D-ETCN. This section also encompasses the consequential conclusions
extracted from these investigative procedures. Furthermore, Section 4 furnishes an inter-
pretation of the obtained results, thereby elucidating both the merits and drawbacks of the
proposed approach in comparison to its counterparts. Section 5 distills the core conclusions
and significant insights gained through this study.

2. Materials and Methods
2.1. Proposed Method: Higher-Order Convolutional Neural Networks

In this section, we demonstrate the case of 4D data analysis by deriving the required
equations for generalizing the traditional low-order convolutional layers to their higher-
order analogs. For that cause, we introduce two different alternatives, namely tensor
decompositions and stacked convolutions.

2.1.1. Preliminary Definitions and Tensor Algebra

A tensor is a multidimensional array denoted by XXX ∈ RI1×I2×...×IN . The order of
XXX , N, is determined by the number of its dimensions, which are referred to as modes.
Without loss of generality, in this work, we focus on 4-dimensional tensors, where two
dimensions are employed for spatial encoding, one for temporal, and one for the specific
modality/variable.

A typical operation on a tensor is to reorder the mode n vectors/fibers into a matrix,
which is a transformation called “matricization”/unfolding/flattening. Note that this
transformation is not unique in the sense that there exist many different ways of stacking
up the mode n fibers of a tensor into a matrix. Formally, following the notation proposed
in [28], the mode n unfolding of a tensor stacks its mode n fibers as columns to a matrix
X(n), which can be defined as follows:

Definition 1 (Tensor Unfolding). An Nth order tensor XXX ∈ RI1×I2×...×IN can be flattened into
a matrix X(n), where the tensor element (i1, i2, . . . , in) is mapped to the matrix element (in, j), with

j = 1 + ∑N
k=1
k ̸=n

(ik − 1)Jk

Jk = ∏k−1
m=1
m ̸=n

Im
(1)
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An important aspect of tensor algebra is the diverse products it provides. Focusing on
the relevant operations, one can define the following products, namely Kronecker product
and Mode n product [29,30], as follows:

Definition 2 (Kronecker Product). Given two matrices X ∈ RI×J and Y ∈ RK×L, their
Kronecker product is a matrix defined as follows:

Z = X ⊗ Y =


x11Y x12Y · · · x1JY
x21Y x22Y · · · x2JY

...
...

. . .
...

xI1Y xI2Y · · · xI JY

 ∈ RIK×JL (2)

Definition 3 (Mode n Product). Given a tensor XXX ∈ RI1×I2×...×IN and a matrix Y ∈ RK×IN ,
their Mode n/Tensor Times Matrix product is a tensor defined as follows:

ZZZ = XXX ×(n) Y ∈ RI1×I2×...×In−1×K×In+1×...×IN (3)

In essence, each mode n fiber of tensor XXX is multiplied by matrix Y. A more eloquent
interpretation though is to express the mode n product in terms of unfolded tensors
as follows:

ZZZ = XXX ×(n) Y ⇐⇒ Z(n) = YX(n). (4)

Probably the most prominent advantage of tensors is the diverse decompositions they
offer for data of multiple dimensions. Here, we provide a brief overview of the one that
is useful in the context of this work (i.e., Tucker), while the other most famous ones (e.g.,
CP/PARAFAC/CANDECOMP and Tensor-Train) are explained in details in seminal works
in the field [28–31]. The Tucker decomposition has taken its name from the Ledyard R.
Tucker [32–34] and is widely known as an extension of the classical PCA and SVD methods
to higher dimensions [35]. More precisely, we have the following definition.

Definition 4 (Tucker Decomposition). Given a tensor XXX ∈ RI1×I2×...×IN of order N, Tucker
decomposition decomposes it into a core tensor GGG ∈ RR1×R2×...×RN and a set of factor matrices
{U(1), U(2), . . . , U(N)}, with U(N) = [u(n)

1 ; u(n)
2 ; . . . ; u(n)

RN
] ∈ RRN×IN and n = 1, 2, . . . , N. The

core tensor GGG is multiplied along each of its modes with the factor matrices {U(1), U(2), . . . , U(N)}
in the following way:

XXX = GGG ×(1) U(1) ×(2) U(2) ×(3) . . . ×(N) U(N)

=
R1

∑
r1=1

R2

∑
r2=1

. . .
RN

∑
rn=1

gr1r2 ...rN (u
(1)
r1 ◦ u(2)

r2 ◦ . . . ◦ u(N)
rN )

=
∥∥∥GGG; U(1), U(2), . . . , U(N)

∥∥∥
(5)

2.1.2. Forward Propagation in ND CNNs

In order to extend CNNs operating on low-dimensional observations to their high-
order analogs, we have to generalize the basic concept or convolutions to the N-D case. For
that cause, we propose two different ways of computation: one via tensor decompositions
and one via stacking of lower-dimensional convolutions.

In the former case, by employing the notations proposed by Cichocki et al. in [36], we
initially define the convolution between two tensors along a specific mode, namely Partial
(Mode n) Convolution, in the following way:
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Definition 5 (Partial (Mode n) Convolution). Given two tensors XXX ∈ RI1×I2×...×IN and
YYY ∈ RJ1×J2×...×JN of order N, their Partial (Mode n) Convolution derives a tensor ZZZ = XXX ⊡(n) YYY
whose subtensors are computed as follows:

ZZZ(k1, k2, . . . , :, . . . , kN) = XXX (i1, i2, . . . , :, . . . , iN) ⋆YYY(j1, j2, . . . , :, . . . , jN) (6)

where ⋆ stands for the linear convolution operation, and kl = il jl for l = 1, 2, . . . , N. The multi-
index i = i1i2 . . . iN is an index which takes all possible combinations of values of indices i1i2 . . . iN
with in = 1, 2, . . . , In and n = 1, 2, . . . , N, and it is defined in the following way:

i = i1i2 . . . iN = i1 + (i2 − 1)I1 + (i3 − 1)I1 I2 + . . . + (iN − 1)I1 . . . IN−1 (7)

In the context of this study, we restrict only to a specific case of Equation (6), namely
partial (mode 1) convolution of matrices X ∈ RI1×I2 and Y ∈ RJ1×J2 , which is defined
as follows: {

Z = X ⊡(1) Y
Z(:, k2) = X(:, i2) ⋆ Y(:, j2)

(8)

Given the above definitions and notations, the N-D Tucker convolution is then
defined [36] as follows:

Definition 6 (N-D Tucker Convolution). Given two tensors XXX ∈ RI1×I2×...×IN and
YYY ∈ RJ1×J2×...×JN of order N, their N-D Tucker convolution ZZZ = XXX ⋆YYY is computed in the
following way:

1. Perform Tucker decomposition on tensor XXX , and obtain its core tensor GXGXGX ∈ RR1×R2×...×RN

and its factor matrices {X(1), X(2), . . . , X(N)}:

XXX = GXGXGX ×(1) X(1) ×(2) X(2) ×(3) . . . ×(N) X(N) =
∥∥∥GXGXGX ; X(1), X(2), . . . , X(N)

∥∥∥ (9)

2. Perform Tucker decomposition on tensor YYY , and obtain its core tensor GYGYGY ∈ RQ1×Q2×...×QN

and its factor matrices {Y(1), Y(2), . . . , Y(N)}:

YYY = GYGYGY ×(1) Y(1) ×(2) Y(2) ×(3) . . . ×(N) Y(N) =
∥∥∥GYGYGY ; Y(1), Y(2), . . . , Y(N)

∥∥∥ (10)

3. Derive the core tensor of the N-D Tucker convolution, GZGZGZ , by combining the core tensors GXGXGX
and GYGYGY via their Kronocker product:

GZGZGZ = GXGXGX ⊗GYGYGY ∈ RR1Q1×R2Q2×...×RN QN (11)

4. Derive the factor matrices of the N-D Tucker convolution, {Z(1), Z(2), . . . , Z(N)}, by com-
bining the factor matrices {X(1), X(2), . . . , X(N)} and {Y(1), Y(2), . . . , Y(N)} via their partial
(mode 1) convolution: 

Z(n) = X(n) ⊡(1) Y(n)

Z(n)(:, sn) = X(n)(:, rn) ⋆ Y(n)(:, qn)

sn = rnqn = 1, 2, . . . , RnQn

(12)

5. Derive the output tensor of the N-D Tucker convolution, ZZZ , by combining the core tensor GZGZGZ
and the factor matrices {Z(1), Z(2), . . . , Z(N)} via their Tucker composition:

ZZZ = GZGZGZ ×(1) Z(1) ×(2) Z(2) ×(3) . . . ×(N) Z(N) =
∥∥∥GZGZGZ ; Z(1), Z(2), . . . , Z(N)

∥∥∥ (13)

The definition of the N-D Tucker convolution [36] between two third-order tensors XXX
and YYY is illustrated in Figure 2.
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Figure 2. Tucker convolution between two third-order tensors XXX and YYY .

2.1.3. Backpropagation in ND CNNs

Based on the aforementioned discussion, the convolution of two ND tensors
XXX ∈ RI1×I2×...×IN and YYY ∈ RJ1×J2×...×JN can be applied in the context of a CNN by substi-
tuting XXX with III as the layer’s input, YYY with WWW as the layer’s trainable weights/kernel,
and adding the respective bias term bbb. Hence, we can express the basic operation of an ND
convolutional layer, l, in the “direct-sum” form as follows:

Zi1,i2,...,iN (l) =∑
j1

∑
j2

. . . ∑
jN

Wj1,j2,...,jN (l)Ii1−j1,i2−j2,...,iN−jN (l − 1) + bbb(l)

=WWW(l) ⋆ Ii1,i2,...,iN (l − 1) + bbb(l)
(14)

where {j1, j2, . . . , jN} span the dimensions of the kernel, {i1, i2, . . . , iN} span the dimensions
of the input, and bbb is the bias term. As can be seen from Equation (14), the input of the
previous layer (l − 1) serves for the computation of the current output layer (l), and the
input of the current layer l can be computed as follows:

Ii1,i2,...,iN (l) = f (Zi1,i2,...,iN (l)) (15)

where f is a selected activation function (e.g., ReLU, tanh). With Equations (14) and (15),
every value in the forward pass of an ND convolutional layer can be computed, so what
remains to be defined is the respective equations during the backward pass.

In order to be able to derive the backward pass equations of an ND convolutional
layer, we should dive in its functionality depicted in Figure 3. More precisely, given the
input III and the weights WWW , the layer outputs its N-D convolution during the forward pass.
On the contrary, during the backward pass, the los gradient from the next layer, ∂LLL

∂ZZZ , must
be propagated to the previous layers. For that purpose, the local gradients (i.e., ∂ZZZ

∂III , ∂ZZZ
∂WWW )

alongside the chain rule will help us calculate the gradients with respect to the input (i.e.,
∂LLL
∂III ) and the filters (i.e., ∂LLL

∂WWW ). These gradients need to be updated for the following reasons:

• Since III is the output of the previous layer, ∂LLL
∂III becomes the loss gradient for the

previous layer.
• ∂LLL

∂WWW is used to update the filters of the convolutional layer via the gradient step:

WWWNew =WWWOld − µ
∂LLL
∂WWW

(16)
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where µ is the step size parameter, which serves as the learning rate of the
optimization problem.

Figure 3. Computation of the loss gradients of ND convolutional layer. The loss gradient of the
previous layer ( ∂LLL

∂ZZZ ) is propagated to other layers via the help of local gradients ( ∂ZZZ
∂III , ∂ZZZ

∂WWW ) and the
chain rule.

More precisely, the aforementioned gradients can be computed via the chain rule, as
depicted in Figure 3: {

∂LLL
∂III = ∂LLL

∂ZZZ ∗ ∂ZZZ
∂III

∂LLL
∂WWW = ∂LLL

∂ZZZ ∗ ∂ZZZ
∂WWW

(17)

Due to space limitations, the precise mathematical computation of Equation (17) in
the closed form is provided, for all involved gradients, in Appendix B. In order to set our
notation, we summarize the results therein for each one of them as follows:

• Loss gradient from the next layer:

∂LLL
∂ZZZ = f ′(Zi1,i2,...,iN (l))

[
δi1,i2,...,iN (l + 1) ⋆ rotN(WWW(l + 1))

]
(18)

• Gradient with respect to the layer’s input:

∂LLL
∂III = conv

(
∂LLL
∂ZZZ ,WWW(l)

)
(19)

• Gradient with respect to the layer’s weights:

∂LLL
∂WWW = conv

(
∂LLL
∂ZZZ , rotN(III(l − 1))

)
(20)

• Gradient with respect to the layer’s bias:

∂LLL
∂bbb

= ∑
i1

∑
i2

. . . ∑
iN

(
∂LLL
∂ZZZ

)
(21)

Equations (19) and (20) sketch the general methodology for computing the desired
gradients, and they indicate that in reality both the forward and backward passes of an ND
convolutional layer are convolutions.



Remote Sens. 2024, 16, 2020 9 of 42

2.1.4. Efficient Implementation: Stacking (N-1)D Convolutions

After successfully expanding the convolution operator from the traditional 2D and
3D scenarios to the multidimensional (ND) context using the Tucker convolution model,
we integrated this advanced operation into the DL paradigm. Specifically, we developed a
bespoke Tucker convolution layer within the Tensorflow framework [37], thus enabling its
application in the creation of higher-dimensional CNN models. Our initial experimentation
with this Tensorflow adaptation was conducted on two lower-dimensional benchmark
classification datasets, namely MNIST-2D and MNIST-3D. Through this exploration, our
objective was to evaluate the computational efficiency of our DL adaptation vis à vis built-in
convolutional layers.

To that end, we have constructed two identical model architectures for the two datasets,
with only 1 convolutional layer (built-in and Tucker) before the final classification (i.e., fully
connected) one. In addition, we have frozen the weights of the fully connected layer in
order to measure fairly among the time needed for the respective models to train. To keep
the architectures as simple as possible, we used only 4 filters in each convolution case, and
we trained the models for up to only 10 epochs. Moreover, we employed only 128 samples
for training purposes (i.e., out of the 60,000 available) and accordingly 128 for test purposes
(i.e., out of the 10,000 available), while the batch size at each experiment was set to 32.

In Table 1, we report the computational times (in seconds) needed for training each
of the aforementioned models for the MNIST classification tasks. As becomes evident,
when the Tucker convolution model is incorporated with DL platforms, it faces severe
computational problems, although outside this framework, it is at least comparable to
its competitors.

Table 1. Computational time (in seconds) required by the Tucker convolution model and the builtin
Tensorflow one, for the MNIST classification problems. When incorporated with deep learning
platforms, the Tucker convolution model clearly does not scale well.

Dataset # Trainable Parameters Builtin Tucker

MNIST-2D 40 10.4867 504.861

MNIST-3D 112 9.2061 791.394

By observing the results of Table 1, we notice the nonscalable required computational
times when the Tucker convolution model is incorporated into the DL framework. Based on
our extensive experimental studies, we concluded that this handicap is mainly attributed
to TensorFlow’s fast libraries implementation of convolution, which is performed across
every input channel and for every desired output filter in a batch mode [38,39].

On the contrary, our implementation based on tensor decompositions has to make
use of specific toolboxes/packages for the respective computations. Towards that end,
we have considered the excellent review work of Psarras et al. [40], which surveys the
current tensor software landscape. Based on the thorough lists provided therein, we mainly
focused our efforts on Python-based Tensorly [41], which provides all tensor operations
and decompositions required, as well as GPU computation capabilities. In particular, we
designed our Tucker convolution layer either employing as backend Tensorflow (version:
2.3.0) [37], PyTorch (version: 1.9.0) [42], or NumPy (version: 1.18.5) [43]. Unfortunately,
neither of our attempts fructified, even when we tried the MATLAB-based Tensor Toolbox
package [44].

To circumvent the limitations imposed by GPU constraints, it becomes imperative
to leverage Tensorflow’s foundational elements. Specifically, to fully harness the entirety
of the data’s informational content, we present an N-dimensional (ND) convolutional
layer/module that ingeniously employs the corresponding (N − 1)D layer/module. Specif-
ically, the computed value for a neuron in the convolved output, situated at coordinates
(i1, . . . , iN−1, iN), is articulated as follows:
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yi1,...,iN−1,iN = f
( Cin

∑
c

JN−1

∑
jN=0

JN−1−1

∑
jN−1=0

. . .
J1−1

∑
j1=0

wj1,...,jN−1,jN xc,(i1+j1)(...)(iN−1+jN−1)(iN+jN) + bj1,...,jN−1,jN

)

= f
( JN−1

∑
jN=0

[ Cin

∑
c

JN−1−1

∑
jN−1=0

. . .
J1−1

∑
j1=0

wj1,...,jN−1,jN xc,(iN+jN)(iN−1+jN−1)(...)(i1+j1)

]
+ bj1,...,jN−1,jN

)

= f
( JN−1

∑
jN=0

C(N−1)−D + bj1,...,jN−1,jN

)
(22)

where f (.) is the activation function, wj1,...,jN−1,jN stands for the value of the kernel con-
nected to the current feature map at position (j1, . . . , jN−1, jN), xc,(i1+j1)...(iN−1+jN−1)(iN+jN)

represents the value of the input neuron at input channel c, bj1,...,jN−1,jN is the bias of the
computed feature map, Cin denotes the number of original channels (i.e., first layer) or the
number of feature maps of the previous layer (i.e., intermediate layer), and j1, . . . , jN−1, jN
are the kernel’s dimensions across each of its modes.

The restructuring of the convolution sums as demonstrated in Equation (22) is attain-
able because convolution is inherently a linear operation, thus permitting the reordering of
the summation processes. This adaptative strategy was previously outlined in sources such
as [7,8,23,45], thus serving as a foundational pathway transitioning from 3D CNNs to more
complex 4D variations. By embracing this methodology, we engage in the aggregation
of numerous sequences of (N − 1)D convolutions—represented by the term C(N−1)−D
in (22)—extended along the final, or Nth, dimension.

From an execution standpoint, additional restructuring of the corresponding for-loop
was enacted as per the frameworks suggested in [7,8,23]. This involved the convolution
of (N − 1)D input frames with their respective (N − 1)D filter frames, which is a crucial
adjustment for our custom layer to facilitate genuine (as opposed to separable) ND convolu-
tion. An exhaustive description of the respective Stacked convolution algorithm, applicable
to tensors of up to 4 dimensions, is comprehensively articulated in Stacked Convolution
Algorithm. The repository which contains the Python-scripts involving the implementation
of ND CNNs can be found in the “Supplementary Materials” at the back matter heading
after Section 5.

2.2. Proposed Simultaneous Spatiotemporal ECVs’ Forecasting Architecture

Within this section, our initial focus involves outlining the state-of-the-art model
architecture intended for generalization in addressing the current challenge. Following
this, we delineate the specific scenario under scrutiny for the ECVs’ forecasting task, thus
elucidating the comprehensive mathematical elements detailing the application of the
proposed 4D-ETCNs to address the task at hand. Concluding this section, we furnish
implementation particulars and construct the corresponding network architecture.

2.2.1. Embedded Temporal Convolutional Network—ETCN

As previously discussed in Section 1, ETCNs [9] stand out as the leading models for the
current task. These models employ a three-part architecture featuring an encoder network,
a TCN, and a decoder network. To optimize the processing of the data’s temporal aspect, the
authors implemented the Time-Distributed wrapper around 2D-CNNs within the encoder
and decoder segments of the model. The encoder segment is structured with convolutional
and max pooling layer blocks, whereas the decoder reverses this process by utilizing
2D transpose convolutional and batch normalization layers. The TCN component of the
architecture is characterized by residual blocks that include 1D dilated causal convolutional
layers, dropout layers, and ReLU activation layers. This particular configuration of causal
convolution ensures that the model’s prediction at any specific time is solely based on
past inputs.
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2.2.2. 4D-ETCN for ECVs’ Forecasting Modeling

In addressing the task of forecasting time series ECVs, a problem inherently involving
4D inputs (comprising 2D spatial, temporal, and ECV modality dimensions), traditional
2D-CNNs fall short, as they inevitably overlook crucial information. Even 3D models can
only maintain additional temporal or ECV modality information, not both. Recognizing
this limitation, we present a novel 4D model designed to concurrently harness correlations
across such diverse dimensions. Our focus is on the ETCN models, and we extend the
state-of-the-art architectures initially proposed in [9] to suit the specific requirements of
this multidimensional forecasting challenge.

As illustrated in Figure 4, the proposed 4D-ETCN model operates on the principle
of efficiency, thus directly ingesting raw time series ECV data—essentially, sequences of
3D ECV data—that are devoid of any prerequisite data manipulation. These raw data are
propelled through an intricate cascade of high-dimensional operations within the ETCN
framework, including convolution, pooling, and upsampling, with each stage amplifying
in sophistication as data traverse further into the network’s layers.

Figure 4. The proposed method involves the concurrent forecasting of multiple ECV time series
data. Original 4D data, which consist of a time series of 3D data, are input into our specially devised
higher-order ETCN model. This model retains all pertinent information up to the regression phase
by performing all critical operations such as convolutions and transpose convolutions within a
4D framework.

In parallel, the model meticulously conducts spatial downsampling followed by
upsampling, which is a strategy that is pivotal for distilling more salient, feature-rich
representations from the data, all while assiduously conserving the intricacies of temporal
progression and ECV modality specifics up until the culmination point of the network’s
regression compartment.

The proposed architecture stands out by virtue of its capacity to exploit the entirety
of the high-dimensional data, thus steadfastly performing computations within the very
dimensions native to the original data. This approach marks a significant departure from the
methodologies employed by lower-order models, which typically impose a preprocessing
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stage that inevitably simplifies or compresses data ahead of any network training, thus
potentially leading to the loss of valuable information.

2.2.3. 4D-ETCN Modules for ECVs’ Feature Learning

In Sections 2.1.2–2.1.4 we provided a detailed pipeline for the transition from conven-
tional lower-order CNNs to the ND ones via tensor decompositions and stacked convo-
lutions. Aiming to incorporate them to the ECV forecasting problem, we have to extend
existing lower-order CNN models for that cause to their high-dimensional analogs. Since
the vanilla ETCN model [9] consists of the state-of-the-art CNN architecture, we can directly
make use of the results derived above in order to construct a higher-order ETCN model.
More precisely, the ECV forecasting problem at hand can be considered as a subcase of the
ND general case, where the dimensionality of the data is equal to N = 4 (once the time
series ECV data form a 4D tensor). In that sense, we can directly extend all lower-order
convolutional layers contained in vanilla ETCN architecture [9] with 4D ones.

Beyond the convolutional layers, it is also necessary to expand the max pooling
and transpose convolutional layers/modules referenced in [9] to accommodate four-
dimensional functionality. The justification for this enhancement aligns with the underlying
logic for the convolutional layer’s expansion, which is comprehensively explained in [7]. By
integrating these 4D layers, we equip ourselves with the essential components to elevate the
standard lower-dimensional ETCN model to a high-dimensional iteration. Consequently,
our advanced 4D-ETCN framework is capable of processing time series ECV data in their
original dimensions, thus adeptly navigating the complex demands of the concurrent
forecasting challenge presented. This approach not only maintains the integrity of the
data’s dimensions but also enhances the model’s capacity to interpret and learn from the
high-dimensional nature of the input.

2.2.4. 4D-ETCN Architectures for ECVs’ Forecasting

The primary objective of this study is to evaluate the efficacy of ETCN models in
addressing the specified problem and to gain insights into the potential advantages of the
proposed 4D structure over its lower-dimensional counterparts. To this end, we use the
standard ETCN [9] as a reference model for comparison while developing its 4D equivalent.
Our analysis concentrates on ETCN frameworks given their established superiority in
forecasting tasks within the ETCN context [9], thus even surpassing the performance of
Conv-LSTM structures that are specifically crafted for such challenges.

To explore the potential benefits of our advanced ETCN model compared to the stan-
dard version, our architecture retains the fundamental components (namely, the encoder,
TCN, and decoder) but only expands those elements amenable to higher-dimensional
processing units (i.e., the encoder and decoder). This approach ensures consistency for a
fair comparison while allowing us to directly assess the impact and advantages of high-
dimensional processing in forecasting tasks.

Each architecture consists of multiple layers, including convolutional, transpose con-
volutional, max pooling, activation, dropout, and batch normalization layers. These are
arranged in “layers-stacks” within the encoder, TCN, and decoder portions of the model,
thus adhering to the framework put forth in the conventional ETCN [9]. Specifically, the
encoder and the TCN sections are each composed of three stacks, while the decoder section
is constructed using two stacks.

Each stack within the encoder includes a convolutional layer, which is directly suc-
ceeded by a ReLU activation layer and a max pooling layer, with the exception of the final
stack. Concluding the sequence of stacks in the encoder segment involves a reshape layer,
which is tasked with reorganizing the data to be compatible with the subsequent 1D-TCN
segment of the model. This systematic layering is instrumental in the progressive feature
extraction and data transformation essential for the model’s forecasting tasks.

The TCN segment of the model, drawing inspiration from the framework presented
in [26], substitutes standard 1D convolutional layers with residual blocks. Each of these



Remote Sens. 2024, 16, 2020 13 of 42

blocks is composed of two 1D convolutional layers that maintain uniformity in terms of
output filter size and number. Following each convolutional layer are ReLU activation
and dropout layers, with weight normalization [46] applied to the convolutional filters.
Unchangingly, the input for each residual block within the TCN segment is combined with
its output; this sum, after undergoing ReLU activation, produces the final output for the
residual block.

Consistent with the vanilla ETCN model’s TCN [9], our model employs causal and
dilated 1D convolutions, thus ensuring that the output at any given time is predicated
solely on present and preceding inputs. Since the TCN output is a one-dimensional
vector, matching in dimensions the number of output filters of the last residual block, we
reintroduce a reshape layer that transforms the 1D vectors to 4D tensors, thus rendering
them suitable for the decoder segment of the model. This methodical approach facilitates
the nuanced processing required for accurate temporal predictions.

Conversely, each stack within the decoder segment is composed of a transpose con-
volutional layer, which is succeeded by ReLU activation and batch normalization layers.
Culminating the architecture, the prediction layer incorporates a single-filter convolutional
layer for generating the requisite 3D output. This layer is then followed by a Sigmoid
activation layer. This configuration within the decoder segment is crucial for reconstructing
the spatial–temporal features from the compressed representations and predicting the
continuous values pertinent to the environmental conditions under observation.

Given that our samples inherently possess four dimensions, encompassing two spatial,
one temporal, and one ECV modality dimension , designated as (H, W, T, ECVM), their
utilization for training within the confines of a vanilla ETCN model necessitates a form of
dimensional reduction or “collapsing” for each sample. While the original ETCN model was
evaluated on individual ECVs, assertions from [46] suggest its applicability to multichannel
images. Leveraging this, we adapted their architecture to handle the “active information”
within the ECV time series data (i.e., spatial and temporal dimensions), thus interpreting
the ECV modality as distinct channel information. In stark contrast, our innovatively
proposed 4D-ETCN model operates directly within the data’s intrinsic dimensions, thereby
fully engaging with the complete gamut of information present. This approach eases a
more holistic and integrated exploitation of the data’s spatiotemporal dynamics.

The encoder and decoder segments of the devised ETCN model can be construed
as U-Nets, which are predominantly employed in segmentation tasks. In conventional
U-Net models, both samples and labels typically share the same dimensions, i.e., 2D for
image segmentation [47], and 3D for volumetric image segmentation [48]). Unlike existing
approaches, the proposed high-dimensional model confronts the challenge of disparate
dimensionality between samples (4D) and targets (3D).

To navigate this complexity while retaining maximal information, we adopt a tactic
akin to the one outlined in [7]: all operations within the ETCN model are executed in their
corresponding high-dimensional spaces up until the final regression layer. At this juncture,
we utilize filters with a kernel size of 1 across all dimensions, thus maintaining unit strides
across every dimension barring the temporal one slated for reduction (i.e., (1, 1, T, 1)). This
method ensures that the supplemental, nonspatial information remains unaltered until
the immediate prelude to regression, wherein it is judiciously downsampled during the
ultimate step, thereby aligning the network training with the 3D ground-truth targets.

In relation to the foundational topology of the 4D-ETCN, all convolutional layers
utilize a modest kernel size of 2 across every dimension combined with “same” padding.
Strides are set to unity across all dimensions during all convolutions. Concurrently, the
quantity of filters experiences an augmentation as the network delves deeper into the
encoder segment of the ETCN: The initial stack of layers possesses a filter count equivalent
to a predefined parameter (termed “starting-neurons”), which experiences a doubling
for the subsequent stacks (for instance, both the second and third stacks possess filters
numbering 2× “starting-neurons”).
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In line with our goal to perform spatial downsampling solely on input data samples,
we employ max pooling layers with pool size and strides equal to 2 in spatial dimensions
and 1 in the temporal and the ECV modality dimensions. “Same” padding is consistently
applied across all max pooling layers, and dropout layers are established with a rate of 0.3.

For the transpose convolutional layers, we utilize compact kernels with a size of
2 across all dimensions, thus consistently applying “same” padding for all versions of
the 4D-ETCN models. Due to the unique spatial downsampling in the encoder section,
strides for the transpose convolutions are appropriately modified, which are designated as
2 for spatial dimensions (to accommodate the corresponding upsampling) and 1 for the
other dimensions.

Regarding the TCN segment of our model, the fundamental topology incorporates 1D
filters of size 2, with a filter count of 2× “starting-neurons” at the first and third stack and
64 at the second. The dilation rate of the 1D kernels within the TCN’s stacks adheres to the
protocol proposed in the vanilla ETCN setup [9] and is sequentially arranged at 1 − 2 − 4.

And indicative sketch of our 4D-ETCN model architecture can be seen in Figure 5.
As described above, the architecture consists of three parts: encoder (Figure 5a), TCN
(Figure 5b), and decoder (Figure 5c), which are combined in the way explained earlier in
the quest to derive accurate ECV forecasts.

(a) Model architecture—encoder. (b) Model architecture—TCN. (c) Model architecture—decoder.

Figure 5. The proposed 4D-ETCN model architecture: Each higher-order input sample undergoes
processing by the encoder, TCN, and decoder parts of the model in order to be used for accurate ECV
forecasting purposes.

Taking into account that we face a regression task, MSE was used as the loss func-
tion. All examined models’ weights were randomly initialized using the Glorot Uniform
initializer [49]. Concerning the optimization learning algorithm, we employed the Adam
scheme [50] with a constant learning rate of 0.0001 and exponential decay rates for the first
and second moment estimates equal to β1 = 0.9 and β2 = 0.999, respectively. Training
of each below model was performed using a batch size of 4 samples (since the loading of
high-dimensional data can become quite memory intensive) for up to 100 epochs.
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3. Results

In this section, our first task is to outline the datasets introduced for our imminent ex-
periments, followed by an explanation of the experimental framework implemented. Next,
we establish the evaluation criteria used to compare various DL models. Subsequently, we
delve into a comprehensive analysis of the results derived from our chosen approach across
diverse experimental scenarios, thus utilizing multiple configurations to meticulously as-
sess the impact of each pertinent parameter throughout the entire ECV forecasting process.
Concluding, we juxtapose our proposed methodology against prevailing state-of-the-art
techniques, thus affirming its superior efficacy.

3.1. Dataset Description

The evaluation of DL strategies and the cultivation of ML models pivot significantly on
the accessibility of appropriate training and test sets. This becomes particularly challenging
in the realm of high-dimensional data, where relevant datasets are notably limited. In
our study, we gauged the effectiveness of the suggested system through its precision in
estimating ECVs. In particular, our efforts were concentrated on training both the proposed
model and established methodologies using historical observational time series with the
objective of learning to forecast forthcoming values of soil temperature at various depths.

We utilized data that are openly accessible from the ERA5-Land Monthly Averaged
dataset (https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5
_LAND_MONTHLY) (accessed on 1 February 2024) [51]. ERA5-Land is a reanalysis dataset
that offers a coherent perspective on the historical progression of terrestrial variables,
spanning multiple decades, and does so with improved resolution compared to its ERA5
counterpart. By offering data that extend back over several decades, reanalysis furnishes a
detailed account of historical climate conditions. This dataset encompasses all 50 variables
available on the Climate Data Store (CDS). The ERA5-Land data, available since 1981, come
with precomputed monthly mean averages, thus enhancing the ease and speed of data
access for various applications.

For the purposes of our research, we focused on soil temperature variables, specifically
levels 1–4. These levels represent the temperature strata within the soil, specifically layer 1
(0–7 cm), layer 2 (7–28 cm), layer 3 (28–100 cm), and layer 4 (100–289 cm) of the ECMWF
Integrated Forecasting System. The surface reference point is at 0 cm, and each of these
four climatic variables is gauged on the Kelvin scale. The soil temperature is determined
at the midpoint of each layer, with heat transfer computations performed at the layers’
interfaces. The model presupposes the absence of heat transfer beneath the base of the
deepest layer.

In order to employ the aforementioned dataset, some preprocessing steps had to take
place in advance. More precisely, our goal was to create a 4D imagery time series dataset
comprising each of the 2D imagery of each climate variable measured at all available
sampling times available. Towards that end, we made use of the Google Earth Engine plat-
form [52], with dataset provider Copernicus CDS and dataset availability 1 January 1981–1
December 2020. With this setup, we initially selected our region of interest for downloading
our time series imagery at a ≈9 km resolution provided by the platform. Subsequently,
we selected the four different climate variables mentioned earlier for downloading, which
were accompanied by the desired dimensions of the imagery. At this point, we have to
mention that since the high-dimensional models’ memory demands are in direct alignment
with their input data size, we chose the spatial dimensions to be patches of size 32 × 32.
In addition, given that the samples were taken on a monthly basis starting from January
1981 up to December 2020, the temporal dimension of our created time series data is equal
to 12 × 40 = 480. The last dimension of our data is considered the climate variable under
investigation, and hence its cardinality is equal to four. Since every climate variable is
measured at Kelvin scale, we normalized each one of them separately in the [0–255] scale
in order to be interpreted as 8-bit images from the DL models. Before feeding the input to

https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY


Remote Sens. 2024, 16, 2020 16 of 42

the network, the pixel values were further scaled to the range from 0 to 1 toward enhancing
the efficiency of the imminent training process.

To ensure that our study’s findings are not confined to a specific dataset, we evaluated the
performance of the proposed methodologies and those for comparison on two distinct datasets.
Specifically, the first Region Of Interest (ROI) chosen for our investigation is the province/island of
Crete, which is situated in Greece. Concurrently, the second encompasses various territories in
Central Italy predominantly concentrated around the Lazio region. Concerning the Crete ROI,
its latitude and longitude limits, [latlim, lonlim], are specified as two-element vectors of the form
[latmin, latmax] = [34.7702, 35.7035] and [lonmin, lonmax] = [23.385, 26.5106]. As far as the Italy
ROI is concerned, the respective limits are formed as [latmin, latmax] = [41.570252, 42.504503] and
[lonmin, lonmax] = [12.101440, 15.806824], respectively. Both selected areas are characterized
by a rich diversity in land surfaces, thus featuring an assortment of plains, forests, and
mountainous terrains.

3.2. Experimental Setup

In this study, our primary aim is to execute a one-step forward prediction by develop-
ing a model that ingests a set quantity of images from a spatiotemporal series of multiple
climate variables and forecasts an identical count of images, with each displaced one
timestep ahead. To achieve this, it is imperative to pre-establish the number of timesteps
employed in this predictive task, thus denoting our data’s temporal dimension. We opted
for a timestep of six months, which is a duration sufficient to discern potential disparities
among the scrutinized climate variables. By extracting sequential time series segments with
overlap, 473 unique samples (with the final month of 2020 excluded), each with dimensions
of (32,32,6,4), were produced from the forty-year span of the monthly data available.

Since the problem at hand is a forecasting task, we selected the first 38 years (i.e.,
1981–2018) for training purposes, while the 2 most recent years (i.e., 2019–2020) were kept
for testing (in a holdout split). Furthermore, we considered a validation set formed by 25%
of the training samples, which is a split that was performed uniformly at random to avoid
bias in favor/against specific time periods. The data splitting process ended up with a
sample distribution summarized in Table 2.

Table 2. Dataset split among training–validation–test sets. The first 38 years are used for training
(75%) and validation (25%) purposes, while the last 2 ones are used for testing.

Total Samples Training Set Validation Set Test Set

473 342 114 17

In the forthcoming experiments, we adhered to the dataset splits previously mentioned.
Each model underwent training within the designated training set, while its performance
underwent validation in the validation set through the exploration of various hyperparam-
eter configurations. Subsequently, the model’s performance was evaluated based on the
optimal validation loss achieved throughout training, regardless of whether this occurred
at the final epoch. The models exhibiting the best performance were then used in the test
set for a single evaluation, thus determining the ultimate performance of the model.

The formulated model structures were crafted within the Python programming envi-
ronment, thus utilizing the TensorFlow and Keras [53] libraries. This choice was deliber-
ate, given their extensive customization capabilities throughout various aspects of a DL
model—an essential feature for our study, given the implementation of diverse custom
layers. Additionally, the compatibility of both libraries with GPU acceleration significantly
reduced the computational time required for the training process. In our experimental
setup, we employed NVIDIA’s Quadro P4000 GPU model, equipped with 8 GB of RAM, to
further enhance computational efficiency.
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3.3. Evaluation Metrics for Essential Climate Variables Forecasting

Since the problem at hand is essentially a pixel-level regression task, we relied on
several ML metrics for the evaluation of the designed models. For that cause, we employed
reconstruction error metrics, image quantitative metrics, and correlation metrics. For their
definitions, let xi stand for the pixels of the ground truth image x, while yi stands for the
pixels of the predicted image y (n in total).

Concerning the reconstruction error metrics, the Mean Square Error (MSE), the Mean
Absolute Error (MAE), and the Root Mean Square Error (RMSE) between x and y are defined
as follows: 

MSE = 1
n ∑n

i=1(xi − yi)
2

MAE = 1
n ∑n

i=1 | xi − yi |
RMSE =

√
1
n ∑n

i=1(xi − yi)2

(23)

However, if there are biases in either the mean or the amplitude of fluctuations of the
predictions, the RMSE could be severely compromised. To alleviate this, the mean bias can
be removed from the RMSE, thus leading to the Unbiased Root Mean Square Error (ubRMSE),
which is computed as follows:{

Bias = 1
n ∑n

i=1(xi − yi)

ubRMSE =
√

RMSE2 − Bias2
(24)

For the above reconstruction error metrics, values closer to zero indicate a better-
performing model.

Since pixel-level regression can be seen as an image reconstruction task, reconstruction
error metrics are by no means the only suitable ones to be measured. Indeed, among image
fidelity metrics, we initially reported the Peak Signal-to-Noise Ratio (PSNR) metric, which is
defined as follows:

PSNR = 10 log10

(
MAX2

I
MSE

)
(25)

In Equation (25), MAX2
I is the maximum possible pixel value in the image (e.g., for images

scaled in the range [0, 1] MAX2
I = 1, while for 8-bit images, MAX2

I = 255), while MSE is
defined as in Equation (23). Higher PSNR values indicate better image fidelity.

Moreover, the Structural Similarity Index Measure (SSIM) [54] is a perception-based
metric that is mainly used for measuring the similarity between two images. The SSIM
extracts structure, luminance and contrast from both images x and y, and its values range
between 0 and 1 (with higher values desired). Formally, the SSIM is defined as follows:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(26)

where µx stands for the mean of ground truth image x, µy stands for the mean of predicted
image y, σ2

x and σ2
y represent the respective variances, and σxy is the covariance between

them. In addition, c1 = (k1D)2 and c2 = (k2D)2 are two variables used to stabilize the
division with weak denominator, D is the dynamic range of the pixel values (i.e., D = 1 for
images scaled in [0, 1], while D = 255 for 8-bit images), and finally k1 and k2 are by default
set as k1 = 0.01 and k2 = 0.03.

Treating ground truth and predicted images as two statistical samples, the Pearson
Linear Correlation Coefficient (PLCC) is a measure of their linear correlation. The PLCC is
essentially a normalized measurement of the covariance such that the result always lies in
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[−1, 1], and, as with covariance itself, the PLCC only reflects a linear correlation of variables.
Mathematically, the PLCC is defined as follows:

PLCC =
∑n

i=1(xi − µx)(yi − µy)√
∑n

i=1(xi − µx)2
√

∑n
i=1(yi − µy)2

(27)

A value of PLCC = 1 implies that the pixels of the ground truth and predicted images
are perfectly positive linearly correlated, while a PLCC = −1 implies total negative linear
correlation. Values of the PLCC close to 0 indicate that the two images under consideration
are not linearly correlated.

Finally, apart from the aforementioned metrics, for each of the trained models pre-
sented below, we reported the time for its training and testing/inference as metrics of
its computational complexity. The former one refers to the time required for optimizing
the model’s weights/parameters throughout the training process, while the latter one
quantifies the time required for the model to operate in “production mode” (i.e., derive
predictions) several times once the training process has concluded.

3.4. 4D-ETCN Architecture Ablation Study

To obtain a better understanding of different model choices, we explored the impact
of different hyperparameters of the proposed 4D-ETCN model in terms of performance.
More specifically, we focused on different hyperparameters, including the size and number
of filters on 4D convolutional layers for the encoder and the decoder, as well as for the 1D
kernels of the TCN. For that cause, we set as a basic architecture one with a filter size at
the encoder and decoder equal to (2, 2, 2, 2), a dropout rate equal to 0.3, and the size of the
1D kernel of TCN was set to 2. With the goal of pinpointing the optimal hyperparameter
setup, we undertook a comprehensive ablation study. This involved scrutinizing each
hyperparameter in isolation, as well as in various combinations, to guide our selection
of the most effective model. In the ensuing experiments, we report the results from the
two examined datasets, namely the Crete, Greece and Italy ROIs. Our primary focus was
on the model’s MSE loss metric, thus serving as the cornerstone for our ultimate choice
of model.

Due to space limitations, the analytical experimental results of this ablation study are
provided in Appendix C. As can be seen from the result tables therein, the two datasets
requires quite different hyperparameter configurations for achieving optimal results. In
general though, adopting architectures with more filters in the encoder part of the network
leads to clear performance gains. In addition, wider receptive fields both at the encoder and
the decoder parts of the architecture contributed positively to its performance, irrespective
of the dataset at hand.

3.5. Convergence Analysis

Figure 6 showcases the convergence trajectory of our proposed 4D-ETCN architecture
for both examined datasets. The convergence is illustrated primarily through the regression
loss (i.e., MSE) plotted against the number of epochs, thus encompassing both training
and validation sets. It is crucial to note that we employed the finest hyperparameters for
the suggested 4D models, which were derived from the corresponding tables furnished in
Appendix C. We discerned a progressive enhancement in the performance of the 4D-ETCN
model coupled with an effective mitigation of overfitting. This was evidenced by the
validation curve closely mirroring the training curve, thus signifying robust generalization
potential. Another interesting remark is that this behavior was observed for both datasets,
thus indicating that the good generalization capabiblity of the proposed approach was
dataset-independent.
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(a) Regression MSE—Crete.
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(b) Regression MSE—Italy.
Figure 6. Regression MSE of the best-proposed 4D-ETCN models for Crete and Italy datasets. As
the number of epochs increases, the model’s performance improves, thus avoiding overfitting for
both datasets.

3.6. Evaluation against State-of-the-Art Methods

Beyond refining the proposed 4D-ETCN architecture delineated in Section 3.4, we
undertook a comparative analysis between our advanced high-dimensional model and
prevailing cutting-edge methods in the discipline. To ensure an equitable comparison, we
selected the relatively novel method advanced by Villia et al. in [9] (previously discussed
in Sections 1–2.2.1), thus serving as the foundational architecture that our proposition
enhances. More specifically, the authors introduced the concept of ETCN for the problem of
forecasting ECVs, thus coping primarily with land surface temperature and soil moisture. In
that attempt, they performed an analogous ablation study and derived the best-performing
model for the task, which makes use of 2D convolutional kernels both in the encoder
and decoder parts. Since on their experimental scenarios were not contained within a
temporal window equal to 6 months, we therein considered their best-performing model
for 12 months, which mainly consisted of 2D filters of size (4, 4), the number of filters in
the encoder part equal to 32–64–64, a dropout rate set to 0.3, and the size of the 1D kernel
at the TCN part of three. In addition, since in [9], the input of the time series was imagery
of spatial size 28 × 28 rather than 32 × 32 in our case, we modified accordingly the number
of filters in the decoder part to be 64 rather in 49 and all convolutions to “same” padding
mode to match the current experimental setup. Moreover, both the encoder and the decoder
parts of the network in [9] were wrapped around by the Time-Distributed Tensorflow’s
layer in order to fully exploit the temporal information available in the data. However, in
our setup, the ETCN architecture proposed in [9] forecasts all four ECVs jointly at once and
not separately in their vanilla setup.

Apart from the aforementioned state-of-the-art method described in [9], we addi-
tionally compared our proposed high-dimensional method with a 2D Conv-LSTM [19]
architecture also proposed in [9] as a baseline. It consists of two layers with 64 filters per
layer and a kernel size equal to (3, 3) for both layers. Its output layer is a 3D convolutional
layer of kernel size (3, 3, 3), which maps to the desired output.

Table 3 reports the obtained results in the test set for the proposed model architecture
as emerged from the ablation study of Section 3.4, as well as its state-of-the-art competing
method described above in both under examination datasets. We observe that the proposed
high-dimensional model outperformed its competitors in nearly all reported metrics, both
in the Crete and in Italy dataset. Moreover, the ETCN model [9] outperformed the Conv-
LSTM [9] one in the Crete dataset, while the two models had comparable performance
in the Italy dataset. In addition, all methods performed better in the Crete dataset than
in the Italy one, but in this toughest case, the proposed 4D-ETCN model widened even
further the performance gap from its competitors. Moreover, concerning the unbiased
RMSE and MAE measured in nominal Kelvin values (i.e., by converting the predictions
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back to their prenormalization values) metrics, we observe that once more our proposed
higher-order model outperformed its competitors in nearly all cases. Interpreted from
a climatological context point of view, our method’s predictions were on average ≈0.37
and ≈0.84 Kelvins away from the ground truth values in the two examined datasets, thus
indicating its enhanced performance.

Table 3. The proposed higher-dimensional 4D-ETCN model surpasses its counterparts Conv-LSTM
and ETCN, both cited in [9] across several evaluated metrics, including reconstruction error, image
fidelity, and correlation.

Dataset Model MSE MAE SSIM PSNR PLCC ubRMSE MAE (K)

Crete

Conv-LSTM [9] 0.00154561 0.0201477 0.928759 28.2473 0.991675 0.0369692 0.380813

ETCN [9] 0.00115819 0.018624 0.952923 29.4991 0.9939 0.0326225 0.348874

4D-ETCN-Proposed 0.00110941 0.0179513 0.959973 30.7597 0.994405 0.0298117 0.377492

Italy

Conv-LSTM [9] 0.00287025 0.0382445 0.840449 25.5313 0.977507 0.0861671 1.05962

ETCN [9] 0.00436746 0.0527445 0.882363 23.7782 0.987332 0.0442294 0.940987

4D-ETCN-Proposed 0.00181847 0.031803 0.932413 29.1255 0.990558 0.0329555 0.848434

Of course, higher-dimensional models and operations in the respective spaces require
more parameters to be learned, thus leading to an increase in the time needed to train
the network, as dictated by the reported results in Table 4. Nevertheless, the required
training times of ≈2 and ≈3 h for the Crete and Italy datasets, respectively, are surely not
prohibitive, especially if more powerful hardware than the employed one is available. The
most important thing to note here is that although the training times may vary among the
involved models, the respective test/inference ones are nearly identical. This observation
is of particular interest, thus taking into account that once the models are trained (a process
which is performed only once), they can be employed in “production mode” with nearly the
same minimal cost. Consequently, our superior higher-order model can derive enhanced
predictions as fast as its competitors in a matter of few seconds.

Table 4. The proposed higher-dimensional 4D-ETCN model’s superior performance comes at the cost
of increased computational demands in terms of training, while its inference runtime for deriving
predictions is negligible.

Dataset Model # Parameters Time Training (Minutes) Time Testing/Inference (Seconds)

Crete

Conv-LSTM [9] 459,012 17.6605 0.5

ETCN [9] 336,874 3.30542 0.5

4D-ETCN-Proposed 34,599,367 116.909 1

Italy

Conv-LSTM [9] 459,012 17.9783 0.5

ETCN [9] 336,874 3.44944 0.5

4D-ETCN-Proposed 47,104,583 181.733 1

To provide a visual depiction of the proposed model’s efficacy, Figure 7 presents the
actual values of the four distinct ECVs being studied (namely, soil temperature levels 1
through 4) for the specific test sample month of November 2020. This was juxtaposed with
predictions derived from our advanced 4D model and the runner-up method, the ETCN [9].
The regression maps featured in Figure 7 indicate that our 4D-ETCN model more accurately
discerned the majority of the true values across both datasets, thus resulting in distinctly
delineated regions. It is also evident that the ETCN [9] model exhibited substantial “noise
effects,” particularly within the Italian dataset (i.e., Figure 7a–e), due to its inability to
accurately forecast large segments of each test sample. Conversely, the proposed 4D-ETCN
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model excelled in mirroring most of the values present in the actual regression maps thanks
to its inherent capability to grasp high-dimensional interrelations among the variables,
thereby closely reflecting the ground truth maps.
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(a) Ground truth–STL-1.
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(b) Predictions–STL-1-ETCN.
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(c) Predictions–STL-1-4D-ETCN.
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(d) Ground truth–STL-2.
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(e) Predictions–STL-2-ETCN.
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(f) Predictions–STL-2-4D-ETCN.
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(g) Ground truth–STL-3.
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(h) Predictions–STL-3-ETCN.
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(i) Predictions–STL-3-4D-ETCN.
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(j) Ground truth–STL-4.
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(k) Predictions–STL-4-ETCN.
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(l) Predictions–STL-4-4D-ETCN.

Figure 7. The regression maps for November 2020 showcasing the ground truth and predictions
for the soil temperature at two distinct depths have been generated using the ETCN and 4D-ETCN
models for Italy (a–f) and Crete (g–l) datasets.
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4. Discussion

Within this section, we delve into the outcomes detailed in Section 3. Our discussion
unfolds systematically, thus exploring the models’ performance in relation to the extent of
accessible training data and aiming to quantify the specific requirements of each model for
accurate ECVs’ forecasting. Furthermore, an examination is conducted on the efficacy of the
proposed higher-order ETCN alongside its competitors, particularly in scenarios with increased
temporal information. This analysis aims to illuminate the respective strengths and limitations
inherent in each examined model, thus ensuring a comprehensive and lucid comparison.

4.1. Impact of Training Set Size on Forecasting Accuracy

To assess the efficiency of the proposed 4D-ETCN model concerning its dependency
on the volume of training data available, we conducted tests using just 66% and 33% of the
original training samples, thereby decreasing them from 342 to 228 and 114, respectively.
The number of validation and test samples remained unchanged (114 and 17, respectively).
We then proceeded to train the optimally configured models, as identified in Section 3.4,
using the reduced training dataset sizes for both scenarios and datasets, alongside their
leading contemporary counterparts. The outcomes are consolidated in Figure 8 for each
dataset under scrutiny.
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Figure 8. Regression metrics relative to the number of training samples indicate that while increasing
the number of samples enhances the performance of comparative models, the proposed 4D architec-
ture prevails in almost all instances.

We noted that the decrement in training samples marginally impacted the efficacy of
the proposed 4D-ETCN model, which managed to maintain similar performance levels
even when furnished with merely 33% of the total training samples. Conversely, the
performance of the Conv-LSTM [9] and ETCN [9] models was noticeably enhanced across
all visual perception metrics when provided with a larger pool of training samples. Overall,
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the 4D-ETCN model consistently surpassed its rivals across all tested scenarios and datasets,
thus underscoring the resilience and reliability of the proposed methodology.

4.2. Effect of Temporal Information on Forecasting Accuracy

In a final set of experiments, we aimed to quantify the effect of the temporal infor-
mation on the performance of the forecasting models. Throughout the present study,
we employed samples containing information at a half-year level (i.e., the temporal size
of the data was equal to 6 months). We doubled this temporal window information to
1 year (i.e., the temporal data was now set to 12 months) in an attempt to explore how the
models adapted to such an experimental scenario, while the training and validation sets
remained the same (in terms of selected samples). On the contrary, as the test set was by
assumption/construction focused on the last 2 available years 2019–2020, the number of
test samples was reduced from 17 to 11 as a direct consequence of the whole year 2019 being
used for forecasting the values of year 2020. With this setup, we performed exactly the same
analysis that led to Section 4.1 and quantified the performance of all models in both under
investigation dataset for all different numbers of training samples being available to them.
The results are depicted in Figure 9, where we observe that once more the proposed 4D
architecture outperformed its competing ones in nearly every case. We should notice though
that although in the Crete dataset its dominance was clear in every experimental scenario, in
the Italy dataset, when 66% of the whole training samples were available, the Conv-LSTM
[9] model seemed to question its supremacy. However, its performance throughout all these
examined cases indicates that it clearly consists of the best alternative among its competitors.
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Figure 9. The regression metrics relative to the number of training samples for the proposed 4D-
ETCN model and its counterparts under scenarios where an entire year is used for forecasting. The
results reveal a notable trend where while augmenting the number of training samples enhances the
performance of state-of-the-art models, this improvement does not suffice to surpass the performance
of the proposed 4D model.
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5. Conclusions

In this study, we introduced a novel DL architecture, the 4D-ETCN, tailored for simul-
taneous forecasting of multiple ECVs. This methodology expands on the foundations of
cutting-edge ETCN models, thus transitioning them into their high-dimensional counter-
parts by adapting every aspect of their functionalities across all paths. Furthermore, we
embarked on the task of creating, experimenting, and assessing diverse network configura-
tions using actual data to pinpoint the most effective structure for the given challenge.

Our empirical investigations, conducted on two meticulously curated datasets, have
substantiated that superior forecasting accuracy, relative to traditional and contemporary
strategies, can be achieved by executing feature learning within the data’s inherent domain.
At the same time, its computational cost for processing data in higher dimensions is quite
small during inference stage once the model is trained, while there is also room for further
improvement both in terms of hardware and implementation aspects, as dictated in the
respective sections. This advancement underscores the potential of our proposed model in
enhancing the precision of ECVs’ predictions.

Supplementary Materials: The Python scripts for constructing and previewing the proposed
4D-ETCN model will be available online at https://github.com/TITAN-Project-EU/Higher-Order-
CNN (accessed on 29 May 2024), as part of the TITAN ERA Chair project which funded the
present work.
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Appendix A. Forward Propagation in ND CNNs

Appendix A.1. Tucker Convolution Model Sanity Checks

In order to check the validity of our computations, we simulated two uniformly
distributed random tensors XXX and YYY of order N = 1, 2, 3, 4 and computed their convolution
ZZZ via three different “convolution-models”:

(i) Direct: The convolution is determined directly from sums, which are the definition of
convolution.

(ii) Fourier: The (Fast) Fourier Transform (FFT) is used to perform the convolution.
(iii) Tucker: The convolution is computed via Tucker decomposition, as explained in the

respective section of the paper.

The size of each input tensor across each of its modes is chosen uniformly at random to be
in the interval [2, 50] in order to be able to generate simulations that can fit into memory for
all different tensor orders. Furthermore, the sizes of the core tensors GXGXGX and GYGYGY across each
of their modes are also selected uniformly at random to be in the intervals [2, min(size(XXX ))]
and [2, min(size(YYY))], respectively. The bounds of these intervals are determined in such a
way as follows:

• Perform N-D convolution at each simulation (i.e., by avoiding a selection of size equal
to one across a specific mode, which indicates a trailing singleton dimension).

• Perform the maximum compression possible via GXGXGX and GYGYGY (i.e., since in the Tucker
decomposition format the sizes of GXGXGX and GYGYGY have to be at most equal to these of XXX
and YYY).

Moreover, the size of tensor YYY across each of its modes is at most equal to the respective
one of XXX , with the intention of producing sensible convolution outputs at each subsec-
tion/padding scenario (e.g., full, same, valid).

With the above experimental setup, we performed 10 Monte Carlo simulations with
the intention of measuring the discrepancy between the outputs of the three convolution
models, as well as the time needed for the respective computations. The gap between
the convolution models was quantified via their Normalized Mean Square Error (NMSE),
which is defined as follows:

NMSE =
∥Ẑ − ZẐ − ZẐ − Z∥F

∥ZZZ∥F
(A1)

where ZZZ is the convolution output used each time as ground truth model (i.e., Direct and
FFT), Ẑ̂ẐZ is the convolution output used each time as the approximation model (i.e., FFT
and Tucker), and ∥∥F stands for the Frobenius norm.

Figure A1 depicts the boxplot of the NMSE between the Tucker convolution model
and the direct and Fourier ones for up to 4th order tensors and all available convolution
subsections/paddings. On each box, the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted
individually using the ‘+’ marker symbol. By observing Figure A1, we can draw the
following conclusions:

(i) The bottom and top of each box are the 25th and 75th percentiles of the sample, respec-
tively. The distance between the bottom and top of each box is the interquartile range,
which in the 1D and 2D cases is wider for the Fourier–Tucker models’ comparison.
On the contrary, for the 3D and 4D cases it is clearly narrower.

(ii) The red line in the middle of each box is the sample median. Even in the cases where
the median is not centered in the box (i.e., the plot shows sample skewness), all median
NMSE values are of order 10−16, thus indicating the equivalence of computations.

(iii) The whiskers are lines extending above and below each box. Whiskers go from the
end of the interquartile range to the furthest observation within the whisker length
(the adjacent value). We observe that the whiskers for the Fourier–Tucker models’
comparison are shorter in nearly every case, thus indicating tighter error distributions.
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(iv) Observations beyond the whisker length are marked as outliers. By default, an outlier
is a value that is more than 1.5 times the interquartile range away from the bottom
or top of the box. Once more, we highlight the fact that the Fourier–Tucker models’
comparison is the one with the least number of outliers, which are more to be found
in the 4D convolution case.

(v) In all cases, the relative approximation error is of order 10−16, which indicates the
validity of the convolution generalization via tensor decompositions.
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Figure A1. Cont.
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Figure A1. NMSE between the Tucker convolution model and the direct and Fourier ones for up
to 4D data and all available convolution subsections/paddings. In all cases, the relative approx-
imation error is of order 10−16, thus indicating the validity of the convolution generalization via
tensor decompositions.

In Figure A2 is depicted the boxplot of the computational times (in seconds) required
by each convolution model to derive the desired output for up to 4th order tensors and
all available convolution subsections/paddings. Based on the boxplot’s interpretation
explained earlier, we can highlight the following remarks:

(i) The interquartile range of the Tucker models is wider in the 1D and 2D cases and
narrower for the 3D and 4D cases.

(ii) The median value of the Tucker model is slightly higher than these of the direct and
Fourier ones in the 1D and 2D cases, whereas it is nearly the same or even lower in
the 3D and 4D cases.

(iii) The whiskers for the Tucker model are shorter in the 1D and 2D cases and wider in
the 3D and 4D cases.

(iv) The Tucker model seems quite robust to outliers in the 4D convolution case, which
indicates faster computations in cases where the size across a specific mode of the
convolution tensor is high.

(v) In all cases, the computational time required by each convolution model is low, except
the 4D case, where the proposed convolution generalization via tensor decompositions
scales better than its competitors.

Moreover, in Table A1, we report the mean computational times (in seconds) required
by the Tucker convolution model and the direct and Fourier ones corresponding to the
box plots shown in Figure A1. From the highlighted values, we notice that for up to
three-dimensional data, the direct and Fourier convolution models slightly outperformed
the Tucker one, but these differences in the mean values are nearly indifferent. On the
contrary, when dealing with four-dimensional data, the Tucker convolution model clearly
outperformed its competitors.
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Figure A2. Computational time (in seconds) required by the Tucker convolution model and the direct
and Fourier ones for up to 4D data and all available convolution subsections/paddings. The Tucker
convolution model scales better than its competing ones in higher-dimensional cases.
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Table A1. Mean computational time (in seconds) required by the Tucker convolution model and the
direct and Fourier ones for up to 4D data and all available convolution subsections/paddings. For
higher-dimensional data, the Tucker convolution model clearly scales better than its competitors.

Padding Order Direct Fourier Tucker

Full

1 0.00164299 0.00983335 0.06190979

2 0.00084248 0.0059659 0.02388292

3 0.16617763 0.01885796 0.03345958

4 40.3023198 0.58974021 0.2882506

Same

1 0.0001432 0.00084148 0.01272597

2 0.00091602 0.00261802 0.01915561

3 0.12005669 0.02093711 0.02982094

4 22.10111094 0.78723203 0.27993217

Valid

1 0.00049343 0.00107373 0.01228869

2 0.00052135 0.00206695 0.02092461

3 0.00251685 0.01359532 0.02471507

4 0.19681736 0.32595058 0.08041625

Based on the aforementioned analysis, the forward pass of the N-D CNNs can be
computed via the Tucker convolution model, which on the one hand performs the cor-
rect computations, while at the same time scales quite well as the dimensionality of the
problem increases.

Appendix A.2. Stacked Convolution Model Sanity Checks

Following the reasoning adopted for the Tucker convolution model, we accordingly
performed 10 Monte Carlo simulations with the same assumptions, thus aiming to measure
the gap between the proposed Stacked convolution model and the direct and Fourier
ones. Once more, the discrepancy between them is quantified via their NMSE defined in
Equation (A1).

Similarly to Figure A1, in Figure A3 is depicted the box plot of the NMSE between
the proposed Stacked convolution model and the direct and Fourier ones for up to fourth
order tensors and all available convolution subsections/paddings. By observing Figure A3,
we can draw the following conclusions:

(i) The interquartile range is clearly narrower for the Fourier–Stacked models’ compari-
son in every dimensionality and padding case.

(ii) All median NMSE values are of order 10−16, thus indicating the equivalence
of computations.

(iii) The whiskers for the Fourier–Stacked models’ comparison are generally shorter, thus
indicating tighter error distributions.

(iv) In nearly every case there are no outlier values, except the 4D one where once more
the Fourier–Stacked models’ comparison is the one with the least number of outliers.

(v) In all cases, the relative approximation error is of order 10−16, which indicates the validity of
the proposed convolution generalization via stacking lower-dimensional convolutions.
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Figure A3. NMSE between the proposed Stacked convolution model and the direct and Fourier
ones for up to 4D data and all available convolution paddings/subsections. In all cases, the relative
approximation error is of order 10−16, thus indicating the validity of the proposed convolution
generalization via stacking lower-dimensional convolutions.

Similarly to Figure A2, in Figure A4 is depicted the box plot of the computational
times (in seconds) required by each convolution model to derive the desired output for up
to fourth order tensors and all available convolution subsections/paddings. Based on the
box plot’s interpretation explained earlier, we can highlight the following remarks:

(i) The interquartile range of the Stacked model is wider in the 2D and 3D cases and
nearly equally narrow to its competitors for the 4D case.

(ii) The median value of the Stacked model is slightly higher than these of the direct and
Fourier ones in the 2D and 3D cases, whereas it is nearly the same in the 4D case.

(iii) The whiskers for the Stacked model are greater in every convolution cases except the
“valid” ones, where the Fourier ones are more significant.

(iv) The Stacked model seems as robust to outliers as the direct one, with both being
slightly inferior to the Fourier convolution model.



Remote Sens. 2024, 16, 2020 31 of 42

(v) In all cases, the computational time required by each convolution model is low, thus
indicating the speed and efficiency of the performed computations.
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Figure A4. Computational time (in seconds) required by the proposed Stacked convolution model
and the direct and Fourier ones for up to 4D data and all available convolution paddings/subsections.
The proposed Stacked convolution model scales equally well to its competing ones in every case.

Stacked Convolution Algorithm

The Stacked Convolution Algorithm for up 4D tensors is outlines below.



Remote Sens. 2024, 16, 2020 32 of 42

Algorithm A1 Stacked Convolution Algorithm
1: procedure STACKED-CONVOLUTION(N, A, B, Padding) ▷ Convolution between N-th order tensors A and B
2: wa = size(A, N) ▷ Stacking dimension of tensor A
3: wb = size(B, N) ▷ Stacking dimension of tensor B
4: if Padding == “Full′′ then
5: wc = wa + wb − 1 ▷ Stacking dimension of tensor C
6: else if Padding == ”Same” then
7: wc = wa ▷ Stacking dimension of tensor C
8: else if Padding == ”Valid” then
9: wc = wa − wb + 1 ▷ Stacking dimension of tensor C

10: else
11: return
12: end if
13: FR = cell(wc, 1) ▷ Output tensors for each (N-1)-D frame
14: for i = 1 : wb do
15: for i = 1 : wa do
16: OF = j + (i − f loor(wb/2))− f loor((wa − wc)/2)− 1 ▷ Add results to this output frame
17: if OF < 1 OR OF ≥ wc + 1 then
18: continue
19: end if
20: if N == 2 then
21: FCNM1D = conv(A(:, j), B(:, i), Padding) ▷ Stacked-convolution frame-results for 2-D tensors
22: else if N == 3 then
23: FCNM1D = conv2(A(:, :, j), B(:, :, i), Padding) ▷ Stacked-convolution frame-results for 3-D

tensors
24: else if N == 4 then
25: FCNM1D = convn(A(:, :, :, j), B(:, :, :, i), Padding) ▷ Stacked-convolution frame-results for 4-D

tensors
26: else
27: return
28: end if
29: if isempty(FR{OF}) then
30: FR{OF} = FCNM1D
31: else
32: FR{OF} = FR{OF}+ FCNM1D
33: end if
34: end for
35: end for
36: if Padding == ”Full” then
37: C = zeros(size(A) + size(B)− 1)
38: else if Padding == ”Same” then
39: C = zeros(size(A))
40: else if Padding == ”Valid” then
41: C = zeros(size(A)− size(B) + 1)
42: else
43: return
44: end if
45: if N == 2 then
46: C = horzcat(FR{:})
47: else if N == 3 then
48: for k = 1 : wc do
49: C(:, :, k) = FR{k}
50: end for
51: else if N == 4 then
52: for k = 1 : wc do
53: C(:, :, :, k) = FR{k}
54: end for
55: else
56: return
57: end if
58: return C ▷ Convolution between N-th order tensors A and B
59: end procedure
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Appendix B. Backpropagation in ND CNNs

As stated earlier in Section 2.1.3, we can express the basic operation of an ND convolu-
tional layer l in the “direct-sum” form as follows:

Zi1,i2,...,iN (l) =∑
j1

∑
j2

. . . ∑
jN

Wj1,j2,...,jN (l)Ii1−j1,i2−j2,...,iN−jN (l − 1) + bbb(l)

=WWW(l) ⋆ Ii1,i2,...,iN (l − 1) + bbb(l)
(A2)

where {j1, j2, . . . , jN} span the dimensions of the kernel, {i1, i2, . . . , iN} span the dimensions
of the input, and bbb is the bias term. As can be seen from Equation (A2), the input of the
previous layer (l − 1) serves for the computation of the current output layer (l), and the
input of the current layer l can be computed as follows:

Ii1,i2,...,iN (l) = f (Zi1,i2,...,iN (l)) (A3)

where f is a selected activation function (e.g., ReLU, tanh).
Based on the above, the gradients with respect to the input (i.e., ∂LLL

∂III ) and with respect
to the filters (i.e., ∂LLL

∂WWW ) can be computed via the chain rule as follows:{
∂LLL
∂III = ∂LLL

∂ZZZ ∗ ∂ZZZ
∂III

∂LLL
∂WWW = ∂LLL

∂ZZZ ∗ ∂ZZZ
∂WWW

(A4)

In order to be able to provide Equation (A4) in the closed form, we need to compute ∂LLL
∂ZZZ ,

∂ZZZ
∂III , and ∂ZZZ

∂WWW . ∂LLL
∂ZZZ stands for the output error of our CNN with respect to each neuron in the

network and is common in both cases, so we initially start with its analytical computation.
More precisely, we have

∂LLL
∂ZZZ =

∂L
∂Zi1,i2,...,iN (l)

= ∑
u1

∑
u2

. . . ∑
uN

∂L
∂Zu1,u2,...,uN (l + 1)

∂Zu1,u2,...,uN (l + 1)
∂Zi1,i2,...,iN (l)

= δi1,i2,...,iN (l)

(A5)

where {u1, u2, . . . , uN} are any N summation variables resulting by applying the chain
rule over the range of possible ZZZ values. By using Equations (A2)–(A3)–(A5), we obtain
the following:

∂LLL
∂ZZZ = ∑

u1

∑
u2

. . . ∑
uN

δi1,i2,...,iN (l + 1)

∂

[
∑j1 ∑j2 . . . ∑jN Wj1,j2,...,jN (l + 1) f (Zu1−j1,u2−j2,...,uN−jN (l)) + bbb(l + 1)

]
∂Zi1,i2,...,iN (l)

(A6)

The derivative of the expression inside the brackets is zero unless u1 − j1 = i1,
u2 − j2 = i2, . . . , uN − jN = iN, thus bearing in mind that in addition the derivative of
bbb(l + 1) with respect to Zi1,i2,...,iN(l) is zero. In the nonzero regime where
u1 − j1 = i1, u2 − j2 = i2, . . . , uN − jN = iN, we have j1 = u1 − i1 =, j2 = u2 − i2, . . . ,
jN = uN − iN, and taking the derivative of the expression in brackets, Equation (A6) becomes

∂LLL
∂ZZZ = ∑

u1

∑
u2

. . . ∑
uN

δi1,i2,...,iN (l + 1)[
∑

u1−i1
∑

u2−i2

. . . ∑
uN−iN

Wu1−i1,u2−i2,...,uN−iN (l + 1) f ′(Zi1,i2,...,iN (l))
] (A7)
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The values of {i1, i2, . . . , iN} and {u1, u2, . . . , uN} are specified outside of the terms inside
the brackets. Once the values of these variables are fixed, {u1 − i1, u2 − i2, . . . , uN − iN} inside the
brackets are simply N constants. Therefore, the N summation evaluates to Wu1−i1,u2−i2,...,uN−iN
(l + 1) f ′(Zi1,i2,...,iN(l)), and Equation (A7) becomes

∂LLL
∂ZZZ = ∑

u1

∑
u2

. . . ∑
uN

δi1,i2,...,iN (l + 1)Wu1−i1,u2−i2,...,uN−iN (l + 1) f ′(Zi1,i2,...,iN (l))

= f ′(Zi1,i2,...,iN (l))∑
u1

∑
u2

. . . ∑
uN

δi1,i2,...,iN (l + 1)Wu1−i1,u2−i2,...,uN−iN (l + 1)
(A8)

The N sum expression in the second line of this equation is in the form of a convolution,
but the displacements are the negatives of those in Equation (A3). Therefore, we can write
Equation (A8) as follows:

∂LLL
∂ZZZ = f ′(Zi1,i2,...,iN (l))

[
∑
u1

δi1,i2,...,iN (l + 1) ⋆W−i1,−i2,...,−iN (l + 1)
]

(A9)

The negatives in the subscripts indicate that WWW is reflected about all of its axes. This
is the generalization of rotating a two-dimensional kernel WWW by 180◦. Using this fact, we
finally arrive at an expression for the error at a layer l by writing Equation (A9) equivalently
as follows:

∂LLL
∂ZZZ = f ′(Zi1,i2,...,iN (l))

[
δi1,i2,...,iN (l + 1) ⋆ rotN(Wi1,i2,...,iN (l + 1))

]
(A10)

But, the kernels do not depend on {i1, i2, . . . , iN}, so we can write this equation as

∂LLL
∂ZZZ = f ′(Zi1,i2,...,iN (l))

[
δi1,i2,...,iN (l + 1) ⋆ rotN(WWW(l + 1))

]
(A11)

Having computed ∂LLL
∂ZZZ , we have to compute the local gradients with respect to the

layer’s input ( ∂ZZZ
∂III ), the layer’s weights ( ∂ZZZ

∂WWW ), and the layer’s biases ( ∂ZZZ
∂bbb ). These local

gradients are going to be combined with the previously computed ∂LLL
∂ZZZ in order to derive

the desired gradients needed (i.e., ∂LLL
∂III , ∂LLL

∂WWW and ∂LLL
∂bbb ) for the backpropagation algorithm of

the neural network.
Concerning the computation of the gradient with respect to the layer’s input, ∂LLL

∂III , we
have the following:

∂LLL
∂III =

∂L
∂I i1,i2,...,iN

= ∑
i1

∑
i2

. . . ∑
iN

∂L
∂Zi1,i2,...,iN (l)

∂Zi1,i2,...,iN (l)
∂Ii1,i2,...,iN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)
∂Zi1,i2,...,iN (l)

∂Ii1,i2,...,iN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

∂

[
∑j1 ∑j2 . . . ∑jN Wj1,j2,...,jN (l) f (Zi1−j1,i2−j2,...,iN−jN (l − 1)) + bbb(l)

]
∂Ii1,i2,...,iN

(A12)

Since the convolution operation is commutative, the last line of Equation (A12) can be
written as follows:
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∂LLL
∂III = ∑

i1
∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

∂

[
∑j1 ∑j2 . . . ∑jN Wj1,j2,...,jN (l) f (Zi1−j1,i2−j2,...,iN−jN (l − 1)) + bbb(l)

]
∂Ii1,i2,...,iN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

∂

[
∑i1 ∑i2 . . . ∑iN

Wj1−i1,j2−i2,...,jN−iN (l) f (Zi1,i2,...,iN (l − 1)) + bbb(l)
]

∂Ii1,i2,...,iN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)Wj1−i1,j2−i2,...,jN−iN (l)

= δj1,j2,...,jN (l) ⋆Wj1,j2,...,jN (l)

= conv
(

∂LLL
∂ZZZ ,WWW(l)

)

(A13)

Following a similar procedure as above for the gradient with respect to the layer’s
weights, ∂LLL

∂WWW , we obtain the following:

∂LLL
∂WWW =

∂L
∂W j1,j2,...,jN

= ∑
i1

∑
i2

. . . ∑
iN

∂L
∂Zi1,i2,...,iN (l)

∂Zi1,i2,...,iN (l)
∂Wj1,j2,...,jN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)
∂Zi1,i2,...,iN (l)
∂Wj1,j2,...,jN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

∂

[
∑j1 ∑j2 . . . ∑jN Wj1,j2,...,jN (l) f (Zi1−j1,i2−j2,...,iN−jN (l − 1)) + bbb(l)

]
∂Wj1,j2,...,jN

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l) f (Zi1−j1,i2−j2,...,iN−jN (l − 1))

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)Ii1−j1,i2−j2,...,iN−jN (l − 1)

(A14)

Equation (A14) is in the form of a convolution, but upon comparing it to Equation (A3),
we see there is a sign reversal between the summation variables and their corresponding
subscripts. To put it in the form of a convolution, we write the last line of Equation (A14) as

∂LLL
∂WWW = ∑

i1
∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)Ii1−j1,i2−j2,...,iN−jN (l − 1)

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)I−(j1−i1),−(j2−i2),...,−(jN−iN)(l − 1)

= δj1,j2,...,jN (l) ⋆ I−j1,−j2,...,−jN (l − 1)

= δj1,j2,...,jN (l) ⋆ rotN(III(l − 1))

= conv
(

∂LLL
∂ZZZ , rotN(III(l − 1))

)
(A15)
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Finally, as far as the gradient with respect to the layer’s bias is concerned, ∂LLL
∂bbb , we have

∂LLL
∂bbb

=
∂LLL

∂bbb(l)

= ∑
i1

∑
i2

. . . ∑
iN

∂L
∂Zi1,i2,...,iN (l)

∂Zi1,i2,...,iN (l)
bbb(l)

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)
∂Zi1,i2,...,iN (l)

bbb(l)

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

∂

[
∑j1 ∑j2 . . . ∑jN Wj1,j2,...,jN (l) f (Zi1−j1,i2−j2,...,iN−jN (l − 1)) + bbb(l)

]
∂bbb(l)

= ∑
i1

∑
i2

. . . ∑
iN

δi1,i2,...,iN (l)

= ∑
i1

∑
i2

. . . ∑
iN

(
∂LLL
∂ZZZ

)

(A16)

Equations (A13) and (A15) sketch the general methodology for computing the desired
gradients, and they indicate that in reality both forward and backward passes of an ND
convolutional layer are convolutions.

Appendix C. 4D-ETCN Architectures Parameter Tuning

The first set of experiments assesses the performance of the 4D-ETCN in relation to the
filter size of its encoder. We trained three different 4D-ETCN models with filter size equal
to (2, 2, 2, 2) (3, 3, 3, 3) and (4, 4, 4, 4), while the rest of the parameters remained to their
default values as described above. In an attempt to investigate the impact of richer features’
representations to the proposed model’s performance, the number of filters on each of the
three 4D convolutional layers of the encoder were also tuned at the same time by a starting
tuple of 4–8–8 to a final one of 256–512–512, thus ending up with 21 different experimental
scenarios in total. Table A2 shows that as we employed more filters, the obtained MSE
loss decreased, thus indicating that the network’s generalization capability improved. In
addition, the kernel size of the 4D filters implies that wider receptive fields led to clearly
ameliorated results for both datasets. We also observe that our model performed equally
well in both datasets, thus indicating its general efficiency towards different input data
sources. All in all, we can conclude that for the Crete dataset 4D filters of size (4, 4, 4, 4)
should be employed, while for the toughest Italy one, 4D filters of size (3, 3, 3, 3) are enough.

Table A2. MSE loss for the trained 4D-ETCN models by tuning of its encoder. Employing more filters
with wider receptive fields led to more complex and accurate models for both examined datasets.

Filter Size—Encoder # Filters—Encoder MSE—Crete MSE—Italy

(2,2,2,2)

4–8–8 0.0203299 0.0351741

8–16–16 0.00981018 0.0174846

16–32–32 0.00279834 0.00610852

32–64–64 0.00135296 0.00330851

64–128–128 0.00104249 0.00214806

128–256–256 0.000914299 0.00196186

256–512–512 0.000865973 0.00182972
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Table A2. Cont.

Filter Size—Encoder # Filters—Encoder MSE—Crete MSE—Italy

(3,3,3,3)

4–8–8 0.0214919 0.0304642

8–16–16 0.0049132 0.0108743

16–32–32 0.00208164 0.00432188

32–64–64 0.00111296 0.00281552

64–128-128 0.000869734 0.0019207

128–256–256 0.000776139 0.00155718

256–512–512 0.00077451 0.00149614

(4,4,4,4)

4–8–8 0.0126214 0.0378467

8–16–16 0.0055291 0.0112438

16–32–32 0.00165563 0.00336393

32–64–64 0.00133122 0.00256895

64–128–128 0.000943455 0.00175497

128–256–256 0.00079662 0.00157785

256–512–512 0.000751026 0.00159778

The second set of experiments quantifies the impact of the kernel size of 1D convolu-
tional layer of the TCN part of our proposed 4D model architecture. We again trained three
different models with filter sizes equal to 2, 3, and 4, while the filters of the encoder part
were tuned exactly as explained before. As before, we observe that more filters clearly led
to better performing models, while the baseline value of the TCN 1D kernel needed to be
increased to 3 for the Crete dataset and 4 for the more demanding Italy one.

The third hyperparameter examined in our ablation study is the 4D filter size at its
decoder part, thus focusing on the receptive field of the upsampling/transpose convolution
operation of the proposed 4D model architecture. We again trained three different models
with filter size and number of filters of the encoder part analogous to the respective encoder
case. Once more, making use of more filters boosted the models under examination,
while larger receptive fields for upsampling ended up with more accurate predictions for
both datasets.

The last hyperparameter tuned in our ablation study is the dropout rate, which was
tuned in our quest to regularize its performance and avoid overfitting issues. For that
cause, we tried three different dropout rates equal to 0.3, 0.4, and 0.5, and we trained the
respective models with number of filters of the encoder part analogous to the respective
encoder case. From this set of experiments, we observe that extreme dropout rates led to
worse-performing models, thus indicating our architectures do not suffer from overfitting
issues. In addition, employing more filters led to increased performance for both datasets,
as in the previous set of experiments.

As can be seen from the results reported in Tables A2–A5, the two datasets required
quite different hyperparameters’ configuration for achieving optimal results. Based on these
combinations highlighted in the aforementioned tables, we selected the the best-performing
values for each investigated hyperparameter and performed a final set of optimization
experiments by tuning only the number of filters in the encoder part of our 4D architecture.
The results reported in Tables A6 and A7 imply that after the initial hyperparameters’
tuning, adopting architectures with more filters in the encoder part of the network led to
clear performance gains. All in all, the adopted model’s architectures for the two different
datasets derived from this ablation study are highlighted in Tables A6 and A7, and they
were used throughout the rest of the present work.
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Table A3. MSE loss for the trained 4D-ETCN models by tuning of its TCN. Increasing the 1D filter
size and employing more filters led to better performing models for both examined datasets.

Filter Size—TCN # Filters—Encoder MSE—Crete MSE—Italy

2

4–8–8 0.0203299 0.0351741

8–16–16 0.00981018 0.0174846

16–32–32 0.00279834 0.00610852

32–64–64 0.00135296 0.00330851

64–128–128 0.00104249 0.00214806

128–256–256 0.000914299 0.00196186

256–512–512 0.000865973 0.00182972

3

4–8–8 0.0154268 0.0381451

8–16–16 0.00621275 0.0173167

16–32–32 0.00239204 0.00518445

32–64–64 0.00126476 0.00316894

64–128–128 0.00103368 0.00240135

128–256–256 0.000864882 0.00195037

256–512–512 0.000804169 0.00179337

4

4–8–8 0.0168413 0.0364333

8–16–16 0.00604127 0.0144646

16–32–32 0.00195937 0.0041265

32–64–64 0.00126467 0.00310254

64–128-128 0.000947225 0.00225102

128-256–256 0.000844021 0.0017829

256–512–512 0.000811305 0.00174023

Table A4. MSE loss for the trained 4D-ETCN models by tuning of its decoder. Larger receptive fields
for upsampling in conjunction with richer feature representations ended up with better performing
models for both examined datasets.

Filter Size—Decoder # Filters—Encoder MSE—Crete MSE—Italy

(2,2,2,2)

4–8–8 0.0203299 0.0351741

8–16–16 0.00981018 0.0174846

16–32–32 0.00279834 0.00610852

32–64–64 0.00135296 0.00330851

64–128–128 0.00104249 0.00214806

128–256–256 0.000914299 0.00196186

256–512–512 0.000865973 0.00182972
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Table A4. Cont.

Filter Size—Decoder # Filters—Encoder MSE—Crete MSE—Italy

(3,3,3,3)

4–8–8 0.00790696 0.0331473

8–16–16 0.00295041 0.0137488

16–32–32 0.00141169 0.00544591

32–64–64 0.00105156 0.00291967

64–128–128 0.000940168 0.00194803

128–256–256 0.000834836 0.00181562

256–512–512 0.0007741 0.00165275

(4,4,4,4)

4–8–8 0.00577045 0.022633

8–16–16 0.00258578 0.00909528

16–32–32 0.00133485 0.00490685

32–64–64 0.000997249 0.00211714

64–128–128 0.000929486 0.00184755

128–256–256 0.00082758 0.00166246

256–512–512 0.000764315 0.00169711

Table A5. MSE loss for the trained 4D-ETCN models by tuning of its dropout rate. Dropping half of
the available data had a negative impact on the examined models, while more filters again contributed
to enhanced performance for both examined datasets.

Dropout Rate # Filters—Encoder MSE—Crete MSE—Italy

0.3

4–8–8 0.0203299 0.0351741

8–16–16 0.00981018 0.0174846

16–32–32 0.00279834 0.00610852

32–64–64 0.00135296 0.00330851

64–128–128 0.00104249 0.00214806

128–256–256 0.000914299 0.00196186

256–512–512 0.000865973 0.00182972

0.4

4–8–8 0.0341803 0.0498237

8–16–16 0.0120504 0.0244045

16–32–32 0.00388539 0.0093801

32–64–64 0.00170305 0.00426584

64–128–128 0.00112826 0.00252556

128–256–256 0.000968859 0.00206769

256–512–512 0.000870094 0.00178803

0.5

4–8–8 0.0477682 0.0616626

8–16–16 0.0161133 0.0270213

16–32–32 0.00581007 0.0120161

32–64–64 0.00224298 0.00557922

64–128–128 0.0012323 0.0027299

128–256–256 0.000980545 0.00216101

256–512–512 0.000881541 0.00191598
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Table A6. Final tuning of the proposed 4D architecture for the Crete dataset. Adopting richer features’
representations led to better performing model.

Filter Size—Encoder Filter
Size—ETCN Filter Size—Decoder Dropout Rate #

Filters—Encoder MSE—Crete

(4,4,4,4) 3 (4,4,4,4) 0.3

4–8–8 0.00415853

8–16–16 0.00247294

16–32–32 0.000887057

32–64–64 0.000797183

64–128–128 0.000733693

128–256–256 0.000698685

256–512–512 0.000754672

Table A7. Final tuning of the proposed 4D architecture for the Italy dataset. Employing more filters
had a clear positive effect on the proposed model’s learning capacity.

Filter Size—Encoder Filter
Size—ETCN Filter Size—Decoder Dropout Rate #

Filters—Encoder MSE—Italy

(3,3,3,3) 4 (3,3,3,3) 0.4

4–8–8 0.0299083

8–16–16 0.00801586

16–32–32 0.00326288

32–64–64 0.00237769

64–128–128 0.00163417

128–256–256 0.0014781

256–512–512 0.00145329
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